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Abstract The main objective of this paper is to study coefficient problems for
starlike functions located in the petal shaped domain. The bounds of the first
three initial coefficients, bounds of Fekete-Szegö type inequality, estimates of
the second and third Hankel determinants for the subclass of starlike functions
are derived, all of these bounds are sharp.
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1. Introduction
Let the family of analytic functions in the unit disk U = {z ∈ C : |z| < 1} be de-
scribed by the symbol H (U), and let A be the subfamily of H (U) which is defined
by

A :=

{
f ∈ H (U) : f(z) = z +

∞∑
n=2

anz
n

}
. (1.1)

Furthermore, the set S ⊂ A consists of all normalized univalent functions in U . For
two given functions g1, g2 ∈ H (U) , we say that g1 is subordinate to g2, written by
g1 ≺ g2 or g1(z) ≺ g2(z), if a regular function v occurs in U with the restriction
v (0) = 0 and |v(z)| ≤ 1 such that f(z) = g (v(z)) for all z ∈ U . Moreover, if g2 is
univalent in U , then the following relationship holds:

g1 (z) ≺ g2 (z) (z ∈ U) ⇐⇒ g1(0) = g2(0) and g1(U) ⊂ g2(U).
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Though the geometric function theory was started in 1851, due to the coefficient
conjecture proposed by Bieberbach [6] in 1916, this field emerged as a hot research
area. This conjecture was proved by de-Branges [10] in 1985. The families of starlike
functions S∗, convex functions K and close-to-convex functions C are the most basic
subfamilies, which are defined as follows:

S∗ :=

{
f ∈ S : Re

(
zf ′ (z)

f (z)

)
> 0 (z ∈ U)

}
,

K :=

{
f ∈ S : Re

(
(zf ′ (z))

′

f ′ (z)

)
> 0 (z ∈ U)

}
,

and
C :=

{
f ∈ S : ∃ g ∈ S∗ such that Re

(
zf ′ (z)

g (z)

)
> 0 (z ∈ U)

}
.

The general form of the class S∗ was studied in 1992 by Ma and Minda [24],
which is given by

S∗ (φ) =

{
f ∈ S :

zf ′ (z)

f (z)
≺ φ (z) (z ∈ U)

}
, (1.2)

where φ is a regular function with positive real part, φ (0) = 1 and φ′ (0) > 0.
Also, the function φ maps U onto a star-shaped region with respect to φ(0) = 1
and is symmetric with the real axis. They addressed some specific results such as
distortion, growth, and covering theorems. In recent years, several subfamilies of
the set A were studied as special cases of the class S∗ (φ).

(i) If we take φ(z) = 1+Mz
1+Nz with −1 ≤ N < M ≤ 1, then the deduced family

S∗[M,N ] ≡ S∗
(

1+Mz
1+Nz

)
is described by the functions of Janowski starlike

family established in [12].
(ii) The family S∗

L ≡ S∗(φ(z)) with φ(z) =
√
1 + z was developed in [35] by Sokól

and Stankiewicz. The image of the function φ(z) =
√
1 + z demonstrates

that the image domain is bounded by the Bernoullis lemniscate right-half
plane specified by |w2 − 1| < 1.

(iii) By selecting φ(z) = 1+sin z, the class S∗(φ(z)) leads to the family S∗
sin which

was explored in [9], while S∗
e ≡ S∗ (ez) has been discussed in [25] and later

studied in [32,34].
(iv) The family S∗

c := S∗(φ(z)) with

φ(z) = 1 +
4

3
z +

2

3
z2

was contributed by Sharma. In [31], it contains the function f ∈ A such that
zf ′(z)
f(z) is located in the region bounded by the cardioid given by

(9x2 + 9y2 − 18x+ 5)2 − 16(9x2 + 9y2 − 6x+ 1) = 0.

(v) The family S∗
R ≡ S∗ (φ(z)) with

φ(z) = 1 +
z

α
· α+ z

α− z
(α =

√
2 + 1)

was studied in [17], while S∗
cos := S∗ (cos(z)) and S∗

cosh := S∗ (cosh(z)) were
recently discussed by Raza and Bano [5], and Abdullah et al. [1], respectively.
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(vi) If we consider φ(z) = 1 + sinh−1 z, the class

S∗
ρ := S∗ (1 + sinh−1 z

)
was introduced by Arora and Kumar [3].

A function f ∈ A is in the family S∗
ρ if (1.2) holds for the function φ(z) = ρ(z),

where
ρ(z) = 1 + sinh−1 z. (1.3)

Clearly, the function ρ is a multivalued function and has the branch cuts about the
line segments (−i∞,−i)∪(i, i∞), on the imaginary axis and hence it is holomorphic
in U . In a geometric point of view, the function ρ maps the unit disc U onto a petal
shaped region Ωρ, where

Ωρ = {w ∈ C : |sinh (w − 1)| < 1} .

From the above definition, we deduce that f ∈ S∗
ρ if and only if there exists a regular

function q (z) ≺ ρ(z) such that

f (z) = z exp

(∫ z

0

q (t)− 1

t
dt

)
. (1.4)

If we set

q(z) = 1 + sinh−1(z) = 1 + z − 1

6
z3 +

3

40
z5 − 5

112
z7 + · · · ,

it follows from (1.4) that

f0(z) = z exp

(∫ z

0

sinh−1(t)

t
dt

)
= z+z2+

1

2
z3+

1

9
z4− 1

72
z5− 1

225
z6+ · · · , (1.5)

which will be played as an extremal function for the class S∗
ρ .

The Hankel determinant Hq,n (f) (q, n ∈ N := {1, 2, . . .}) for a function f ∈ S
of the series form (1.1) was given by Pommerenke [27,28] as follows:

Hq,n (f) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q−1

an+1 an+2 . . . an+q

...
... . . .

...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In particular, the following determinants are known as the first-order, second-order
and third-order Hankel determinants, respectively,

H2,1 (f) =

∣∣∣∣∣∣ 1 a2

a2 a3

∣∣∣∣∣∣ = a3 − a22,

H2,2 (f) =

∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣ = a2a4 − a23,
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and

H3,1 (f) =

∣∣∣∣∣∣∣∣∣
1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣ = a3
(
a2a4 − a23

)
− a4 (a4 − a2a3) + a5

(
a3 − a22

)
. (1.6)

There are comparatively few observations in literature in relation to the Hankel
determinant for the function f belongs to the general family S. For the function
f ∈ S, the best established sharp inequality is |H2,n (f)| ≤ λ

√
n, where λ is a

constant, which is due to Hayman [11]. Further, for the same class S, it was
obtained in [26] that

|H2,2 (f)| ≤ λ

(
1 ≤ λ ≤ 11

3

)
,

and

|H3,1 (f)| ≤ µ

(
4

9
≤ µ ≤ 32 +

√
285

15

)
.

In a given family of functions, the problem of calculating the bounds, probably
sharp, of Hankel determinants attracted the interests of many researchers. For
example, the sharp bound of |H2,2 (f)|, for the subfamilies K, S∗ and R (family of
bounded turning functions) of the set S, were calculated by Janteng et al. [13, 14].
These estimates are

|H2,2 (f)| ≤


1/8, for f ∈ K,

1, for f ∈ S∗,

4/9, for f ∈ R.

For the families S∗ (β) (0 ≤ β < 1) of starlike functions of order β and SS∗ (β)
(0 < β ≤ 1) of strongly starlike functions of order β, the authors [7, 8] showed that
|H2,2 (f)| are bounded by (1− β)

2 and β2, respectively. The exact bound for the
family S∗ (φ) of Ma-Minda starlike functions was investigated in [21]. For recent
applications of Ma-Minda classes, we refer the reader to [39].

It is quite clear from the formulas given in (1.6) that the calculation of |H3,1 (f)|
is far more challenging compared with finding the bound of |H2,2(f)|. Babalola [4]
investigated the bounds of third order Hankel determinant for the families of K,
S∗ and R in 2010. Moreover, Zaprawa [41] improved the results of Babalola by
applying a new methodology. He obtained the following bounds:

|H3,1 (f)| ≤


49/540, for f ∈ C,

1, for f ∈ S∗,

41/60, for f ∈ R.

He also pointed out that such limits are indeed not the best one. In 2018, Kwon et
al. [19] strengthened Zaprawa’s result for f ∈ S∗ and showed that |H3,1 (f)| ≤ 8/9,
and this bound was further improved by Zaprawa et al. [40] in 2021. They obtained
|H3,1 (f)| ≤ 5/9 for f ∈ S∗. In 2018, Kowalczyk et al. [16] and Lecko et al. [20]
succeeded in finding the sharp bounds of |H3,1 (f)| for the families K and S∗ (1/2),
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respectively, where S∗ (1/2) denote the starlike functions of order 1/2. We note that
Rath et al. [30] pointed out there was an error in the proof of the corresponding
result obtained by Lecko et al. [20], they also gave a new corrected proof. These
results are given as follows:

|H3,1 (f)| ≤

4/135, for f ∈ K,

1/9, for f ∈ S∗ (1/2) .

Moreover, Wang et al. [38] determined the third and fourth-order Hankel determi-
nants of a subclass of analytic functions.

In the present paper, our objective is to calculate the sharp bounds of the coef-
ficient inequalities, Fekete-Szegö type problem, Hankel determinants of order 2 and
3 for the class of starlike functions S∗

ρ connected with petal shaped domain.

2. Preliminary results
To prove our main results, we need the following definition and lemmas.

Definition 2.1. Let P denote the class of functions p which are analytic in U with
Re (p(z)) > 0 and has the series representation

p (z) = 1 +

∞∑
n=1

cnz
n (z ∈ U) . (2.1)

Lemma 2.1. Let p ∈ P has the series form (2.1) . Then for x, σ, ρ ∈ U := {z :
|z| ≤ 1},

2c2 = c21 + x
(
4− c21

)
, (2.2)

4c3 = c31 + 2
(
4− c21

)
c1x− c1

(
4− c21

)
x2 + 2

(
4− c21

) (
1− |x|2

)
σ, (2.3)

and
8c4 =c41 + (4− c21)x

[
c21
(
x2 − 3x+ 3

)
+ 4x

]
− 4(4− c21)(1− |x|2)

[
c(x− 1)z + xσ2 − (1− |σ|2)ρ

]
.

(2.4)

It contains the well-known formula for c2 (see [29]), the formula for c3 due to
Libera and Zlotkiewicz [22], and the formula for c4 was proved in [18].

Lemma 2.2. If p ∈ P has the series form (2.1) , then

|cn+k − µcnck| ≤ 2max {1, |2µ− 1|} , (2.5)
|cn| ≤ 2 (n ≥ 1), (2.6)

and ∣∣Jc31 −Kc1c2 + Lc3
∣∣ ≤ 2 |J |+ |K − 2J |+ 2 |J −K + L| , (2.7)

where J,K,L, µ ∈ C, and for B ∈ [0, 1] with B (2B − 1) ≤ D ≤ B, we have∣∣c3 − 2Bc1c2 +Dc31
∣∣ ≤ 2. (2.8)

The inequalities (2.5), (2.6), (2.7) and (2.8) in Lemma 2.2 are taken from [15],
[29], [2] and [23], respectively.
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3. Coefficient inequalities for the class S∗
ρ

Firstly, we aim at finding the sharp bounds of the first three initial coefficients for
functions in the class S∗

ρ .

Theorem 3.1. If f ∈ S∗
ρ , then

|a2| ≤ 1, |a3| ≤
1

2
and |a4| ≤

1

3
. (3.1)

These bounds are sharp.

Proof. From the definition of the class S∗
ρ along with the subordination principle,

it follows that
zf ′ (z)

f(z)
= 1 + sinh−1 (w (z)) .

If p ∈ P, then in term of Schwarz function w, we have

p (z) =
1 + w (z)

1− w (z)
= 1 + c1z + c2z

2 + c3z
3 + · · · , (3.2)

or equivalently,

w (z) =
p (z)− 1

p (z) + 1
=

c1z + c2z
2 + c3z

3 + c4z
4 + · · ·

2 + c1z + c2z2 + c3z3 + c4z4 + · · ·
.

In view of (1.1), we easily obtain

zf ′ (z)

f(z)
=1 + a2z + (2a3 − a22)z

2 + (3a4 − 3a2a3 + a32)z
3

+ (4a5 − 2a23 − 4a2a4 + 4a22a3 − a42)z
4 + · · · .

(3.3)

By the series expansion of w (z), we get

1 + sinh−1 (w (z)) =1 +
1

2
c1z +

(
1

2
c2 −

1

4
c21

)
z2 +

(
1

2
c3 +

5

48
c31 −

1

2
c1c2

)
z3

+

(
1

2
c4 −

1

4
c22 −

1

32
c41 +

5

16
c21c2 −

1

2
c1c3

)
z4 + · · · .

(3.4)

By virtue of (3.3) and (3.4), we know that

a2 =
1

2
c1, (3.5)

a3 =
1

4
c2, (3.6)

and
a4 =

1

6
c3 −

1

144
c31 −

1

24
c1c2. (3.7)

For a2 and a3, by using (2.6) in (3.5) and (3.6), we easily obtain

|a2| ≤ 1 and |a3| ≤
1

2
.
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The above two inequalities are sharp for the extremal function given by (1.5).
For a4, we rewrite (3.7) as

|a4| =
1

6

∣∣∣∣c3 − 1

4
c1c2 −

1

24
c31

∣∣∣∣ . (3.8)

Then by using (2.7) and (3.8) , we obtain

0 ≤ B =
1

8
< 1, B =

1

8
> D = − 1

48
,

and
B(2B − 1) = − 3

32
< D = − 1

48
.

Thus, all the constraints of Lemma 2.2 are satisfied, by virtue of (2.8), we obtain
the required bound

|a4| ≤
1

3
.

The sharpness can be found from the following extremal function

f1 (z) = z exp

(∫ z

0

sinh−1(t3)

t
dt

)
= z +

1

3
z4 +

1

18
z7 − 1

81
z10 + · · · . (3.9)

Now, we study the Fekete-Szegö type problem for the family S∗
ρ .

Theorem 3.2. If f ∈ S∗
ρ , then

∣∣a3 − γa22
∣∣ ≤ max

{
1

2
,
1

2
|2γ − 1|

}
.

This inequality is sharp.

Proof. From (3.5) and (3.6) , we may write∣∣a3 − γa22
∣∣ = 1

4

∣∣(c2 − γc21
)∣∣ .

An application of (2.5) , we obtain∣∣a3 − γa22
∣∣ ≤ 1

2
max {1, |2γ − 1|} .

By putting γ = 1, we obtain the following result.

Corollary 3.1. If f ∈ S∗
ρ , then

∣∣a3 − a22
∣∣ ≤ 1

2
.

This inequality is sharp with the extremal function

f2 (z) = z exp

(∫ z

0

sinh−1(t2)

t
dt

)
= z +

1

2
z3 +

1

8
z5 − 1

144
z7 + · · · . (3.10)
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Theorem 3.3. If f ∈ S∗
ρ , then

|a2a3 − a4| ≤
1

3
.

This inequality is sharp.

Proof. From (3.5) , (3.6) and (3.7), we obtain

|a2a3 − a4| =
1

144

∣∣c31 + 24c1c2 − 24c3
∣∣ .

In view of (2.2) and (2.3) along with c1 = c ∈ [0, 2], we have

|a2a3 − a4| =
1

144

∣∣∣7c3 + 6
(
4− c2

)
cx2 − 12

(
4− c2

) (
1− |x|2

)
z
∣∣∣ .

By applying triangle inequality and replacing |z| ≤ 1, |x| = b with b ≤ 1, which
leads to

|a2a3 − a4| ≤
1

144

[
7c3 + 6

(
4− c2

)
(c− 2) b2 + 12

(
4− c2

)]
= F (c, b) .

Now, we differentiate F (c, b) with respect to b, it is easy to show that F ′ (c, b) ≤ 0
on rectangle [0, 2]× [0, 1]. If we put b = 0, then

max{F (c, b)} = F (c, 0) .

Thus, we have

|a2a3 − a4| ≤
1

144

[
7c3 + 12

(
4− c2

)]
=: G(c).

By taking G ′(c) = 0, we obtain c = 0 or 8/7, and G′′(c) < 0 at c = 0. Thus, G(c)
arrives at its maximum value at c = 0, it follows that

|a2a3 − a4| ≤ |G(0)| = 1

3
.

Equality holds for the function given by (3.9).
Next, we will determine the second-order Hankel determinant for f belongs to

S∗
ρ .

Theorem 3.4. If f ∈ S∗
ρ , then

|H2,2 (f)| ≤
1

4
.

The inequality is sharp.

Proof. We can write H2,2 (f) as

H2,2 (f) = a2a4 − a23.

From (3.5), (3.6) and (3.7) , we have∣∣a2a4 − a23
∣∣ = 1

288

∣∣−c41 − 6c21c2 + 24c1c3 − 18c22
∣∣ .
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Without loss of generality, we can write c1 = c with 0 ≤ c ≤ 2. In view of (2.2) and
(2.3), we obtain

∣∣a2a4−a23
∣∣= 1

288

∣∣∣∣−52c4−6
(
4−c2

)
c2x2+12

(
4−c2

) (
1−|x|2

)
cz− 9

2

(
4−c2

)2
x2

∣∣∣∣ .
By applying triangle inequality and replacing |z| ≤ 1, |x| = b with b ≤ 1, we get∣∣a2a4 − a23

∣∣
≤ 1

288

[
5

2
c4 + 6

(
4− c2

)
c2b2 + 12

(
4− c2

) (
1− b2

)
c+

9

2

(
4− c2

)2
b2
]
=: ϕ (c, b) .

By differentiating ϕ (c, b) with respect to b, we have

∂ϕ (c, b)

∂b
=

1

288

(
c2 − 8c+ 12

) (
4− c2

)
b.

It easily to show that ϕ ′ (c, b) ≥ 0 on [0, 1], thus, we see that ϕ (c, b) ≤ ϕ (c, 1).
If we put b = 1, then

∣∣a2a4 − a23
∣∣ ≤ 1

288

[
5

2
c4 + 6c2

(
4− c2

)
+

9

2

(
4− c2

)2]
=: G1 (c) .

Since G ′
1 (c) ≤ 0, we know that G1 (c) is a decreasing function, it attains its maxi-

mum value at c = 0. Therefore, we conclude that

|H2,2 (f)| ≤ |G1(0)| =
1

4
.

The required second Hankel determinant is sharp and it can be obtained by (3.10).

4. Third-order Hankel determinant for the class S∗
ρ

In this section, we will determine the bounds of third-order Hankel determinant for
f belongs to S∗

ρ .

Theorem 4.1. If f ∈ S∗
ρ , then

|H3,1 (f)| ≤
1

9
.

Equality can be obtained by (3.9).

Proof. The third Hankel determinant can be written as follows:

H3,1 (f) = 2a2a3a4 − a33 − a24 + a3a5 − a22a5.

From (3.3) and (3.4), we know that

a5 =
1

4

(
1

2
c4 −

1

8
c22 +

5

288
c41 −

1

48
c21c2 −

1

6
c1c3

)
. (4.1)
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In view of (3.5) , (3.6) , (3.7) and (4.1) along with c1 = c ∈ [0, 2] , we get

H3,1 (f) =
1

41472

(
− 47c6 + 3c4c2 + 528c3c3 − 234c2c22 − 1296c2c4

+ 1872cc2c3 − 972c32 + 1296c2c4 − 1152c23

)
.

(4.2)

To simplify the computation, we assume that t = 4− c2 in (2.2), (2.3) and (2.4), by
using (2.2), (2.3) and (2.4) along with straightforward algebraic computation, we
find that

2c4c2 = c6 + c4tx,

4c3c3 = c6 + 2c4tx− c4tx2 + 2c3t
(
1− |x|2

)
z,

4c2c22 = c6 + 2c4tx+ c2t2x2,

8c2c4 =c4tx3 − 4c3tx
(
1− |x|2

)
z − 4c2tx

(
1− |x|2

)
z2 − 3c4tx2

+4c2t
(
1−|x|2

)(
1−|z|2

)
ρ+4c3t

(
1−|x|2

)
z+3c4tx+c6+4c2tx2+

104

9
cc2c3

=− c2t2x3−c4tx2+2ct2x
(
1−|x|2

)
z+2c2t2x2+2c3t

(
1−|x|2

)
z+3c4tx+c6,

8c32 = t3x3 + 3c2t2x2 + 3c4tx+ c6,

16c2c4 =4c2tx2 + 3t2x3 + c6 + 4c4tx+ 4c3t
(
1− |x|2

)
z

+ 4c2t
(
1− |x|2

)(
1− |z|2

)
ρ+ 3c2t2x2 + 4ct2x

(
1− |x|2

)
z

+ 4t2x
(
1− |x|2

)(
1− |z|2

)
ρ− 3c4tx2 − 4c2tx

(
1− |x|2

)
z2

− 4c3tx
(
1− |x|2

)
z − 3c2t2x3 − 4t2xx

(
1− |x|2

)
z2 + c4tx3

+ c2t2x4 − 4ct2x2
(
1− |x|2

)
z,

and

16c23 =c2t2x4 − 4ct2x2
(
1− |x|2

)
z − 4c2t2x3 − 2c4tx2 + 4t2

(
1− |x|2

)2
z2

+ 8ct2x
(
1− |x|2

)
z + 4c2t2x2 + 4c3t

(
1− |x|2

)
z + 4c4tx+ c6.

By substituting these expressions into (4.2), we deduce that

H3 (1) =
1

41472

[
− 25

2
c6 + 324t2x3 − 243

2
t3x3 − 324c2tx2 − 81c4tx3 + 21c4tx2

+36c4tx+9c2t2x4−189c2t2x3−288t2
(
1−|x|2

)2
z2+120c3t

(
1−|x|2

)
z

+ 324c3tx
(
1−|x|2

)
z+324c2tx

(
1−|x|2

)
z2−324c2t

(
1−|x|2

)(
1−|z|2

)
ρ

− 36ct2x2
(
1− |x|2

)
z − 324t2xx

(
1− |x|2

)
z2 + 216ct2x

(
1− |x|2

)
z

+ 324t2x
(
1− |x|2

)(
1− |z|2

)
ρ
]
.

By noting that t = 4− c2, we get

H3,1 (f) =
1

41472

[
v1 (c, x) + v2 (c, x) z + v3 (c, x) z

2 +Ψ(c, x, z) ρ
]
,
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where ρ, x, z ∈ U , and

v1 (c, x) =− 25

2
c6 +

(
4− c2

) [ (
4− c2

)(
−162x3 − 135

2
c2x3 + 9c2x4

)
− 324c2x2 − 81c4x3 + 21c4x2 + 36c4x

]
,

v2 (c, x) =
(
4− c2

) (
1− |x|2

) [(
4− c2

) (
216cx− 36cx2

)
+ 324c3x+ 120c3

]
,

v3 (c, x) =
(
4− c2

) (
1− |x|2

) [(
4− c2

) (
−36x2 − 288

)
+ 324c2x

]
,

and

Ψ(c, x, z) =
(
4− c2

) (
1− |x|2

)(
1− |z|2

) [
−324c2 + 324x

(
4− c2

)]
.

Now, by using |x| = x, |z| = y and utilizing the fact |ρ| ≤ 1, we get

|H3,1 (f)| ≤
1

41472

(
|v1 (c, x)|+ |v2 (c, x)| y + |v3 (c, x)| y2 + |Ψ(c, x, z)|

)
≤ 1

41472
|G(c, x, y)| ,

(4.3)

where

G (c, x, y) = g1 (c, x) + g4 (c, x) + g2 (c, x) y
2 + (g3 (c, x)− g4 (c, x)) y

2

with

g1 (c, x) =
25

2
c6 +

(
4− c2

) [ (
4− c2

)(
162x3 +

135

2
c2x3 + 9c2x4

)
+ 324c2x2 + 81c4x3 + 21c4x2 + 36c4x

]
,

g2 (c, x) =
(
4− c2

) (
1− x2

) [(
4− c2

) (
216cx+ 36cx2

)
+ 324c3x+ 120c3

]
,

g3 (c, x) =
(
4− c2

) (
1− x2

) [(
4− c2

) (
36x2 + 288

)
+ 324c2x

]
,

and
g4 (c, x) =

(
4− c2

) (
1− x2

)
[324c2 + 324x

(
4− c2

)
].

It is shown in [33] that |G(c, x, y)| achieves its maximum value 4608 on the closed
cuboid [0, 2]× [0, 1]× [0, 1]. Thus, we deduce that

|H3,1 (f)| ≤
1

41472
|G (c, x, y)| ≤ 1

9
.
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