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Abstract We propose a class of complex-valued neural networks with time-
varying delays and impulsive effects on time scales. By employing the Banach
fixed point theorem and differential inequality technique on time scales, we
obtain the existence of almost periodic solutions for this networks. Then, by
constructing a suitable Lyapunov function, we obtain that the drive-response
structure of complex-valued neural networks with almost periodic coefficients
can realize the global exponential synchronization. Our results are completely
new. Finally, we give an example to illustrate the feasibility of our results.
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1. Introduction
In the past few years, complex-valued neural networks (CVNNs) have been exten-
sively studied and analyzed in their dynamical behaviors, their application has been
extended to optoelectronics, image, remote sensing, quantum neuron devices and
systems, spatiotemporal analysis of physiological nervous system, and artificial neu-
ral information processing [1, 14]. As an extension of real-valued neural networks,
CVNNs had more complicated dynamical properties. Hence, it is very important
to study about the dynamical properties of CVNNs, such as the existence and sta-
bility of the equilibrium, periodic solutions, and almost periodic solutions, which
have been studied by many scholars [6, 11,12,15,32,34,47,49].
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On the one hand, impulsive effects are used to describe some dynamical models
in many fields, such as medicine and biology, economics and telecommunications.
The theory of impulsive differential equations goes back to the works of Milman
and Myshkis [31]. Later, the impulsive delay differential equations have been widely
researched (see [23, 35, 36]). The stability problem of impulsive CVNNs with time
delay is studied by many scholars [20,33,37,38,41,44]. Therefore, impulsive effects
play an important role in the dynamical behavior of CVNNs. Besides, the synchro-
nization problem has played a significant role in nonlinear science since its potential
applications in image processing, ecological systems, secure communication and har-
monic oscillation generation, formation control and we can reference [9,16,17,24,45].
The main idea of the impulsive synchronization method is to adjust the state of the
response system using synchronization pulses at discrete times so that the state of
the response system is close to that of the drive system. These pulses are gener-
ated at discrete moments from a sample of state variables that drive the response
system. Therefore, the impulsive synchronization scheme can be realized by digital
technology. Moreover, due to the reduced amount of synchronization information
transmitted from the drive system to the response system, impulsive synchroniza-
tion lowers the communication cost and enhances the security of the chaotic crypto
system. So far, few authors have considered the synchronization of complex-valued
neural networks [22,25,26].

On the other hand, it is well known that the time scale theory was initiated by
Hilger [18] in his Ph.D. thesis in 1988, which can unify the continuous and discrete
cases. Many authors have studied the dynamic equations on time scales [3, 4, 21].
To study the almost periodic dynamic equation on time scales, the concept of al-
most periodic time scales was proposed by Li and Wang in [27]. Based on this
concept, almost periodic functions on almost periodic time scales are defined [28],
subsequently, many authors have studied the almost periodic solutions of neural
networks on time scales [10, 13, 42, 46]. Subsequently, many scholars have consid-
ered CVNNs on time scales and established some sufficient conditions are obtained
for the existence and global exponential stability of equilibrium point [5, 7, 39, 50].
Recently, some authors studied the dynamical behaviors, including synchronization
and consensus on time scales in [2,8,19,29,30,40]. But, few articles consider almost
synchronization, let alone discuss the almost periodic synchronization of complex-
valued neural networks with impulsive on time scales.

However, to the best of our knowledge, there is no published paper considering
the almost periodic synchronization for impulsive complex-valued neural networks
with leakage delays on time scales. Therefore, it is very important in theories and
applications and also is a very challenging problem.

Inspired by the above analysis, in this paper, we consider the following impulsive
complex-valued neural networks on time scales:

x∆l (t) = −dl(t)xl(t− ηl(t)) +

n∑
j=1

alj(t)fj(xj(t)) +

n∑
j=1

blj(t)gj(xj(t− ϑlj(t)))

+

n∑
j=1

clj(t)

∫ t

t−δlj(t)

hj(xj(s))∆s+ ul(t), t ̸= tk,

∆̃xl(tk) = xl(t
+
k )− xl(t

−
k ) = Ilk(xl(tk)), t = tk, k ∈ Z,

(1.1)

where t ∈ T, l ∈ {1, 2, . . . , n} := J , xl(t) ∈ C is the state of the lth neuron at time
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t; dl(t) > 0 is the self-feedback connection weight; alj(t), blj(t) and clj(t) ∈ C are,
respectively, the connection weight and the delay connection weight from neuron j
to neuron l; ul(t) is an external input on the lth unit at time t; ηl(t) is the leakage
delays, ϑlj(t) and δlj(t) are the transmission delays, which satisfy that t−ηl(t) ∈ T,
t−ϑlj(t) ∈ T and t−δlj(t) ∈ T for all t ∈ T; xl(t−k ) and xl(t+k ) are, respectively, the
left and right limit at t = tk; ∆̃xl(tk) is impulses at moments tk, xl(t−k ) = xl(tk)
and {tk} ∈ B, B =

{
{tk} : tk ∈ T, tk < tk+1, k ∈ Z, lim

k→±∞
tk = ±∞

}
; Ilk(·) ∈ C.

Let i be the imaginary unit, i.e., i =
√
−1.

For every x ∈ C, the norm of x is defined as ∥x∥C = max
{
|xR|, |xI |

}
, and for

x = (x1, x2, . . . , xn)
T ∈ Cn, we define ∥x∥0 = max

l∈J
{∥xl∥C}.

For convenience, we will adopt the following notations:

d−l = inf
t∈T

dl(t), a+lj = sup
t∈T

∥alj(t)∥C, b+lj = sup
t∈T

∥blj(t)∥C, c+lj = sup
t∈T

∥clj(t)∥C,

η = max
l∈J

{
sup
t∈T

ηl(t)
}
, ϑ = max

l,j∈J

{
sup
t∈T

ϑlj(t)
}
,

δ = max
l,j∈J

{
sup
t∈T

δlj(t)
}
, ξ = max

{
η, ϑ, δ

}
.

The initial condition associated with (1.1) is of the form

xl(s) = ϕl(s), s ∈ [−ξ, 0]T, l ∈ J ,

where ϕl(s) ∈ C([−ξ, 0]T,C).
The main purpose of this paper is to study the existence and global exponential

synchronization of almost periodic solutions for system (1.1). The main contribu-
tions of this paper are listed as follows. Firstly, Our results include real-valued
neural networks as its special cases. Secondly, Comparing the previous results, we
studied the complex-valued neural networks via a direct method, and improved the
norm. Thirdly, compared with other results, the results in this paper are the ones
about complex-valued and with impulsive effects. Therefore, the results are less con-
servative and more general. Finally, our method of this paper can be used to study
the the pseudo almost periodic synchronization for other types of impulsive-valued
neural networks on time scales.

This paper is organized as follows. In Section 2, we introduce some definitions,
make some preparations for later sections and extend the piecewise almost periodic
functions on time scales with the ∆-derivative. In Section 3, by utilizing the Banach
fixed point theorem, a sufficient condition is derived for the existence of almost
periodic solutions for (1.1). In section 4, based on the Lyapunov functional method
and differential inequality technique on time scales, we obtain the global exponential
synchronization of almost periodic solutions for the system (1.1). In Section 5, we
give an illustrative example to demonstrate the feasibility of our results. Finally,
we conclude Section 6.

2. Preliminaries
In this section, we shall recall some fundamental definitions and lemmas which are
used in what follows.
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Definition 2.1 ( [18]). A time scale T is an arbitrary nonempty closed subset of
the real set R with the topology and ordering inherited from R. The forward jump
operator σ : T → T is defined by

σ(t) = inf
{
s ∈ T, s > t

}
, ∀ t ∈ T,

while the backward jump operator ρ : T → T is defined by

ρ(t) = sup
{
s ∈ T, s < t

}
, ∀ t ∈ T,

finally, the graininess function µ : T → [0,∞) is defined by

µ(t) = σ(t)− t.

The point t ∈ T is called left-dense, left-scattered, right-dense or right-scattered if
ρ(t) = t, ρ(t) < t, σ(t) = t or σ(t) > t, respectively. Points that are right-dense and
left-dense at the same time are called dense. If T has a left-scattered maximum m,
define Tκ = T − {m}; otherwise, set Tκ = T. If T has a right-scattered maximum
m, define Tκ = T− {m}; otherwise, set Tκ = T.

Definition 2.2 ( [18]). Assume that f : T → R is a function and let t ∈ Tk. Then
we define f∆(t) to be the number(provided its exists) with the property that given
any ε > 0, there is a neighborhood U of t (i.e, U = (t− δ, t+ δ)∩T for some δ > 0)
such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U . We call f∆(t) the delta (or Hilger) derivative of f at t. Moreover,
we say that f is delta (or Hilger) differentiable (or in short:differentiable) on Tk

provided f∆(t) exists for all t ∈ Tk. The function f∆ : Tk → R is then called the
(delta) derivative of f on Tk.

Definition 2.3 ( [18]). A function p : T → R is said to be regressive provided

1 + µ(t)p(t) ̸= 0, ∀ t ∈ Tκ.

The set of all regressive and rd-continuous functions p : T → R are denoted by

R = R(T) = R(T,R).
R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, ∀ t ∈ T}.

Definition 2.4 ( [18]). If p ∈ R+, then we define the exponential function by

ep(t, s) = exp

(∫ t

s

ξµ(τ)
(
p(τ)

)
∆τ

)
, ∀ t, s ∈ T,

with the cylinder transformation

ξh(z) =

{ Log(1+hz)
h , if h ̸= 0,

z, if h = 0.

Definition 2.5. ( [1]) Let p, q : T → R be two regressive functions, define

p⊕ q = p+ q + µpq, ⊖p = − p

1 + µp
, p⊖ q = p⊕ (⊖q).
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Lemma 2.1 ( [18]). Assume that p : T → R is regressive function, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(t, s) =

1
ep(s,t)

= e⊖p(s, t);
(iii) ep(t, s)ep(s, r) = ep(t, r);
(iv) (e⊖p(t, s))

∆ = (⊖p)(t)e⊖p(t, s).

Lemma 2.2 ( [18]). Let f, g be ∆-differentiable functions on T, then

(i) (v1f + v2g)
∆ = v1f

∆ + v2g
∆, for any constants v1, v2;

(ii) (fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)).

Lemma 2.3 ( [18]). Assume that p(t) ≥ 0 for t ≥ s, then ep(t, s) ≥ 1.

Lemma 2.4 ( [18]). Suppose that p ∈ R+, then

(i) ep(t, s) > 0, for all t, s ∈ T;
(ii) if p(t) ≤ q(t) for all t ≥ s, t, s ∈ T, then ep(t, s) ≤ eq(t, s) for all t ≥ s.

Lemma 2.5 ( [18]). If p ∈ R+ and a, b, c ∈ T, then

[
ep(c, ·)

]∆
= −p

[
ep(c, ·)

]σ
and

∫ b

a

p(t)ep
(
c, σ(t)

)
∆t = ep(c, a)− ep(c, b).

Definition 2.6 ( [27,28]). A time scale T is called an almost periodic time scale if

Π := {τ ∈ R : t± τ ∈ T,∀t ∈ T} ̸= {0}.

PCrd(T,X) denotes the set of all rd-piecewise continuous and left continuous
functions with points of discontinuity of first kind. For any integers k and j, consider
the sequence {tjk}, where tjk = tk+j − tk, k, j ∈ Z. From now on, (X, ∥ · ∥) is a (real
or complex) Banach space.

Definition 2.7 ( [43]). The set of sequences {tjk}, tjk = tk+j − tk, k, j ∈ Z is said
to be uniformly almost periodic, if for an arbitrary ε > 0 there exists a relatively
dense set of ε-almost periodic, common for all sequences {tjk}.

Definition 2.8 ( [43]). Let T be an almost periodic time scale. The function
φ ∈ PCrd(T,X) is said to be almost periodic, if the following holds:

(i) {tjk}, tjk = tk+j − tk, k, j ∈ Z is uniformly almost periodic;
(ii) for any ε > 0, there is a positive number δ = δ(ε) > 0 such that if the points

t′ and t′′ belong to the same interval of continuity and |t′ − t′′| < δ, then
∥φ(t′)− φ(t′′)∥ < ε;

(iii) for any ε > 0, there is relative dense set Γε ⊂ Π such that if τ ∈ Γε, then
∥φ(t + τ) − φ(t)∥ < ε for all t ∈ T, which satisfy the condition |t − tk| > ε,
k ∈ Z.

We denote by APT (T,X) the set of all piecewise almost periodic functions.
Throughout the rest of the paper, we assume that the following conditions hold:

(H1) dl(t), ηl(t), δlj(t) : T → R+ are all almost periodic functions, ϑlj(t)∈C1(T,Π)
with supt∈R ϑ

∆
lj (t) = ω < 1 is almost periodic function, alj(t), blj(t), clj(t) ∈

AP (T,C), ul∈AP (T,C), and there exists a constant λ such that dl(t)≥λ>0.
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(H2) Ilk∈AP (R,C) and there exist positive constants Ll and such that for u, v∈C,

∥Ilk(u)− Ilk(v)∥C ≤ Ll∥u− v∥C, l ∈ J , k ∈ Z,

and Ilk(0) = 0.
(H3) There exist positive constants αj , βj , ζj such that for any xj , yj ∈ C,

∥fj(xj)− fj(yj)∥C ≤ αj∥xj − yj∥C,
∥gj(xj)− gj(yj)∥C ≤ βj∥xj − yj∥C,
∥hj(xj)− hj(yj)∥C ≤ ζj∥xj − yj∥C,

and fj(0) = gj(0) = hj(0) = 0, where j ∈ J .
(H4) The set of sequences {tjk}, tjk = tk+j−tk, k, j ∈ Z is uniformly almost periodic

and infk t
1
k = θ > 0.

3. Existence of piecewise almost periodic solution
Let X =

{
f | f, f∆ ∈ APT (T,Cn)

}
with the norm

∥f∥X = max
{
sup
t∈T

∥f(t)∥0 , sup
t∈T

∥f∆(t)∥0
}
,

then X is a Banach space.

Theorem 3.1. Assume that conditions (H1)-(H4) hold and the following conditions
are satisfied:

(H5) There exists positive constants r and θ such that

max
l∈J

{
Θlr + u+l

d−l
+

Llr

1− e−θd−
l

,

(
1 +

d+l
d−l

)
(Θlr + u+l ) +

d+l Llr

1− e−θd−
l

}
≤ r,

max
l∈J

{
Θl

d−l
+

Ll

1− e−θd−
l

,

(
1 +

d+l
d−l

)
Θl +

d+l Ll

1− e−θd−
l

}
:= ρ < 1,

where

Θl = d+l η
+
l +

n∑
j=1

a+ljαj +

n∑
j=1

b+ljβj +

n∑
j=1

δ+ljc
+
ljζj , l ∈ J .

Then, the system (1.1) has a unique piecewise almost periodic solution in the region
X∗ = {φ | φ ∈ X, ∥φ∥X ≤ r}.

Proof. Firstly, it is easy to see that if x = (x1, x2, . . . , xn)
T ∈ APT (T,Cn) is a

solution of the following system

xl(t) =

∫ t

−∞
e−dl

(t, σ(s))
(
Kl(s, x) + ul(s)

)
∆s+

∑
tk<t

e−dl
(t, tk)Ilk(xl(tk)),

where

Kl(s, x) = dl(s)

∫ t

s−ηl(s)

x∆l (u)∆u+

n∑
j=1

alj(s)fj(xj(s))
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+

n∑
j=1

blj(s)gj(xj(s− ϑlj(s))) +

n∑
j=1

clj(s)

∫ s

s−δlj(s)

hj(xj(u))∆u,

then x(t) is a solution of (1.1). Define the nonlinear operator Φ as follows, for each
φ,φ∆ ∈ APT (T,Cn) and l ∈ J ,

(Φφ)l(t) =

∫ t

−∞
e−dl

(t, σ(s))
(
Kl(s, φ) + ul(s)

)
∆s+

∑
tk<t

e−dl
(t, tk)Ilk(φl(tk)).

Now, we show that the mapping Φ is a self-mapping from X∗ to X∗. Note that

∣∣Kl(s, φ)
∣∣ ≤ d+l

∫ s

s−ηl(s)

∥∥φ∆
l (u)

∥∥
C∆u+

n∑
j=1

∥∥alj(t)∥∥C∥∥fj(φj(s))
∥∥
C

+

n∑
j=1

∥∥blj(t)∥∥C∥∥gj(φj(s− ϑlj(s)))
∥∥
C

+

n∑
j=1

∥∥clj(t)∥∥C ∫ s

s−δlj(s)

∥∥hj(φj(u))
∥∥
C∆u

≤ d+l η
+
l

∥∥φ∆
l (s)

∥∥
C +

n∑
j=1

a+ljαj

∥∥φj(s)
∥∥
C

+

n∑
j=1

b+ljβj
∥∥φj(s− ϑlj(s))

∥∥
C +

n∑
j=1

c+ljδ
+
ljζj

∥∥φj(s)
∥∥
C

≤
[
d+l η

+
l +

n∑
j=1

a+ljαj +

n∑
j=1

b+ljβj +

n∑
j=1

δ+ljc
+
ljζj

]
∥φ∥X

≤ Θlr,

and ∥∥∥ ∑
tk<t

e−dl
(t, tk)Ilk(φl(tk))

∥∥∥
C
≤

∑
tk<t

∣∣e−dl
(t, tk)

∣∣Ll

∥∥φl(tk)
∥∥
C

≤ Llr

1− e−θd−
l

.

Hence,

∥∥(Φφ)l(t)∥∥C ≤
∫ t

−∞
e−dl

(t, σ(s))
∥∥Kl(s, φ) + ul(s)

∥∥
C∆s

+
∑
tk<t

∥∥∥e−dl
(t, tk)Ilk(φl(tk))

∥∥∥
C

≤
Θlr + u+l

d−l
+

Llr

1− e−θd−
l

, l ∈ J .

On the other hand, we have∥∥∥((Φφ)∆)
l
(t)

∥∥∥
C
=

∥∥∥∥Kl(t, φ) + ul(t)− dl(t)

∫ t

−∞
e−dl

(t, σ(s))
(
Kl(s, φ) + ul(s)

)
∆s
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−dl(t)
∑
tk<t

e−dl
(t, tk)Ilk(φl(tk))

∥∥∥∥
C

≤
(
1 +

d+l
d−l

)(
Θlr + u+l

)
+

d+l Llr

1− e−θd−
l

, l ∈ J .

Hence, by (H5), we obtain
∥∥Φφ∥∥X ≤ r, which implies that Φφ ∈ X∗.

Next, we show that Φ is a contraction operator. In fact, for any φ,ψ ∈ X∗, we
denote

Wl(s, φ, ψ) = dl(s)

∫ s

s−ηl(s)

(
φ∆
l (u)− ψ∆

l (u)
)
∆u+

n∑
j=1

alj(s)
[
fj(φj(s))− fj(ψj(s))

]
+

n∑
j=1

blj(s)
[
gj(φj(s− ϑlj(s)))− gj(ψj(s− ϑlj(s)))

]
+

n∑
j=1

clj(s)

∫ s

s−δlj(s)

[
hj(φj(u))− hj(ψj(u))

]
∆u.

Then we have

∥∥Wl(s, φ, ψ)
∥∥
C ≤

(
d+l η

+
l +

n∑
j=1

a+ljαj +

n∑
j=1

b+ljβj +

n∑
j=1

δ+ljc
+
ljζj

)
∥φ− ψ∥X

= Θl∥φ− ψ∥X, l ∈ J ,

and ∥∥∥ ∑
tk<t

e−dl
(t, tk)

[
Ilk(φl(tk))− Ilk(ψl(tk))

]∥∥∥
C
≤

∑
tk<t

∣∣e−dl
(t, tk)

∣∣Ll∥φ− ψ∥X

≤ Ll

1− e−θd−
l

∥φ− ψ∥X.

Thus, we obtain

∥∥(Φφ)l(t)− (Φψ)l(t)
∥∥
C =

∥∥∥∥∫ t

−∞
e−dl

(t, σ(s))Wl(s, φ, ψ)∆s

+
∑
tk<t

e−dl
(t, tk)

[
Ilk(φl(tk))− Ilk(ψl(tk))

]∥∥∥∥
C

≤
(
Θl

d−l
+

Ll

1− e−θd−
l

)
∥φ− ψ∥X, l ∈ J .

On the other hand, we have∥∥∥((Φφ)∆)
l
(t)−

(
(Φψ)∆

)
l
(t)

∥∥∥
C

=

∥∥∥∥(∫ t

−∞
e−dl

(t, σ(s))Wl(s, φ, ψ)∆s+
∑
tk<t

e−dl
(t, tk)

[
Ilk(φl(tk))−Ilk(ψl(tk))

])∆∥∥∥∥
C

≤
∥∥Wl(t, φ, ψ)

∥∥
C + d+l sup

t∈T

∥∥∥∥∫ t

−∞
e−dl

(t, σ(s))Wl(s, φ, ψ)∆s

∥∥∥∥
C
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+d+l

∑
tk<t

e−dl
(t, tk)

∥∥Ilk(φl(tk))− Ilk(ψl(tk))
∥∥
C

≤
{(

1 +
d+l
d−l

)
Θl +

d+l Ll

1− e−θd−
l

}
∥φ− ψ∥X, l ∈ J .

From (H5), we have ∥Φ(φ) − Φ(ψ)∥X ≤ ρ∥φ − ψ∥X. Hence, Φ is a contraction
mapping. By Banach fixed point theorem, Φ has a unique fixed point in X∗, that is,
(1.1) has a unique piecewise almost periodic solution in X∗. The proof is complete.

4. Almost periodic synchronization
In this section, by designing a controller, utilizing some analytic techniques and
constructing a suitable Lyapunov function, we consider the exponential synchro-
nization problem of CVNNs with time-varying delays and impulsive effects on time
scales and almost periodic coefficients. Thus, we consider the system (1.1) as a
drive system, and a response system is designed as

y∆l (t) = −dl(t)yl(t) + dl(t)

∫ t

t−ηl(t)

y∆l (s)∆s

+

n∑
j=1

alj(t)fj(yj(t)) +

n∑
j=1

blj(t)gj(yj(t− ϑlj(t)))

+

n∑
j=1

clj(t)

∫ t

t−δlj(t)

hj(yj(s))∆s+ ul(t) + Ul(t), t ̸= tk,

∆̃yl(tk) = Ilk(yl(tk)), t = tk, k ∈ Z,

(4.1)

where l ∈ J , Ul(t) is a controlled input.
Let signals zl(t) = yl(t)−xl(t), zl(t) =

(
zRl (t), z

I
l (t)

)T . Then, we can obtain the
following error system:

z∆l (t) = −dl(t)zl(t) + dl(t)

∫ t

t−ηl(t)

z∆l (s)∆s+

n∑
j=1

alj(t)
[
fj(yj(t))− fj(xj(t))

]
+

n∑
j=1

blj(t)
[
gj(yj(t− ϑlj(t)))− gj(xj(t− ϑlj(t)))

]
+

n∑
j=1

clj(t)

∫ t

t−δlj(t)

[
hj(yj(s))− hj(xj(s))

]
∆s+ Ul(t), t ̸= tk,

∆̃zl(tk) = Ilk(zl(tk)), t = tk, k ∈ Z.

(4.2)

In order to realize the synchronization between (1.1) and (4.1), we design the fol-
lowing state-feedback controller:

Ul(t) = −κlzl(t), (4.3)

where κl ∈ R+ is the control input.
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Definition 4.1. The response system (4.1) and the drive system (1.1) can be glob-
ally exponentially synchronized, if there exist positive constant M ≥ 1, λ > 0 such
that

∥z(t)∥0 ≤ ∥ψ − φ∥1Me⊖λ(t, 0), t ∈ [0,+∞)T

where

∥z(t)∥0 = max
l∈J

{
∥zl(t)∥C, ∥z∆l (t)∥C

}
,

∥ψ − ϕ∥1 = max
l∈J

{
sup

s∈[−ξ,0]T

∥ψl(s)− φl(s)∥C, sup
s∈[−ξ,0]T

∥ψ∆
l (s)− φ∆

l (s)∥C
}
.

Theorem 4.1. Assume that conditions (H1)-(H5) hold and the following conditions
are satisfied:

(H6) Ilk(xl(tk)) = −γlkxl(tk) with 0 ≤ γlk ≤ 2, l ∈ J , k ∈ Z.
(H7) There exists a positive constant λ such that

max
l∈J

{((
− κl − d−l

)
+ λ+ 2µ̄

(
κl + d+l

)2)
+

(
2µ̄

(
κl + d+l

)
+ 1

)
×
(
d+l η

+
l +

n∑
j=1

aljαj +
eλ(ϑ, 0)

1− ω

n∑
j=1

b+ljβj +

n∑
j=1

δ+ljc
+
ljζj

)}(
1 + µ̄λ

)
< 0.

Then the drive system (1.1) and the response system (4.1) are globally exponentially
synchronized based on the controller (4.3).

Proof. From (4.2), for l ∈ J , k ∈ Z, we have

zl(t
+
k ) = yl(t

+
k )− xl(t

+
k ) = yl(tk)− γlkyl(tk)−

(
xl(tk)− γlkxl(tk)

)
= (1− γlk)

(
yl(tk)− xl(tk)

)
≤ yl(tk)− xl(tk) = zl(tk),

so, we have zl(t+k ) ≤ zl(tk). For t ∈ [0,+∞)T, by (H4), one can easily to see that

∥∥(zl)∆(t)∥∥C ≤ (κl + d+l )
∥∥zl(t)∥∥C + d+l η

+
l

∥∥z∆l (t)
∥∥
C +

n∑
j=1

aljαj

∥∥zj(t)∥∥C
+

n∑
j=1

b+ljβj
∥∥zj(t− ϑlj(t))

∥∥
C +

n∑
j=1

δ+ljc
+
ljζj

∥∥zj(t)∥∥C.
We consider the Lyapunov function as follows:

V (t) = max
l∈J

(∥∥zl(t)∥∥Ceλ(t, 0) + Pl

)
where

Pl =

(
2µ̄(κl + d+l ) + 1

)
(1 + µ̄λ)

1− ω

n∑
j=1

(
b+lj

∫ t

t−ϑlj(t)

βj
∥∥zj(s)∥∥Ceλ(s+ τ, 0)∆s

)
.
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It follows from the definition of delta derivatives and properties of exponential
function, we denote µ̄ = sup

t∈T
|µ(t)|, then we have

[∥∥zl(t)∥∥Ceλ(t, 0)]∆
≤ sign

(
zl(σ(t))

)(
zl
)∆

(t)eλ(σ(t), 0) + λ
∥∥zl(t)∥∥Ceλ(t, 0)

= sign
(
zl(σ(t))

)[(
− κl − dl(t)

)
zl(t) + dl(t)

∫ t

t−ηl(t)

(zl)
∆(s)∆s

+

n∑
j=1

alj(t)
[
fj(yj(t))− fj(xj(t))

]
+

n∑
j=1

blj(t)
[
gj(yj(t− ϑlj(t)))

−gj(xj(t− ϑlj(t)))
]
+

n∑
j=1

clj(t)

∫ t

t−δlj(t)

[
hj(yj(s))

−hj(xj(s))
]
∆s+ λ

∥∥zl(t)∥∥Ceλ(t, 0)](1 + µ(t)λ
)
eλ(t, 0)

≤ sign
(
zl(σ(t))

)[(
− κl − dl(t)

)[
zl(σ(t))− µ(t)

(
zl
)∆

(t)
]

+d+l

∫ t

t−ηl(t)

∣∣(zl)∆(s)∣∣∆s+ n∑
j=1

a+ljαj

∥∥zj(t)∥∥C
+

n∑
j=1

b+ljβj
∥∥zj(t− ϑlj(t))

∥∥
C + λ

∥∥zl(t)∥∥Ceλ(t, 0)
+

n∑
j=1

δ+ljc
+
ljζj

∥∥zj(t)∥∥C](1 + µ(t)λ
)
eλ(t, 0)

≤
[(

− κl − d−l
)∥∥zl(t)− µ(t)

(
zl
)∆

(t)
∥∥
C +

(
κl + d+l

)
µ̄
∥∥(zl)∆(t)∥∥C

+λ
∥∥zl(t)∥∥Ceλ(t, 0) + d+l

∫ t

t−ηl(t)

∥∥z∆l (s)
∥∥
C∆s+

n∑
j=1

a+ljαj

∥∥zj(t)∥∥C
+

n∑
j=1

b+ljβj
∥∥zj(t− ϑlj(t))

∥∥
C +

n∑
j=1

δ+ljc
+
ljζj

∥∥zj(t)∥∥C](1 + µ(t)λ
)
eλ(t, 0)

≤
[(

− κl − d−l
)∥∥zl(t)∥∥C + 2

(
κl + d+l

)
µ̄
∥∥(zl)∆(t)∥∥C

+λ
∥∥zl(t)∥∥Ceλ(t, 0) + d+l

∫ t

t−ηl(t)

∥∥(zl)∆(s)∥∥C∆s+ n∑
j=1

a+ljαj

∥∥zj(t)∥∥C
+

n∑
j=1

b+ljβj
∥∥zj(t− ϑlj(t))

∥∥
C +

n∑
j=1

δ+ljc
+
ljζj

∥∥zj(t)∥∥C](1 + µ(t)λ
)
eλ(t, 0)

≤
[(

− κl − d−l
)∥∥zl(t)∥∥C + 2

(
κl + d+l

)
µ̄

(
(κl + d+l )

∥∥zl(t)∥∥C
+d+l

∫ t

t−ηl(t)

∥∥z∆l (s)
∥∥
C∆s+

n∑
j=1

a+ljαj

∥∥zj(t)∥∥C
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+

n∑
j=1

b+ljβj
∥∥zj(t− ϑlj(t))

∥∥
C +

n∑
j=1

δ+ljc
+
ljζj

∥∥zj(t)∥∥C)

+λ
∥∥zl(t)∥∥Ceλ(t, 0) + d+l

∫ t

t−ηl(t)

∥∥z∆l (s)
∥∥
C∆s+

n∑
j=1

a+ljαj

∥∥zj(t)∥∥C
+

n∑
j=1

b+ljβj
∥∥zj(t− ϑlj(t))

∥∥
C +

n∑
j=1

δ+ljc
+
ljζj

∥∥zj(t)∥∥C](1 + µ(t)λ
)
eλ(t, 0)

≤
[((

− κl − d−l
)
+ λ+ 2µ̄

(
κl + d+l

)2)∥∥zl(t)∥∥C +
(
2µ̄

(
κl + d+l

)
+ 1

)
×
(
d+l

∫ t

t−ηl(t)

∥∥z∆l (s)
∥∥
C∆s+

n∑
j=1

aljαj

∥∥zj(t)∥∥C
+

n∑
j=1

b+ljβj
∥∥zj(t− ϑlj(t))

∥∥
C +

n∑
j=1

δ+ljc
+
ljζj

∥∥zj(t)∥∥C)](1 + µ̄λ
)
eλ(t, 0),

and

P∆
l (t) ≤ eλ(t, 0)

n∑
l=1

{(
2µ̄(κl + d+l ) + 1

)
(1 + µ̄λ)

1− ω

n∑
j=1

b+ljβj
∥∥zj(t)∥∥Ceλ(ϑ, 0)

−
(
2µ̄(κl + d+l ) + 1

)
(1 + µ̄λ)

n∑
j=1

b+ljβj
∥∥zj(t− ϑlj(t))

∥∥
C

}
,

according to the above two inequality, we have

V ∆(t) ≤ max
l∈J

{[((
− κl − d−l

)
+ λ+ 2µ̄

(
κl + d+l

)2)
+
(
2µ̄

(
κl + d+l

)
+ 1

)
×
(
d+l η

+
l +

n∑
j=1

aljαj +
eλ(ϑ, 0)

1− ω

n∑
j=1

b+ljβj +

n∑
j=1

δ+ljc
+
ljζj

)]

×
(
1 + µ̄λ

)}
eλ(t, 0)∥z(t)∥0.

Then, we can obtain

V ∆(t) ≤ 0, t ∈ [0,+∞)T,

and

V (t+k )− V (tk) ≤ max
l∈J

∥zl(t+k )∥Ceλ(t
+
k , 0)−max

l∈J
∥zl(tk)∥Ceλ(tk, 0)

≤ max
l∈J

∥∥(1− γlk)zl(tk)− zl(tk)
∥∥
Ceλ(t

+
k , 0) ≤ 0, k ∈ Z.

Thus, for t ∈ [0,+∞)T, we can obtain V (t) ≤ V (0). On the other hand,

V (0) = max
l∈J

{∥∥zl(0)∥∥Ceλ(t, 0) +
(
2µ̄(κl + d+l ) + 1

)
(1 + µ̄λ)

1− ω

n∑
j=1

b+lj

×
∫ 0

0−ϑlj(0)

βj
∥∥zj(s)∥∥Ceλ(s+ τ, 0)∆s
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≤
n∑

l=1

{
1 +

(
2µ̄(κl + d+l ) + 1

)
(1 + µ̄λ)

1− ω

n∑
j=1

b+ljβjϑ
+
ljeλ(ϑ, 0)

}
eλ(t, 0)∥ψ − ϕ∥1.

Thus, for t ̸= tk, we have

∥z(t)∥0 ≤ ∥ϕ− ψ∥1Me⊖λ(t, 0),

where

M = max
l∈J

{
1 +

(
2µ̄(κl + d+l ) + 1

)
(1 + µ̄λ)

1− ω

n∑
j=1

b+ljβjϑ
+
ljeλ(ϑ, 0)

}
> 1.

Furthermore, for t = tk,

∥z(tk)∥0 ≤ ∥ϕ− ψ∥1Me⊖λ(t, 0).

Therefore, the drive system (1.1) and the response system (4.1) are globally expo-
nential synchronized based on the controller (4.3). The proof is complete.

5. Numerical simulations
In this section, we give an example to illustrate the feasibility and effectiveness of
our results obtained in Sections 3 and 4.

Example 5.1. Consider a two-neuron impulsive complex-valued neural networks
on time scales

x∆l (t) = −dl(t)xl(t− ηl(t)) +

2∑
j=1

alj(t)fj(xj(t)) +

2∑
j=1

blj(t)gj(xj(t− ϑlj(t)))

+

2∑
j=1

clj(t)

∫ t

t−δlj(t)

hj(xj(s))∆s+ ul(t), t ̸= tk,

∆̃xl(tk) = xl(t
+
k )− xl(t

−
k ) = Ilk(xl(tk)), t = tk, k ∈ Z,

(5.1)

where l = 1, 2, tk = 2k, t ∈ T and the coefficients are follows:

fj(xj) =
1

65
|xRj + xIj |+ i

1

50
sin2 xIj , gj(xj) =

1

40
tanhxRj + i

1

40
|xIj |,

hj(xj) =
1

60
(|xRj + 1|+ |xIj | − 1) + i

1

45
|xRj + xIj |, d1(t) = 0.2− 0.02| sin t|,

d2(t) = 0.2 + 0.05| cos t|, u1(t) = 0.04 + 0.05i sin t, u2(t) = 0.08 + 0.06i cos t,

a11(t) = a12(t) = 0.1 + 0.2i| sin(
√
3t)|, a21(t) = a22(t) = 0.3 + 0.1i| cos

√
2t|,

b11(t) = b12(t) = 0.15 + 0.05i| sin t|, b21(t) = b22(t) = 0.05 + 0.02i| sin(
√
2t)|,

c11(t) = c12(t) = 0.015 + 0.015i cos2 t, c21(t) = c22(t) = 0.01 + 0.015i| cos(
√
2t)|,

η1(t)=0.01| cos(πt)|, η2(t)=0.03| cos(2πt)|, ϑlj(t)=
4

5
| cos(2πt)|, δlj(t)=2| cos(2πt)|,

∆̃x1(2k) = − 1

15
xR1 (2k) +

1

15
sin(xR1 (2k)) + i

(
− 1

15
xI1(2k) +

1

15
sin(xI1(2k))

)
,
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∆̃x2(2k) = − 1

15
xR2 (2k) +

1

15
cos(xR2 (2k)) + i

(
− 1

15
xI2(2k) +

1

15
cos(xI2(2k))

)
.

By a simple calculation, we have αj =
1
50 , βj = 1

40 , ζj = 1
45 , Ll =

2
15 and

d−1 = 0.18, d−2 = 0.2, d+1 = 0.2, d+2 = 0.25, a+11 = a+12 = 0.2,

a+21 = a+22 = 0.3, b+11 = b+12 = 0.15, b+21 = b+22 = 0.05,

c+11 = c+12 = 0.015, c+21 = c+22 = 0.015, u+1 = 0.05, u+2 = 0.08,

η+1 = 0.01, η+2 = 0.03, ϑ+lj =
4

5
, δ+lj = 2, l, j = 1, 2,

Θ1 = d+1 η
+
1 +

2∑
j=1

a+1jαj +

2∑
j=1

b+1jβj +

2∑
j=1

δ+1jc
+
1jζj ≈ 0.0188,

Θ2 = d+2 η
+
2 +

2∑
j=1

a+2jαj +

2∑
j=1

b+2jβj +

2∑
j=1

δ+2jc
+
1jζj ≈ 0.0233.

And we take r = 0.8, θ = 4, then we obtain

max
1≤l≤2

{
Θlr + u+l

d−l
+

Ll

1− e−θd−
l

r,

(
1 +

d+l
d−l

)
(Θlr + u+l ) +

d+l Ll

1− e−θd−
l

r

}
≈ max{0.5692, 0.1789, 0.6869, 0.2704} = 0.6869 < r = 0.8,

max
1≤l≤2

{
Θl

d−l
+

Ll

1− e−θd−
l

,

(
1 +

d+l
d−l

)
Θl +

d+l Ll

1− e−θd−
l

}
≈ max{0.3642, 0.3586, 0.0916, 0.1130} = 0.3642 = ρ < 1.

Moreover, take λ = 0.1, κl = 0.1, ω = 4
5 , if T = R, µ(t) = 0, eλ(ϑ, 0) = eλϑ = e

2
25 .

We obtain

max
1≤l≤2

{((
− κl − d−l

)
+ λ+ 2µ̄

(
κl + d+l

)2)
+

(
2µ̄

(
κl + d+l

)
+ 1

)
×
(
d+l η

+
l +

2∑
j=1

a+ljαj +
eλ(ϑ, 0)

1− ω

2∑
j=1

b+ljβj +

2∑
j=1

δ+2jc
+
ljζj

)}(
1 + µ̄λ

)
≈ −0.1281 < 0,

if T = Z
5 , µ(t) = 1

5 , eλ(ϑ, 0) = (1 + λ)ϑ = 1.1
4
5 . We obtain

max
1≤l≤2

{((
− κl − d−l

)
+ λ+ 2µ̄

(
κl + d+l

)2)
+

(
2µ̄

(
κl + d+l

)
+ 1

)
×
(
d+l η

+
l +

2∑
j=1

a+ljαj +
eλ(ϑ, 0)

1− ω

2∑
j=1

b+ljβj +

2∑
j=1

δ+2jc
+
ljζj

)}(
1 + µ̄λ

)
≈ −0.0877 < 0.

Take the time scale T = R as a special case, represents a continuous case. We can
verify that all assumptions in Theorems 3.1 and 4.1 are satisfied. Therefore,the the
system (5.1) has a unique piecewise almost periodic solution in the region X∗ = {φ |
φ ∈ X, ∥φ∥X ≤ r} and the drive system (5.1) and its response system are globally
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exponential synchronized. By using the Simulink toolbox in MATLAB, Figures 1
depict the time revolution of real parts x1 and imaginary parts x2 of system (5.1)
without control. Figures 2 depict the time revolution of real parts y1 and imaginary
parts y2 of system (5.1) with control (4.3). Figure 3 shows state response curve of
the real and imaginary parts of synchronization error. From simulation results in
Figures 1-3, it is clearly seen that the drive system (5.1) and its response system
achieve synchronization based on the controller (4.3). Similarly, take the time scale
T = Z

5 as a special case, represents a discrete case, we can get similar results. (see
Figures 3-6).
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Figure 1. T = R, the states of two parts of x1(t) and x2(t).
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Figure 2. T = R, the states of two parts of y1(t) and y2(t).
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Figure 3. T = R. Synchronization errors z(t) = y(t) − x(t).
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Figure 4. T = Z
5 , the states of two parts of x1(

n
5 ) and x2(

n
5 ).

6. Conclusion
In this paper, we have investigated the impulsive complex-valued neural networks
with leakage delays on time scales. Base on the Banach fixed point theorem, Lya-
punov functional method and differential inequality technique on time scales, we
obtain the existence and global exponential synchronization of almost periodic so-
lutions for impulsive complex-valued neural networks. An example has been given
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Figure 5. T = Z
5 , the states of two parts of y1(

n
5 ) and y2(

n
5 ).
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Figure 6. T = Z
5 . Synchronization errors z(n

5 ) = y(n
5 ) − x(n

5 ).

to demonstrate the effectiveness of our results. We know the almost periodic syn-
chronization for impulsive system on times scales is new. Furthermore, using the
similar method, the global exponential synchronization of almost periodic solutions
for the abstract impulsive ∇-dynamic equations can be applied. In the future work,
some interesting results concerning impulses can be considered, such as potential
impacts of delay on stability of impulsive control Systems, Exponential Stability
of Delayed Systems with Average-Delay Impulses. In addition, Almost periodic
synchronization in the quaternion field can be considered.
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