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PERSISTENCE, EXTINCTION AND POSITIVE
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Abstract In this paper, a stochastic S-DI-A epidemic model with standard
incidence under Markovian switching is investigated to study the spread of
the HIV virus. For this purpose, we firstly obtain sufficient conditions for
persistence in the mean of the disease. In addition, sufficient conditions for
exponential extinction of the infectious disease is derived. Furthermore, by
constructing a suitable stochastic Lyapunov function with regime switching,
we establish sufficient conditions for the existence of positive recurrence of
the solutions. Finally, numerical simulations are employed to demonstrate the
analytical results.
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1. Introduction
Human immunodeficiency virus (HIV) continues to be a major public health prob-
lem in the world. HIV attacks the body’s immune system, specifically the CD4
cells (T cells), which help the immune system fight off infections. Untreated, HIV
reduces the number of CD4 cells in the body, making the person more likely to get
other infections or infection-related cancers. Over time, HIV can destroy so many of
these cells that the body can’t fight off infections and disease. These opportunistic
infections or cancers take advantage of a very weak immune system and signal that
the person has AIDS, the last stage of HIV infection [1].

Because of the long term predication and heavy expenses of clinical treatments,
several mathematical models have been introduced to describe how the disease is
distributed and to explain epidemic illnesses related to AIDS [2, 9–13, 20]. These
Mathematical models are useful for understanding the spread of HIV/AIDS. Obvi-
ously, the most urgent public health problem globally is to devise effective strategies
to minimize the destruction caused by the HIV/AIDS epidemic [24].

†The corresponding author. Email: daqingjiang2010@hotmail.com(D. Jiang)
1College of Science, China University of Petroleum, Qingdao 266580, Shandong
Province, China

2School of Mathematics and Statistics, Key Laboratory of Applied Statistics
of MOE, Northeast Normal University, Changchun 130024, Jilin Province,
China

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220145


A hybrid switching S-DI-A epidemic model 827

The deterministic classical S-DI-A model employing with standard incidence is
proposed by Hyman et al. [10], which has been widely used and studied, takes the
form 

dS

dt
= µS0 − µS −

n∑
j=1

βj
Ij
N

S,

dIi
dt

= pi

n∑
j=1

βj
Ij
N

S − (µ+ γi)Ii, i = 1, 2, . . . , n,

dA

dt
=

n∑
i=1

γiIi − δA.

(1.1)

Here they divided the total population N into the susceptible population S, the
infected individuals I is subdivided into n subgroups I1, I2, . . . , In, and the AIDS
cases A. Therefore, N(t) = S(t)+

∑n
j=1 Ij(t). S0 is a positive constant steady state

of the susceptible population S, if no virus is present in the population; µ denotes
the rate of inflow and outflow; βj denotes the transmission probability per partner
of individuals in subgroup n; pi denotes the probability of an infected individual
entering the ith subgroup and

∑n
i=1 pi = 1; γi is the rate of leaving the high-risk

population because of behavior changes that are induced by either HIV-related
illnesses or a positive HIV test and δ denotes the death rate of A which satisfies
δ ≥ µ.

Since the dynamics of AIDS cases A have no effects on those of susceptible
population S and infected individuals Ii for system (1.1). Hence, we only need to
consider the first two equations of system (1.1) as following reduced system

dS

dt
= µS0 − µS −

n∑
j=1

βj
Ij
N

S,

dIi
dt

= pi

n∑
j=1

βj
Ij
N

S − (µ+ γi)Ii, i = 1, 2, . . . , n.

(1.2)

According to the theory in [20], system (1.2) has the following properties

• System (1.2) always has the infection-free equilibrium E0 = (S0, 0, 0, . . . , 0),
which is globally asymptotically stable in the region D if R0 =

∑n
i=1

βipi

µ+γi
≤ 1,

where D = {(S, Ii) ∈ Rn+1
+ : 0 ≤ N ≤ S0}.

• If R0 > 1, the infection-free equilibrium E0 is unstable and the endemic
equilibrium E∗ = (S∗, I∗1 , I

∗
2 , . . . , I

∗
n) is globally asymptotically stable in the

region D.

However, in many applications, it has been shown that modeling the behavior
of dynamical systems by stochastic differential equations has more advantages than
deterministic modeling [4, 6, 16, 18, 26, 30, 34]. Epidemic models are inevitably in-
fected by various environmental noises such as telephone noise, which is important
components in realism [19, 27, 28]. Therefore, in order to describe the interference
of the external irresistible factors, many researchers tried to combine the Markov
chain with the epidemic models [3,5,7,15,18,25,29,32,33]. By state switching of the
Markov chain, the continuous-time Markov chain changes the main parameters of
epidemic models. For example, Zhang et al. [33] considered stochastic SIS epidemic
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model with vaccination under regime switching. They establish sufficient condi-
tions for the existence of a unique ergodic stationary distribution by constructing
stochastic Lyapunov functions. Gary et al. [5] studied SIS epidemic model with
noise introduced in the disease transmission term. They showed that the SDE has
a unique positive global solution, and we established conditions for extinction and
persistence of disease. Motivated by the abovementioned work, in this paper, we
just make a first attempt to fill the gap and study the multigroup S-DI-A epidemic
model with standard incidence and Markovian switching.

In the S-DI-A epidemic model, seasonality exerts a strong influence on the dis-
ease transmission coefficient βj between compartments S and Ij . Moreover, βj may
be more sensitive to environmental fluctuations than other parameters of system
(1.2) for human populations [14]. These changes usually cannot be described by
the traditional deterministic or stochastic epidemic models. Hence, it is natural
to consider the following S-DI-A epidemic model with standard incidence under a
piecewise deterministic Markov process.

dS = (µS0 − µS −
n∑

j=1

βj(r(t))
Ij
N

S)dt,

dIi = (pi

n∑
j=1

βj(r(t))
Ij
N

S − (µ+ γi)Ii)dt, i = 1, 2, . . . , n,

(1.3)

where the transmission coefficient βj is obtained by a homogeneous continuous-
time Markov chain {r(t), t > 0} with values in finite state space M = {1, 2, . . . , Ñ}
denoting different environments.

The paper is organized as follows. In Section 2, we introduce some results that
will be used in our following analysis. In Section 3, the existence and uniqueness of
the positive solution of system (1.3) are shown. In Section 4, we obtain sufficient
conditions for persistence in the mean of the disease. Sufficient conditions for expo-
nential extinction of the infectious disease are established in Section 5. In Section
6, we obtain sufficient conditions for positive recurrence of the solutions to system
(1.3). Finally, in Section 7 and 8, we come to a conclusion and introduce numerical
simulations to verify the theoretical results.

2. Preliminaries
In this section, we introduce the notations and two lemmas which will be used
in the whole paper. Let (Ω,F , {Ft}t≥0,P) be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right
continuous while F0 contains all P-null sets).

Let r(t) be a right-continuous Markov chain, taking values in a finite state space
M = {1, 2, . . . , Ñ}, with the generator Γ̃ = (γij)Ñ×Ñ given by [31]

P{r(t+ δ) = v|r(t) = u} =

{
γijδ + o(δ), if i ̸= j,

1 + γijδ + o(δ), if i = j,

where δ > 0, γij ≥ 0 is the transition rate from i to j if i ̸= j, while
∑Ñ

j=1 γij = 0.
Assume further that the Markov chain r(t) is irreducible and has a unique stationary
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distribution π = (π1, π2, . . . , πÑ ) which can be determined by equation

πΓ̃ = 0, (2.1)

subject to
∑Ñ

h=1 πh = 1, and πh > 0, for any h ∈ M. For any vector g =

(g(1), g(2), . . . , g(Ñ)), define ĝ = mink∈M g(k), ǧ = maxk∈M g(k).
Let (X(t), r(t)) be the diffusion Markov process and satisfy the following equa-

tion

dX(t) = b(X(t), r(t))dt+ σ(X(t), r(t))dB(t), X(0) = x0, r(0) = r, (2.2)

where b(·, ·) : Rn×M → Rn, σ(·, ·) : Rn×M → Rn×n, and D(x, k) = σ(x, k)σT (x, k) =
(dij(x, k)). For each k ∈ M, let V (·, k) be any twice continuously differentiable
function, the operator L is defined by

LV (x, k) =

n∑
i=1

bi(x, k)
∂V (x, k)

∂xi
+

1

2

n∑
i,j=1

dij(x, k)
∂2V (x, k)

∂xi∂xj
+

Ñ∑
l=1

γklV (x, l).

Then we can easily obtain the following results to prove the persistence in the
mean from Liu et al. [17].

Lemma 2.1. (

n∑
i=1

a2i )(

n∑
i=1

b2i ) ≥ (

n∑
i=1

aibi)
2 for any ai, bi ∈ R, i = 1, 2, . . . , n.

Lemma 2.2. (

Ñ∑
k=1

πkx(k))
2 ≤

Ñ∑
k=1

πkx
2(k).

3. Existence and uniqueness of the positive solution
To study the dynamical behavior of stochastic S-DI-A epidemic model, the first
concern is whether the solution is global and positive. In this section, we will show
that system (1.3) has a unique global positive solution with any initial value.

Theorem 3.1. For any initial value (S(0), I1(0), I2(0), . . . , In(0), r(0)) ∈ Rn+1
+ ×

M, stochastic system (1.3) has a unique positive solution (S(t), I1(t), I2(t), . . . , In(t),
r(t)) on t ≥ 0, and the solution will remain in Rn+1

+ ×M with probability one.

Since the coefficients of model (1.3) satisfy the local Lipschitz condition, then
for given initial value (S(0), I1(0), I2(0), . . . , In(0), r(0)) ∈ Rn+1

+ ×M, there exists
a unique local solution (S(t), I1(t), I2(t), . . . , In(t), r(t)) on t ∈ (0, ρ), a.s., where ρ
is the explosion time [23]. To show this solution is global, we only need to prove
that ρ = ∞ a.s.. Let k0 be sufficiently large for every component of S(0) and Ii(0)
(i = 1, 2, . . . , n) all lie within the interval [1/k0, k0]. For each integer k ≥ k0, define
the stopping time as in [23]

τk = inf{t ∈ (0, τ)|min{S(t), I1(t), I2(t), . . . , In(t)} ≤ 1

k
or max{S(t), I1(t), I2(t), . . . , In(t)} ≥ k},

where throughout this paper we set inf ∅ = ∞. Obviously, τk is increasing as
k → ∞. Set τ∞ = limk→∞ τk, hence τ∞ ≤ ρ a.s.. If we show that τ∞ = ∞ a.s.,
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then ρ = ∞ a.s.. This means that (S(t), I1(t), I2(t), . . . , In(t), r(t)) ∈ Rn+1
+ ×M a.s.

for all t ≥ 0. If τ∞ < ∞ a.s., then there is a pair of constants T ≥ 0 and ε ∈ (0, 1)
such that

P{τ∞ ≤ T} > ε. (3.1)
Hence, there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε, for all k ≥ k1.

Define a C2-function V0 on Rn+1
+ ×M to R+ as follows

V0(S, I1, I2, . . . , Ii, k) = (S − 1− logS) +

n∑
i=1

(Ii − 1− log Ii).

By using Itô’s formula [21], we have
dV (S, I1, I2, . . . , Ii, k) = LV (S, I1, I2, . . . , Ii, k)dt, (3.2)

where LV0 : Rn+1
+ ×M → R+ is defined by

LV0(S, I1, I2, . . . , Ii, k)

=
(
1− 1

S

)(
µS0 − µS −

n∑
j=1

βj(k)
Ij
N

S
)
+

n∑
i=1

(1− 1

Ii
)
( n∑

j=1

βj(k)
Ij
N

S − (µ+ γi)Ii

)
=µS0−µS−

n∑
i=1

(µ+γi)Ii−
µS0

S
+µ+

n∑
j=1

βj(k)
Ij
N

−
n∑

i=1

1

Ii

n∑
j=1

βj(k)
Ij
N

S+

n∑
i=1

(µ+ γi)

≤µS0 + µ+

n∑
j=1

β̌j +

n∑
i=1

(µ+ γi)

:=Q,
(3.3)

where Q is a positive constant which is independent of S and Ii (i = 1, 2, . . . , n).
The remained proof follows that in Mao et al. [22] and hence is omitted here. This
completes the proof.

Remark 3.1. Theorem 3.1 shows that for any initial value (S(0), I1(0), I2(0), . . . ,
In(0),r(0)) ∈ Rn+1

+ ×M, system (1.3) has a unique positive solution (S(t), I1(t),
I2(t), . . . , In(t), r(t)) ∈ Rn+1

+ ×M a.s.. Therefore,[
µS0 − (µ+

n∑
i=1

γi)(S +

n∑
i=1

Ii)

]
dt

< d(S +

n∑
i=1

Ii)

= µS0 − µS −
n∑

i=1

(µ+ γi)Ii <

[
µS0 − µ(S +

n∑
i=1

Ii)

]
dt,

thus
µS0

µ+
∑n

i=1 γi
+ e−(µ+

∑n
i=1 γi)t

(
S(0) +

n∑
i=1

Ii(0)−
µS0

µ+
∑n

i=1 γi

)
<S(t) +

n∑
i=1

Ii(t) < S0 + e−µt
(
S(0) +

n∑
i=1

Ii(0)− S0
)
.
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If
µS0

µ+
∑n

i=1 γi
< S(0) +

n∑
i=1

Ii(0) < S0,

then we arrive at

µS0

µ+
∑n

i=1 γi
< S(t) +

n∑
i=1

Ii(t) < S0, a.s..

Hence, system (1.3) has a positively invariant set

Γ̄ =
{
(S, I1, I2, . . . , In) ∈ Rn+1

+ :
µS0

µ+
∑n

i=1 γi
< S +

n∑
i=1

Ii < S0
}
.

From now on, we always assume that the initial value (S(0), I1(0), I2(0), . . . , In(0),
r(0)) ∈ Γ̄×M.

4. Persistence of the diseases

When considering HIV epidemic models, we are mainly interested in when the
disease will prevail in the population. In this section, we shall study the persistence
of the diseases. First of all, we present a definition of the persistence in the mean
as follows.

Definition 4.1. System (1.3) is said to be persistent in the mean if

lim inf
t→+∞

1

t

∫ t

0

Ii(s) > 0, a.s. i = 1, 2, . . . , n.

Theorem 4.1. Assume that Rs
0 =

∑n
i=1

pi(
∑Ñ

k=1 πk

√
βi(k))

2

(µ+γi)2
> 1. Then for any ini-

tial value (S(0), I1(0), I2(0), . . . , In(0), r(0)) ∈ Rn+1
+ ×M, the solution (S(t), I1(t),

I2(t), . . . , In(t), r(t)) of system (1.3) has the following property

lim inf
t→∞

1

t

∫ t

0

Ii(s)ds ≥
Rs

0(R
s
0 − 1)

[
µ+

∑n
i=1 γi

µS0

(∑n
i=1

√
cipiβ̌i

)2
](µ+γ1

p1µ
)
, a.s. i = 1, 2, . . . , n,

which implies if Rs
0 > 1 the disease will spread in the world.

Proof. First we define

V1 = −
n∑

i=1

ci log Ii,

where ci (i = 1, 2, . . . , n) are positive constants will be determined later.
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Applying the generalized Itô’s formula, we obtain

LV1 =− S

N

n∑
i,j=1

cipiβj(r(t))
Ij
Ii

+

n∑
i=1

ci(µ+ γi)

=− S

N

n∑
i=1

(

√
cipi
Ii

)2
n∑

j=1

(
√
βj(r(t))Ij)

2 +

n∑
i=1

ci(µ+ γi)

≤− S

N
(

n∑
i=1

√
cipiβi(r(t)))

2 +

n∑
i=1

ci(µ+ γi)

=−
N −

∑n
i=1 Ii

N
(

n∑
i=1

√
cipiβi(r(t)))

2 +

n∑
i=1

ci(µ+ γi)

=− (

n∑
i=1

√
cipiβi(r(t)))

2 +

∑n
i=1 Ii
N

(

n∑
i=1

√
cipiβi(r(t)))

2 +

n∑
i=1

ci(µ+ γi)

≤− (

n∑
i=1

√
cipiβi(r(t)))

2 +
µ+

∑n
i=1 γi

µS0

(
n∑

i=1

√
cipiβ̌i

)2 n∑
i=1

Ii +

n∑
i=1

ci(µ+ γi)

=−
Ñ∑

k=1

πk

( n∑
i=1

√
cipiβi(k)

)2
+
µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2 n∑
i=1

Ii+

n∑
i=1

ci(µ+ γi)

− (

n∑
i=1

√
cipiβi(r(t)))

2 +

Ñ∑
k=1

πk

( n∑
i=1

√
cipiβi(k)

)2
.

(4.1)
Using the inequality in Lemma 2.2 into (4.1) leads to

LV1≤−
( Ñ∑
k=1

πk(

n∑
i=1

√
cipiβi(k))

)2
+

n∑
i=1

ci(µ+γi)+
µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2 n∑
i=1

Ii

− (

n∑
i=1

√
cipiβi(r(t)))

2 +

Ñ∑
k=1

πk

( n∑
i=1

√
cipiβi(k)

)2
=−

( n∑
i=1

√
cipi

Ñ∑
k=1

πk

√
βi(k)

)2
+

n∑
i=1

ci(µ+γi)+
µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2n∑
i=1

Ii

− (

n∑
i=1

√
cipiβi(r(t)))

2 +

Ñ∑
k=1

πk

( n∑
i=1

√
cipiβi(k)

)2

=−
( n∑
i=1

√√√√cipi

( Ñ∑
k=1

πk

√
βi(k)

)2)2
+

n∑
i=1

ci(µ+γi)+
µ+
∑n

i=1γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2n∑
i=1

Ii

− (

n∑
i=1

√
cipiβi(r(t)))

2 +

Ñ∑
k=1

πk

( n∑
i=1

√
cipiβi(k)

)2
.

Let

ci =
pi
(∑Ñ

k=1 πk

√
βi(k)

)2
(µ+ γi)2

, i = 1, 2, . . . , n.
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Then we obtain

LV1 ≤−
n∑

i=1

(
pi
(∑Ñ

k=1

√
βi(k)

)2
µ+ γi

)2

+

n∑
i=1

pi
(∑Ñ

k=1

√
βi(k)

)2
µ+ γi

+
µ+

∑n
i=1 γi

µS0

(
n∑

i=1

√
cipiβ̌i

)2 n∑
i=1

Ii

− (

n∑
i=1

√
cipiβi(r(t)))

2 +

Ñ∑
k=1

πk

( n∑
i=1

√
cipiβi(k)

)2
≤−Rs

0(R
s
0 − 1) +

µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2 n∑
i=1

Ii

− (

n∑
i=1

√
cipiβi(r(t)))

2 +

Ñ∑
k=1

πk

( n∑
i=1

√
cipiβi(k)

)2
,

(4.2)

where Rs
0 =

∑n
i=1

pi

(∑Ñ
k=1 πk

√
βi(k)

)2
µ+γi

.
Next, we consider

V2 =

n∑
i=1

pi
µ+ γi

(
Ii
pi

− I1
p1

).

Applying the generalized Itô’s formula, one arrives at

LV2≤−
n∑

i=1

Ii+

n∑
i=1

pi(µ+γ1)

p1(µ+ γi)
I1≤−

n∑
i=1

Ii +

n∑
i=1

pi
µ+ γ1
p1µ

I1 = −
n∑

i=1

Ii +
µ+ γ1
p1µ

I1.

(4.3)
Therefore, we define

V3 = V1 +

µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2
V2.

From (4.2) and (4.3), it follows that

LV3 ≤−Rs
0(R

s
0 − 1) + [

µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2

](
µ+ γ1
p1µ

)I1

− (

n∑
i=1

√
cipiβi(r(t)))

2 +

Ñ∑
k=1

πk

( n∑
i=1

√
cipiβi(k)

)2
.

(4.4)

Integrating (4.4) from 0 to t and then dividing by t on both sides, we obtain

V3(t)− V3(0)

t
≤−Rs

0(R
s
0−1)+[

µ+
∑n

i=1γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2

](
µ+γ1
p1µ

)
1

t

∫ t

0

I1(s)ds

− 1

t

∫ t

0

(

n∑
i=1

√
cipiβi(r(s)))

2ds+

Ñ∑
k=1

πk

( n∑
i=1

√
cipiβi(k)

)2
.

(4.5)



834 Z. Shi & D. Jiang

By the ergodic property of the Markov chain r(t), one gets

lim
t→∞

1

t

∫ t

0

(

n∑
i=1

√
cipiβi(r(s)))

2ds =

Ñ∑
k=1

πk

( n∑
i=1

√
cipiβi(k)

)2
, a.s.. (4.6)

Since µS0

µ+
∑n

i=1 γi
< S +

∑n
i=1 Ii < S0, we obtain

V3(I1, . . . , In) > −
n∑

i=1

(
ci +

pi
p1(µ+ γi)

)
S0 := constant.

Therefore
lim inf
t→∞

V3(t)

t
≥ 0. (4.7)

Taking the inferior limit on both sides of (4.5) and combining with (4.6) and (4.7),
we have

lim inf
t→∞

1

t

∫ t

0

I1(s)ds ≥
Rs

0(R
s
0 − 1)

[
µ+

∑n
i=1 γi

µS0

(∑n
i=1

√
cipiβ̌i

)2
](µ+γ1

p1µ
)
, a.s..

Using the same approach as above, we can also obtain that

lim inf
t→∞

1

t

∫ t

0

Ii(s)ds ≥
Rs

0(R
s
0 − 1)

[
µ+

∑n
i=1 γi

µS0

(∑n
i=1

√
cipiβ̌i

)2
](µ+γ1

p1µ
)
, i = 2, 3, . . . , n, a.s..

Therefore, we derive the desired statement in Theorem 4.1. This completes the
proof.

5. Extinction of system (1.3)
The other of the main concerns in epidemiology is finding the condition that the
disease will be eradicated in a long term. In this section, we shall establish sufficient
conditions for exponential extinction of system (1.3).

Theorem 5.1. Let (S(t), I1(t), I2(t), . . . , In(t), r(t)) be the positive solution of sys-
tem (1.3) with any initial value (S(0), I1(0), I2(0), . . . , In(0), r(0)) ∈ Rn+1

+ × M.
If

R∗
0 =

n∑
i=1

β̌ipi
µ+ γi

< 1,

then
lim sup
t→∞

log Ii(t)

t
< 0, a.s. i = 1, 2, . . . , n,

which implies the disease will tend to zero exponentially with probability one.

Proof. Define

P = log

(
n∑

i=1

diIi

)
,
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where di =
β̌i

µ+γi
. Applying the generalized Itô’s formula to U , one can get that

dP =
1∑n

i=1 diIi

 n∑
i=1

pidi

n∑
j=1

βj(k)
IjS

N
−

n∑
i=1

(µ+ γi)

dt

≤ 1∑n
i=1 diIi

 n∑
i=1

pidi

n∑
j=1

β̌jIj −
n∑

i=1

(µ+ γi)

dt

=
1∑n

i=1 diIi
(R∗

0 − 1)

n∑
i=1

(µ+ γi)diIidt

≤(R∗
0 − 1)(µ+ max

1≤i≤n
γi),

(5.1)

where R∗
0 =

∑n
i=1

β̌ipi

µ+γi
.

Integrating (5.1) from 0 to t and then dividing by t on both sides lead to that

logP (t)− logP (0)

t
≤ (R∗

0 − 1)(µ+ max
1≤i≤n

γi), a.s.. (5.2)

Taking the superior limit on both sides of (7.2), if R∗
0 < 1, we obtain

lim sup
t→∞

logP (t)

t
≤ (R∗

0 − 1)(µ+ max
1≤i≤n

γi) < 0, a.s.,

which implies that

lim sup
t→∞

log Ii(t)

t
< 0, a.s., i = 1, 2, . . . , n.

In other words, the disease Ii (i = 1, 2, . . . , n) will tend to zero exponentially with
probability one. This completes the proof.

6. Positive recurrence
In the previous section, we have verified the persistence in the mean of the diseases.
In this section, in the case of persistence, we will find a domain U ∈ Γ̄ which is
positive recurrence for the process (S(t), I1(t), I2(t), . . . , In(t)).

Definition 6.1. The process Xx
t with X0 = x is recurrent with respect to U , if for

any x /∈ U , P(τU < ∞) = 1, where τU is the hitting time of U for the process Xx
t ,

i.e.,
τU = inf{t > 0, Xx

t ∈ U}.

The process Xx
t is said to be positive recurrent with respect to U , if E(τU ) < ∞ for

any x /∈ U .

Theorem 6.1. Let (S(t), I1(t), I2(t), . . . , In(t), r(t)) be the positive solution of sys-
tem (1.3) with any initial value (S(0), I1(0), I2(0), . . . , In(0), r(0)) ∈ Rn+1

+ × M.
Assume that Rs

0 > 1, where Rs
0 is defined in Theorem 4.1. Then there exists a



836 Z. Shi & D. Jiang

positive solution (S(t), I1(t), I2(t), . . . , In(t), r(t)) of system (1.3) which is positive
recurrence with respect to the domain U ×M, where

U ={(S, I1, I2, . . . , In) ∈ Γ̄ : ε ≤ S ≤ 1/ε, ε ≤ I1 ≤ 1/ε, ε3 ≤ Ii ≤ 1/ε3,

µS0

µ+
∑n

i=1 γi
< S +

n∑
i=1

Ii < S0},

where ε is a sufficiently small positive constant and i = 2, 3, . . . , n.

Proof. According to Theorem 3.1, we can derive that for any initial value (S(0),
I1(0), I2(0), . . . , In(0), r(0)) ∈ Rn+1

+ ×M, the solution to system (1.3) is regular.
Define a C2-function

h(S, I1, I2, . . . , In, k) =M(V3 − ω(k))− logS −
n∑

i=2

log Ii − log

(
S0 − S −

n∑
i=1

Ii

)

− log

(
S +

n∑
i=1

Ii −
µS0

µ+
∑n

i=1 γi

)
,

where M satisfies
M0 −MRs

0(R
s
0 − 1) ≤ −2, (6.1)

ω(k) = (ω(1), ω(2), . . . , ω(Ñ))T and constant M0 will be determined later.
By the monotonicity of h(S, I1, I2, . . . , In, k), it is easy to check that h(S, I1,

I2, . . . , In, k) has the minimum point h(S̄, Ī1, Ī2, . . . , Īn, k̄).
Then we construct a non-negative Lyapunov function defined by

V (S, I1, I2, . . . , In, k) =M(V3 − ω(k))− logS −
n∑

i=2

log Ii − log

(
S0 − S −

n∑
i=1

Ii

)

− log

(
S +

n∑
i=1

Ii −
µS0

µ+
∑n

i=1 γi

)
− h(S̄, Ī1, Ī2, . . . , Īn, k̄)

=MV̄ + V4 + V5 + V6 + V7.

where V̄ = V3 − ω(k), V4 = − logS, V5 = −
∑n

i=2 log Ii, V6 = − log(S0 − S −∑n
i=1 Ii), V7 = − log(S +

∑n
i=1 Ii −

µS0

µ+
∑n

i=1 γi
)− h(S̄, Ī1, Ī2, . . . , Īn, k̄).

The differential operator L acting on the function V̄ along the solutions, we have

LV̄ ≤− (

n∑
i=1

√
cipiβi(k))

2 −
Ñ∑
l=1

γklω(l) +

n∑
i=1

ci(µ+ γi)

+

µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2
(µ+ γ1

p1µ

)
I1

=− R̃0(k)−
Ñ∑
l=1

γklω(l) +

n∑
i=1

ci(µ+ γi)

+

µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2
(µ+ γ1

p1µ

)
I1,

(6.2)
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where R̃0(k) = (
∑n

i=1

√
cipiβi(k))

2.
Let ω(k) = (ω(1), ω(2), . . . , ω(Ñ))T be the solution of the following Poisson

system

Γω =

Ñ∑
h=1

πhR̃0(h)− R̃0,

where R̃0 = (R̃0(1), R̃0(2), . . . , R̃0(Ñ))T . This implies that

− R̃0(k)−
Ñ∑
l=1

γklω(l) = −
Ñ∑

k=1

πkR̃0(k). (6.3)

Substituting (6.3) into (6.2) and using ci =
pi(

∑Ñ
k=1 πk

√
βi(k))

2

(µ+γi)2
in Theorem 4.1, one

gets

LV̄ ≤−
( Ñ∑

k=1

πk(

n∑
i=1

√
cipiβi(k))

)2
+

n∑
i=1

ci(µ+ γi)

+

µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2
(µ+ γ1

p1µ

)
I1

≤−
( n∑

i=1

√√√√cipi(

Ñ∑
k=1

πk

√
βi(k))2

)2
+

n∑
i=1

ci(µ+ γi)

+

µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2
(µ+ γ1

p1µ

)
I1

≤− (

n∑
i=1

pi(
∑Ñ

k=1 πk

√
βi(k))

2

(µ+ γi)2
)2 +

n∑
i=1

pi(
∑Ñ

k=1 πk

√
βi(k))

2

(µ+ γi)2

+

µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2
(µ+ γ1

p1µ

)
I1

≤−Rs
0(R

s
0 − 1) +

µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2
(µ+ γ1

p1µ

)
I1,

where Rs
0 =

∑n
i=1

pi(
∑Ñ

k=1 πk

√
βi(k))

2

(µ+γi)2
is defined in Theorem 4.1.

The differential operator L acting on the function V4, V5, V6 and V7 along the
solutions, we have

LV4 = −µS0

S
+ µ+

n∑
j=1

βj(k)
Ij
N

≤ −µS0

S
+ µ+

n∑
j=1

β̌j .

LV5 = −
n∑

i=2

pi

n∑
j=1

βj(k)
IjS

IiN
+

n∑
i=2

(µ+ γi)

≤ −
n∑

i=2

piβ1(k)
I1S

IiS0
+

n∑
i=2

(µ+ γi)
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≤ − β̂1

S0

n∑
i=2

pi
I1S

Ii
+

n∑
i=2

(µ+ γi).

LV6 =
1

S0 − S −
∑n

i=1 Ii
(µS0 − µ(S +

n∑
i=1

Ii)−
n∑

i=1

γiIi)

≤ µ−
∑n

i=1 γiIi
S0 − S −

∑n
i=1 Ii

.

LV7 = − 1

S +
∑n

i=1 Ii −
µS0

µ+
∑n

i=1 γi

(µS0 − µ(S +

n∑
i=1

Ii)−
n∑

i=1

γiIi)

= − 1

S +
∑n

i=1 Ii −
µS0

µ+
∑n

i=1 γi

(µS0 − (µ+

n∑
i=1

γi)(S +

n∑
i=1

Ii) + (

n∑
i=1

γi)S)

≤ µ+

n∑
i=1

γi −
(
∑n

i=1 γi)S

S +
∑n

i=1 Ii −
µS0

µ+
∑n

i=1 γi

.

Hence, we have

LV =L(MV̄ + V4 + V5 + V6 + V7)

≤−MRs
0(R

s
0 − 1) +M

µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2
(1 + µ+ γ1

p1µ

)
I1

− µS0

S
+ µ+

n∑
j=1

β̌j −
β̂1

S0

n∑
i=2

pi
I1S

Ii
+

n∑
i=2

(µ+ γi) + µ−
∑n

i=1 γiIi
S0 − S −

∑n
i=1 Ii

+ µ+

n∑
i=1

γi −
(
∑n

i=1 γi)S

S +
∑n

i=1 Ii −
µS0

µ+
∑n

i=1 γi

≤M0 −MRs
0(R

s
0 − 1) + f(I1)−

µS0

S
− β̂1

S0

n∑
i=2

pi
I1S

Ii
−

∑n
i=1 γiIi

S0 − S −
∑n

i=1 Ii

−
(
∑n

i=1 γi)S

S +
∑n

i=1 Ii −
µS0

µ+
∑n

i=1 γi

,

where
M0 = (n+ 2)µ+

n∑
j=1

β̌j + γ1 + 2

n∑
i=2

γi,

and

f(I1) = M [
µ+

∑n
i=1 γi

µS0

(
n∑

i=1

√
cipiβ̌i

)2

]

(
µ+ γ1
p1µ

)
I1

has the upper bound fu = M [
µ+

∑n
i=1 γi

µS0

(∑n
i=1

√
cipiβ̌i

)2
]
(

µ+γ1

p1µ

)
S0.

Next we consider the bounded open set

U={(S, I1, I2, . . . , In)∈ Γ̄ : ε≤S≤1/ε, ε≤I1≤1/ε, ε3≤Ii≤1/ε3, i=, 2, 3, . . . , n,

µS0

µ+
∑n

i=1 γi
< S +

n∑
i=1

Ii < S0},
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where ε is a sufficiently small positive constant satisfying the following conditions

fu − µS0

ε
≤ −1, (6.4)

M
[µ+

∑n
i=1 γi

µS0

(
n∑

i=1

√
cipiβ̌i

)2(
µ+ γ1
p1µ

)]
ε ≤ 1, (6.5)

fu −
β̂1

∑n
i=2 pi

εS0
≤ −1, (6.6)

fu −
∑n

i=1 γi
ε

≤ −1. (6.7)

Then we divide Γ̄ \ U into the following five domains

Γ̄ \ U = U c
1 ∪ U c

2 ∪ U c
3 ∪ U c

4 ∪ U c
5 ,

and

U c
1 ={(S, I1, I2, . . . , In)∈ Γ̄ : 0<S<ε}, U c

2 ={(S, I1, I2, . . . , In)∈ Γ̄ : 0 < I1 < ε},
U c
3 ={(S, I1, I2, . . . , In)∈ Γ̄ : S ≥ ε, I1 ≥ ε, 0 < Ii < ε3, i = 2, 3, . . . , n},

U c
4 = {(S, I1, I2, . . . , In) ∈ Γ̄ : Ii > ε3, S0 − ε4 < S +

n∑
i=1

Ii < S0, i = 2, 3, . . . , n},

U c
5 ={(S, I1, I2, . . . , In)∈ Γ̄ : S>ε,

µS0

µ+
∑n

i=1 γi
<S+

n∑
i=1

Ii<
µS0

µ+
∑n

i=1 γi
+ε2}.

Now we verify the negativity of LV (S, I1, I2, . . . , In, k) on (Rn+1
+ \ U) ×M, which

is equivalent to verifying it on the above five domains, respectively.
Case 1. If(S, I1, I2, . . . , In, k) ∈ U c

1 ×M, from (6.1) and (6.4) we know

LV ≤ M0 −MRs
0(R

s
0 − 1) + f(I1)−

µS0

S
≤ fu − µS0

ε
≤ −1.

Case 2. If(S, I1, I2, . . . , In, k) ∈ U c
2 ×M, from (6.1) and (6.5) we get

LV ≤M0 −MRs
0(R

s
0 − 1) +M

[µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2(
µ+ γ1
p1µ

)]
I1

≤M0 −MRs
0(R

s
0 − 1) +M

[µ+
∑n

i=1 γi
µS0

(
n∑

i=1

√
cipiβ̌i

)2(
µ+ γ1
p1µ

)]
ε ≤ −1.

Case 3. If(S, I1, I2, . . . , In, k) ∈ U c
3 ×M, (6.1) and from (6.6) we obtain

LV ≤ M0 −MRs
0(R

s
0 − 1) + f(I1)−

β̂1

S0

n∑
i=2

pi
I1S

Ii
≤ fu −

β̂1

∑n
i=2 pi

εS0
≤ −1,

Case 4. If(S, I1, I2, . . . , In, k) ∈ U c
4 ×M, from (6.1) and (6.7) we have

LV ≤ M0 −MRs
0(R

s
0 − 1) + f(I1)−

∑n
i=1 γiIi

S0 − S −
∑n

i=1 Ii
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< fu −
∑n

i=1 γiε
3

ε4
= fu −

∑n
i=1 γi
ε

≤ −1.

Case 5. If(S, I1, I2, . . . , In, k) ∈ U c
5 ×M, from (6.1) and (6.7) we know

LV ≤ M0 −MRs
0(R

s
0 − 1) + f(I1)−

(
∑n

i=1 γi)S

S +
∑n

i=1 Ii −
µS0

µ+
∑n

i=1 γi

< fu −
∑n

i=1 γiε

ε2
= fu −

∑n
i=1 γi
ε

≤ −1.

From the above discussions, one can see that for a sufficiently small ε0,

LV ≤ −1, for any (S, I1, I2, . . . , In, k) ∈ (Γ̄ \ U)×M. (6.8)

Let (S(0), I1(0), I2(0), . . . , In(0), r(0)) ∈ (Γ̄ \ U)×M, according to the general-
ized Itô’s formula and using (6.8), we obtain

E[V (S(τU ), I1(τU ), I2(τU ), . . . , In(τU ))]− V (S(0), I1(0), I2(0), . . . , In(0), r(0))

=E
∫ τU

0

LV (S(t), I1(t), I2(t), . . . , In(t), r(t))dt ≤ −E(τU ).

Therefore, by virtue of the positivity of V , we conclude

E(τU ) ≤ V (S(0), I1(0), I2(0), . . . , In(0), r(0)).

This proof is completed.

7. Numerical simulations
In this section, we shall use the Milstein’s Higher Order Method developed in [8]
to illustrate our theoretical analysis. Assume that the Markov chain r(t) is on the
state space M = {1, 2, 3} with the generator as follows

Γ̃ =


− 1

3
1
6

1
6

1
4 − 1

2
1
4

1
4

1
4 − 1

2

 .

Then, we solve the linear equation (2.1) and obtain that the Markov chain r(t)
has a unique stationary distribution

π = (π1, π2, π3) =

(
3

7
,
2

7
,
2

7

)
.

Example 7.1. The parameter values in system (1.3) are fixed

S0 = 2, µ = 0.2, p1 = 0.2, p2 = 0.3, p3 = 0.5, γ1 = 0.05, γ2 = 0.06, γ3 = 0.07,

(β1(1), β1(2), β1(3)) = (0.2, 0.25, 0.3), (β2(1), β2(2), β2(3)) = (0.3, 0.35, 0.4),

(β3(1), β3(2), β3(3)) = (0.4, 0.45, 0.5).
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Let initial value be (S(0), I1(0), I2(0), I3(0)) = (1.5, 1, 0.9, 0.8). Simple compu-
tations result

Rs
0 =

n∑
i=1

pi(
∑Ñ

k=1 πk

√
βi(k))

2

µ+ γi
≈ 1.4053 > 1.

Then according to Theorem 4.1, we can obtain the disease is persistent in the
mean a.s., and from Theorem 6.1, the solution (S(t), I1(t), I2(t), . . . In(t), r(t)) of
system (1.3) is positive recurrence. Fig.1 confirms this.
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Figure 1. The solution (S(t), I1(t), I2(t), I3(t), r(t)) of system (1.3) is positive recurrence. The picture
on the left and right are the Markovian chain and the density distributions of system (1.3), respectively.

Example 7.2. Reselect the parameter values in system (1.3) as follows, other pa-
rameters are the same as earlier:

µ = 0.3, γ1 = 0.2, γ2 = 0.25, γ3 = 0.3.

Let (S(0), I1(0), I2(0), I3(0)) = (1.5, 3, 2, 1). Then direct calculation leads to

R∗
0 =

n∑
i=1

β̌ipi
µ+ γi

≈ 0.7548 < 1.

Therefore, by the condition of Theorem 5.1, we can obtain that Ii(t) of system
(1.3) will tend to zero exponentially with probability one, where i = 1, 2, 3.

8. Conclusion
In this paper, considering that the transmission rate may change over time, we
have studied a stochastic S-DI-A epidemic model with standard incidence under
Markovian switching. Firstly, we obtain the existence of the unique global positive
solution. Then By using stochastic Lyapunov functions with regime switching, the
critical condition Rs

0 for persistence in the mean of the disease, which is also shown
to determine the existence of positive recurrence of the solutions to the model (1.3).
Furthermore, we establish sufficient conditions R∗

0 for the exponential extinction of
the disease.
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Figure 2. I1(t), I2(t) and I3(t) of stochastic model (1.3) will go to extinction exponentially with
probability one.
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