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Abstract For solving the noisy linear systems, we propose a new greedy
randomized extended Kaczmarz algorithm by introducing an effective greedy
criterion for selecting the working rows and a randomized orthogonal projec-
tion for reducing the influence of the noisy term. We prove that the solution
of the proposed greedy randomized extended Kaczmarz algorithm converges
in expectation to the least squares solution of the given linear system. The-
oretical analysis indicate that the convergence rate of the greedy randomized
extended Kaczmarz algorithm is much faster than the randomized extended
Kaczmarz method, and numerical results also show that the proposed greedy
randomized extended Kaczmarz algorithm is superior to the randomized ex-
tended Kaczmarz method. Moreover, for noisy linear systems, the proposed
algorithm is more effcient than the greedy randomized Kaczmarz algorithm.

Keywords Kaczmarz algorithm, greedy criterion, randomized orthogonal
projection, convergence rate.
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1. Introduction
The Kaczmarz method is a popular iterative projection algorithm for solving (overde-
termined) systems of linear equations [4]. It has been widely used in the field of im-
age reconstruction, signal processing and sparse recovery in recent years [5,7,11,13].

Given a system of linear equations of the form

Ax = b,

where A ∈ Rm×n and b ∈ Rm. The classic Kaczmarz algorithm goes through the
rows of the coefficient matrix A and approximates the solution of the given linear
systems by

xk+1 = xk +
b(i) −

〈
A(i),xk

〉∥∥A(i)
∥∥2
2

(A(i))⊤,

where i = k mod m, A(i) is the ith row of the matrix A. Here ⟨·, ·⟩ is the inner
product in Rn and ∥ · ∥2 is the induced norm. Throughout the paper all vectors are
assumed to be column vectors.
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It is proved that the convergence of the classic Kaczmarz algorithm depends on
the ordering of the rows of matrix A, and the convergence rate can be improved
by selecting the row with probability proportional to the square of its Euclidean
norm. Strohmer and Vershynin proposed the randomized Kaczmarz method and
proved that it converges with expected exponential rate [14]. Due to its simplic-
ity and efficiency, the randomized Kaczmarz algorithm gets much wider applica-
tions [2, 6, 9, 12, 15]. However, the advantage of the random criterion disappeared
when the coefficient matrix is scaled with a diagonal matrix that normalized the
Euclidean norm of all of its rows to be a same constant. In order to solve this prob-
lem, the greedy randomized Kaczmarz (GRK) was introduced in [1]. It has been
shown that the greedy randomized Kaczmarz method can work more efficient than
the randomized Kaczmarz method by introducing an effective greedy probability
criterion for selecting the working rows from the coefficient matrix. The greedy
randomized Kaczmarz method was improved and applied in [17] and [3]. Above
all, we conclude that the criterions for selecting the working row have an important
influence on the convergence of the algorithm.

On the other hand, the linear systems of equations are easily corrupted by noise
in many applications. In [10], Needell extended the randomized Kaczmarz algorithm
to the noisy cases, and proved that the randomized Kaczmarz method can reach
an error threshold dependent on the coefficient matrix with the same rate as in the
noise-free case. Furthermore, the estimate vector is within a fixed distance from
the solution, and the distance is proportional to the norm of the noise vector. For
noisy systems, Zouzias and Freris proved that it is possible to efficiently reduce the
norm of the “noisy” part by the randomized orthogonal projection algorithm [16].
The convergence rates for the extended Kaczmarz method were given in [8, 11,16].

Motivated by these observations and the lack of research on noisy systems, we
construct a greedy randomized extended Kaczmarz algorithm (GREK) for solving
the noisy system of linear equations in this paper. In the proposed algorithm, we
introduce an effective greedy criterion for selecting the working rows and a ran-
domized orthogonal projection for reducing the influence of the noisy term. The
convergence of the proposed algorithm indicate that the estimator converges in ex-
pectation to the minimum Euclidean norm least squares solution of the given linear
system of equations. In addition, numerical experiments also show that the greedy
randomized extended Kaczmarz algorithm significantly outperforms the random-
ized extended Kaczmarz method in terms of both iterations and relative standard
error.

Compared to the greedy randomized Kaczmarz method and the randomized
extended Kaczmarz method for solving the large-scale systems of linear equations,
the main contributions below highlight several features of this paper.

First, the convergence rate of the Kaczmarz algorithm intensively depends on the
selecting of the working row, the original Kaczmarz algorithm and the randomized
Kaczmarz algorithm adopt sequential criterion and random criterion respectively.
In this paper, we select the iterative row by a greedy criterion, which consider
not only the ratio between the norms of the row of the coefficient matrix and the
coefficient matrix itself as in randomized Kaczmarz method, but also the residual
of the current iterate. In each iteration, the row farthest from the current point is
preferentially selected, which can greatly improve the convergence rate.

Second, the greedy randomized Kaczmarz method provides obvious advantages
over the standard randomized Kaczmarz method in many cases. It is proved that
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the solution of the greedy randomized Kaczmarz method converges to the least-
norm solution of the linear system, and the convergence rate is much fast than
the randomized Kaczmarz method [1]. Nevertheless, there is no such research for
the more realistic cases where the systems are corrupted by noise. In this paper,
we first provide convergence result of the greedy randomized Kaczmarz method for
noisy linear systems, and prove that the estimate is within a fixed distance from
the solution, and the distance is proportional to the norm of the noise vector.

Third, in order to decrease the effect of the noisy, we apply the randomized
orthogonal projection technique to reduce the norm of the noise, and prove that the
greedy randomized extended Kaczmarz algorithm converges with expected expo-
nential rate. Furthermore, the theoretic analysis is deeply depend on the property
of the index set and the probability criterion, which is different from the randomized
Kaczmarz method.

The rest of this paper is organized as follows. In Section 2, we analyze the
greedy randomized Kaczmarz method for the case where the system is corrupted
by noise. In Section 3, we introduce the greedy randomized extended Kaczmarz
method for noisy linear systems, and then establish the convergence theory. The
numerical results are reported in Section 4. Finally, we provide a brief conclusion
in Section 5.

2. Greedy randomized Kaczmarz solver for noisy
linear systems

In this paper, we consider the noisy linear systems

Ax = b, b := y +w, (2.1)

for any fixed vector w ∈ Rm. We first specify all the required notations. Let
A ∈ Rm×n be the coefficient matrix, we denote the rows and columns of matrix
A by A(1),A(2), · · · ,A(m) and A(1),A(2), · · · ,A(n), respectively. ∥A∥F and ∥A∥2
denote the Frobenius norm and the spectral norm. Let σ1 ≥ σ2 ≥ · · · ≥ σrank(A) be
the non-zero singular values of A, we denote σmax = σ1 and σmin = σrank(A). The
Moore-Pensore pseudo-inverse ofA is denoted byA†, then ∥A†∥2 = 1/σmin. For any
non-zero matrixA, the condition number ofA is κ(A) := ∥A∥2∥A†∥2 = σmax/σmin,
the scaled condition number is κF(A) := ∥A∥F∥A†∥2. We can easily check that
κ2(A) ≤ κ2

F(A) ≤ rank(A) · κ2(A).
In [1], Bai and Wu proposed a greedy randomized Kaczmarz (GRK) algorithm,

which can work more efficient than the randomized Kacmarz method by introducing
an effective greedy probability criterion for selecting the working rows instead of
the random criterion in randomized Kaczmarz method. The greedy randomized
Kaczmarz algorithm can be described by Algorithm 1.

The greedy randomized Kaczmarz method provides obvious advantages over the
standard randomized Kaczmarz method in many cases [1]. It converges significantly
faster than the randomized Kaczmarz algorithm while ensuring shorter running
time. Nevertheless, there is no such research for the more realistic cases where
the systems are corrupted by noise. In this section, we provide convergence result
of the greedy randomized Kaczmarz method for noisy linear systems, and prove
that the estimate is within a fixed distance from the solution, and the distance is
proportional to the norm of the noise vector.
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Algorithm 1 Greedy Randomized Kaczmarz(GRK) Algorithm
Input: A ∈ Rm×n,b ∈ Rm, ℓ
Output: x(ℓ)

1: Initialize x(0) = 0
2: for k = 0, 1, 2, ..., ℓ− 1 do
3: Computer

ϵk =
1

2

(
1∥∥b−Ax(k)

∥∥2
2

max
1≤ik≤m

{∣∣b(ik) −A(ik)x(k)
∣∣2∥∥A(ik)

∥∥2
2

}
+

1

∥A∥2F

)

4: Determine the index set of positive integers Uk

Uk =

{
ik

∣∣∣∣|b(ik) −A(ik)x(k)|2 ≥ ϵk

∥∥∥b−Ax(k)
∥∥∥2
2

∥∥∥A(ik)
∥∥∥2
2

}
(2.2)

5: Computer the ith entry r̃
(i)
k of the vector r̃k according to

r̃ik =

b(i) −A(i)x(k), i ∈ Uk;

0, otherwise.

6: Select ik ∈ Uk with probability pik = |r̃(ik)k |2/ ∥r̃k∥22
7: Set

x(k+1) = x(k) +
b(ik) −

〈
x(k),A(ik)

〉∥∥A(ik)
∥∥2
2

(A(ik))⊤

8: return

Theorem 2.1 (Noisy greedy randomized Kaczmar). Assume that the system Ax =
y has a solution for some y ∈ Rm, denoted by x∗ := A†y. Let x̂(k) denote the kth
iterate of the greedy randomized Kaczmarz algorithm applied to the linear system
Ax = b with b := y+w for any fixed w ∈ Rm. In exact arithmetic, it follows that

E|x̂(k) − x∗∥22 ≤
[
1− 1

2

(
1

γ
∥A∥2F + 1

)
σ2
min(A)

∥A∥2F

]
E∥x̂(k−1) − x∗∥22

+
∥w∥22(

∥A∥F − γ
∥A∥F

)2 , k = 2, 3, · · ·

where γ = max
1≤i≤m

m∑
j=1
j ̸=i

∥A(j)∥22.

Proof. Let Hi =
{
x :
〈
A(i),x

〉
= y(i)

}
be the affine hyper-plane consisting of

the solutions to the i−th equation, and H∗
i =

{
x :
〈
A(i),x

〉
= y(i) +w(i)

}
be the

solution spaces of the corresponding noisy equations.
Assume that at the k−th iterate of the greedy randomized Kaczmarz algorithm

applied to the linear system Ax = b, the i− row is selected, and the solution is x̂(k).
Denote x(k) be the projection of x̂(k−1) on Hi, we know that x̂(k) is the projection
of x̂(k−1) on H∗

i .
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Since x∗ ∈ Hi, we have

∥x̂(k) − x∗∥22 = ∥x(k) − x∗∥∗2 + ∥x̂(k) − x(k)∥22 (2.3)

by orthogonality. Since the two hyper-planes Hi and H∗
i are parallel and the dis-

tance between Hi and H∗
i equals w(i)/∥A(i)∥2. Note that x(k) is the projection of

x̂(k−1) on Hi, the convergence property of the greedy randomized Kaczmarz method
given by Theorem 3.1 in [1] tells us that

E∥x(k) − x∗∥22 ≤
[
1− 1

2

(
1

γ
∥A∥2F + 1

)
σ2
min(A)

∥A∥2F

]
E∥x̂(k−1) − x∗∥22. (2.4)

For the second term in (2.3), we have ∥x̂(k) − x(k)∥22 = w(i)2

∥A(i)∥2
2
, then

E∥x̂(k) − x(k)∥22 =

m∑
i=1

pi
w(i)2

∥A(i)∥22
,

where pi = |r̃(i)k |2/ ∥r̃k∥22 and

r̃ik =

b(i) −A(i)x(k), i ∈ Uk;

0, otherwise.

Then, we can obtain

E∥x̂(k) − x(k)∥22

=
∑
i∈Uk

|b(i) −A(i)x(k)|2∑
i∈Uk

|b(i) −A(i)x(k)|2
w(i)2

∥A(i)∥22

≤ ∥A∥2F
∥b−Ax(k)∥22

· 1∑
i∈Uk

∥A(i)∥22
·
∑
i∈Uk

|b(i) −A(i)x(k)|2

∥A(i)∥22
w(i)2

≤ ∥A∥2F
∥b−Ax(k)∥22

· 1

min
1≤i≤m

∥A(i)∥22
· max
1≤i≤m

|b(i) −A(i)x(k)|2

∥A(i)∥22

∑
i∈Uk

w(i)2

≤ ∥A∥2F
(∥A∥2F − γ)2

· ∥w∥22 =
1(

∥A∥F − γ
∥A∥F

)2 · ∥w∥22. (2.5)

The first inequality follows by the fact that

|b(i) −A(i)x(k)|2 ≥ ϵk∥b−Ax(k)∥22∥A(i)∥22, ∀i ∈ Uk

and ϵk ≥ 1
∥A∥2

F
. The third inequality follows by the fact that min

1≤i≤m
∥A(i)∥22 =

∥A∥2F − γ.
Combining the equality (2.3) and the inequalities (2.4) and (2.5), the result in

Theorem 2.1 can be obtained.

Remark 2.1. For the noisy systems, the convergence factor of the greedy random-
ized Kaczmarz algorithm is smaller than that of randomized Kaczmarz algorithm
in [10] since 1

2

(
1
γ ∥A∥2F + 1

)
> 1 and 1− 1

2

(
1
γ ∥A∥2F + 1

)
σ2
min(A)

∥A∥2
F

< 1− σ2
min(A)

∥A∥2
F

. At
the same time, the additive noise term ∥w∥22/∥A∥2F of Theorem 7 in [16] is improved
to ∥w∥22/

(
∥A∥F − γ

∥A∥F

)2
.
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3. The greedy randomized extended Kaczmarz al-
gorithm for noisy linear systems

The result in Theorem 2.1 indicates that the greedy randomized Kaczmarz method
is effective for the noisy linear systems whose noise is negligible. In this section, we
introduce a randomized approximate orthogonal projection to reduce the influence
of the noisy term as in [16], and propose the greedy randomized extended Kaczmarz
algorithm, see Algorithm 2. We prove that the solution of the proposed algorithm
converges in expectation to the minimum ℓ2− norm solution of the given linear
system of equations.

Let R(A) be the column space of A, and R(A)⊥ be the orthogonal complement
of R(A). For given b ∈ Rm, denote bR(A) as the projection of b onto R(A), we
can uniquely write b = bR(A) + bR(A)⊥ .

The proposed algorithm consists of two main parts. The first part includes Steps
7 and 8, which maintain an approximation to bR(A) by b − z(k), it can efficiently
reduce the norm of the “noise” part of b. The second part (including Steps 3-6 and
9), applies the greedy randomized Kaczmarz algorithm to the system Ax = b−z(k).
Since b − z(k) converges to bR(A), x(k) will converge to the minimum Euclidean
norm solution of Ax = bR(A), which equals to x∗ = A†y.

To illustrate the convergence property of the greedy randomized extended Kacz-
marz method, we establish and demonstrate the following theorem.

Theorem 3.1. Assume that the system Ax = y has a solution for some y ∈ Rm,
denoted by x∗ = A†y. Let x(T ) denote the T th iterate of the greedy randomized
extended Kaczmarz algorithm applied to the linear system Ax = y+w for any fixed
w ∈ Rm, then the iteration sequence {x(T )}∞T=0 converges to x∗ in expectation:

E
∥∥∥x(T ) − x∗

∥∥∥2
2

≤
(
1− 1

κ2
F(A)

)⌊T/2⌋
1 +

2(
1− γ

∥A∥2
F

)2 (
1
γ ∥A∥2F + 1

)κ2(A)

 ∥x∗∥22 , (3.1)

where γ = max
1≤i≤m

m∑
j=1
j ̸=i

∥A(j)∥22.

In the proposed algorithm, we firstly use a randomized orthogonal projection to
reduce the norm of the noise as in steps 7 and 8, where b−z(k) is an approximation
of bR(A). As in [16], Zouzias and Freris demonstrated the following lemma.

Lemma 3.1. Let A ∈ Rm×n and b ∈ Rm. For any integer k > 0, after k iterations
of Algorithm 1 it holds that

E∥z(k) − bR(A)⊥∥22 ≤
(
1− 1

κ2
F(A)

)k

∥bR(A)∥22.

Bai and Wu in [1] proved that the estimate of greedy randomized Kaczmarz
method converges to the unique least-norm solution of the noiseless linear system.
For noisy linear systems, we can also prove that the estimate of greedy randomized
Kaczmarz algorithm is within a fixed distance from the solution, and the distance
is proportional to the norm of the noise vector w as in [10].
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Algorithm 2 Greedy Randomized Extended Kaczmarz(GREK) Algorithm
Input: A ∈ Rm×n,b ∈ Rm, ℓ
Output: x(ℓ)

1: Initialize x(0) = 0, z(0) = b
2: for k = 0, 1, 2, ..., ℓ− 1 do
3: Computer

ϵk=
1

2

 1∥∥b−z(k)−Ax(k)
∥∥2
2

max
1≤ik≤m


∣∣∣b(ik)−z

(k)
ik

−A(ik)x(k)
∣∣∣2∥∥A(ik)

∥∥2
2


+

1

2∥A∥2F

4: Determine the index set of positive integers Uk :{
ik

∣∣∣∣|b(ik) − z
(k)
ik

−A(ik)x(k)|2 ≥ ϵk

∥∥∥b− z(k) −Ax(k)
∥∥∥2
2

∥∥∥A(ik)
∥∥∥2
2

}
(3.2)

5: Computer the ith entry r̃
(i)
k of the vector r̃k according to

r̃ik =

b(i) − z
(k)
i −A(i)x(k), i ∈ Uk;

0, otherwise.

6: Select ik ∈ Uk with probability pik = |r̃(ik)k |2/ ∥r̃k∥22
7: Select jk ∈ [n] with probability qjk =

∥∥A(jk)

∥∥2
2
/∥A∥2F

8: Set
z(k+1) = z(k) −

〈
A(jk), z

(k)
〉∥∥A(jk)

∥∥2
2

A(jk)

9: Set

x(k+1) = x(k) +
b(ik) − z

(k)
ik

−
〈
x(k),A(ik)

〉∥∥A(ik)
∥∥2
2

(A(ik))⊤

10: return

Based on the above Lemma, we are now prepared to prove Theorem 3.1.

Proof of Theorem 3.1. Set α = 1 − 1
κ2
F(A)

, denote E[·] be the full expectation
and Ek[·] be the conditional expectation with respect to the first k iterations of
Algorithm 2, that’s Ek[·] = E[·|i0, j0, i1, j1, · · · , ik−1, jk−1], and from the law of
the iterated expectation, we have E[Ek[·]] = E[·]. Observe that steps 7 and 8 are
independent from steps 3− 6 and 9, so Lemma 3.1 implies for every ℓ ≥ 0, we have

E∥z(ℓ) − bR(A)⊥∥22 ≤ αℓ∥bR(A)∥22 ≤ ∥bR(A)∥22, (3.3)

where α = 1− 1
κ2
F(A)

.

Fix a parameter k∗ = ⌊T/2⌋, after the k∗-th iteration of Algorithm 2, it follows
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from Theorem 2.1 that

E(k∗−1)∥x(k∗) − x∗∥22 ≤ β∥x(k∗−1) − x∗∥22 +
∥bR(A)⊥ − z(k

∗−1)∥22(
∥A∥F − γ

∥A∥F

)2 , (3.4)

where β =
[
1− 1

2

(
1
γ ∥A∥2F + 1

)
σ2
min(A)

∥A∥2
F

]
. Indeed the greedy randomized Kaczmarz

algorithm (Step 3, 4, 5, 6 and 9) is execute with input (A,b− z(k
∗−1)) and current

estimate vector x(k∗−1). Set y = bR(A) and w = bR(A)⊥ − z(k
∗−1) in Theorem 2.1.

Then, taking the full expectation on both sides of the inequality (3.4), and using
the recursive relation iteratively, it holds that

E∥x(k∗) − x∗∥22

≤ βE∥x(k∗−1) − x∗∥22 +
E∥bR(A)⊥ − z(k

∗−1)∥22(
∥A∥F − γ

∥A∥F

)2
≤ βE∥x(k∗−1) − x∗∥22 +

∥bR(A)∥22(
∥A∥F − γ

∥A∥F

)2 (by Ineq.(3.3))

≤ · · · ≤ βk∗
∥x(0) − x∗∥22 +

k∗−2∑
ℓ=0

βℓ ∥bR(A)∥22(
∥A∥F − γ

∥A∥F

)2
≤ ∥x∗∥22 +

k∗−2∑
ℓ=0

βℓ ∥bR(A)∥22(
∥A∥F − γ

∥A∥F

)2 ,
since β < 1 and x(0) = 0. Simplifying the right hand side using the fact that

k∗−2∑
ℓ=0

βℓ =
1

1− β
=

2∥A∥2F(
1
γ ∥A∥2F + 1

)
σ2
min(A)

,

it follows

E∥x(k∗) − x∗∥22 ≤ ∥x∗∥22 +
2∥bR(A)∥22∥A∥2F(

∥A∥F − γ
∥A∥F

)2 (
1
γ ∥A∥2F + 1

)
σ2
min(A)

.

Moreover, observe that for every ℓ ≥ 0, we have

E∥z(ℓ+k∗) − bR(A)⊥∥22 ≤ αℓ+k∗
∥bR(A)∥22 ≤ αk∗

∥bR(A)∥22.

Now for any k > 0

E∥x(k∗+k) − x∗∥22

≤ βE∥x(k∗+k−1) − x∗∥22 +
E∥bR(A)⊥ − z(k

∗+k−1)∥22(
∥A∥F − γ

∥A∥F

)2
≤ · · · ≤ βkE∥x(k∗) − x∗∥22 +

k−1∑
ℓ=0

β(k−1)−ℓ ·
E∥bR(A)⊥ − z(ℓ+k∗)∥22(

∥A∥F − γ
∥A∥F

)2
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≤ βkE∥x(k∗) − x∗∥22 +
αk∗∥bR(A)∥22(
∥A∥F − γ

∥A∥F

)2 k−1∑
ℓ=0

βℓ

≤ βk

∥x∗∥22 +
2∥bR(A)∥22(

1− γ
∥A∥2

F

)2 (
1
γ ∥A∥2F + 1

)
σ2
min(A)


+

2αk∗∥bR(A)∥22(
∥1− γ

∥A∥2
F

)2 (
1
γ ∥A∥2F + 1

)
σ2
min(A)

= βk∥x∗∥22 + (βk + αk∗
)

2∥bR(A)∥22(
1− γ

∥A∥2
F

)2 (
1
γ ∥A∥2F + 1

)
σ2
min(A)

≤ βk∥x∗∥22 + (βk + αk∗
)

2(
1− γ

∥A∥2
F

)2 (
1
γ ∥A∥2F + 1

)κ2(A)∥x∗∥22,

the last inequality is due to the fact that ∥bR(A)∥2 ≤ σmax∥x∗∥2 and κ2(A) =
σ2
max(A)/σ2

min(A). Now, consider two cases, if T is even, set k = k∗, otherwise set
k = k∗ + 1, then βk ≤ βk∗ and

E∥x(k∗+k) − x∗∥22 ≤ αk∗

1 +
2(

1− γ
∥A∥2

F

)2 (
1
γ ∥A∥2F + 1

)κ2(A)

 ∥x∗∥22, (3.5)

since β < α.

Remark 3.1. The greedy randomized extended Kaczmarz algorithm converges
faster than the randomized extended Kaczmarz algorithm because it adopts a prob-
ability criterion that is essentially determined by the largest entry of the residual
with respect to the current iterate. In fact, the convergence factor of the proposed
algorithm is smaller than that of randomized extended Kaczmarz algorithm in [16]
since

1 +
2(

1− γ
∥A∥2

F

)2 (
1
γ ∥A∥2F + 1

)κ2(A) < 1 + 2κ2(A),

and also we have magnified the factorβk + (βk + αk∗
) 2(

1− γ

∥A∥2
F

)2

( 1
γ ∥A∥2

F+1)
κ2(A)

 ∥x∗∥22 by βk ≤ βk∗ ≤ αk∗ in in-

equality (3.5).
Moreover, the most time-consuming step in Algorithm 2 is the calculating of the

residual vector rk, but we observe that

rk+1 = b− z(k+1) −Ax(k+1)

= b−z(k)+

〈
A(jk), z

(k)
〉∥∥A(jk)

∥∥2
2

A(jk)−Ax(k)−
b(ik)−z

(k)
ik

−
〈
x(k),A(ik)

〉∥∥A(ik)
∥∥2
2

A(A(ik))⊤

= rk +

〈
A(jk), z

(k)
〉∥∥A(jk)

∥∥2
2

A(jk) −
b(ik) − z

(k)
ik

−
〈
x(k),A(ik)

〉∥∥A(ik)
∥∥2
2

B(ik) (3.6)
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where B = AAT .
The recursive formula given in (3.6) indicate that the algorithm could be faster

if we have B = AAT at the beginning. Meanwhile, the second and the third part
of (3.6) are exactly the amount to be calculated in step 8 and step 9 of the greedy
randomized extended Kaczmarz algorithm.

4. Experimental results
In this section, we illustrate the performance of the proposed greedy random-
ized extended Kaczmarz(GREK) algorithm versus the randomized extended Kacz-
marz(REK) algorithm and the greedy randomized Kaczmarz(GRK) algorithm in
there experiments. The results indicate that the former is numerically better than
the latter in terms of the number of iteration steps(IT), the computing time in
seconds(CPU) and the relative standard error(RSE). The results in the experiment
are the average of 50 repeated runs of the correspongding method.

In the experiment, we set x(0) = 0 and z(0) = b, the RSE is defined as follow

RSE =
∥x(k) − x∗∥22

∥x∗∥22

and the iteration terminates when the RSE less than 10−5. The coefficient matrix
A ∈ Rm×n and the solution vector x∗ ∈ Rn are randomly generated. The vector
y ∈ Rm is generated by y = Ax∗. Then we set w = noiselev · ∥y∥2

∥e∥2
· e, where

the level of the noise is in [0, 1] and the vector e is randomly generated. Thus
b = Ax∗+w. We apply the greedy randomized extended Kaczmarz algorithm and
the randomized extended Kaczmarz algorithm to the linear system Ax = b.

Firstly, we implement the GREK and REK for overdetermined and underdeter-
mined systems without noise. Table 1, Table 2 and Table 3 show the results for the
underdetermined systems, Table 4, Table 5 and Table 6 shows the results for the
overdetermined systems. In both cases, the results demonstrate that the GREK
method outperforms the REK method in terms of both the numbers of iteration
steps and CPU times.

Figure 1 shows the relative standard errors for GREK and REK with m =
1000, 2000, 3000 and n = 150. Figure 2 shows the relative standard errors for
GREK and REK with m = 400 and n = 3000, 4000, 5000. Note that the GREK
method performs consistently well over all trials, and the convergence rate of the
GREK method is much faster than the REK method.

Then, in order to further verify the effectiveness of the GREK method, we com-
pare the REK, GRK and the proposed algorithm for noisy linear systems, including
overdetermined systems and underdetermined systems. Figure 3 shows the results
for GREK, GRK and REK with noisy linear systems. The results indicate that the
convergence rate of the GREK method is much faster than the REK method, and
the GRK method fails with the increase of the noise level.

We also implement the GREK and REK for some practical application matri-
ces. The coefficient matrices comes from https://sparse.tamu.edu/. The variables
y,x∗,b,w are generated as before. The results given in Table 7 still show that the
proposed GREK algorithm is effective.
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Table 1. IT of GREK and REK for matrices A with m = 50 and different n

n 1000 2000 3000 4000 5000

REK IT 683 642 714 592 602
CPU 0.238 0.234 0.268 0.23 0.244

GREK IT 582 542 607 516 504
CPU 0.216 0.212 0.24 0.207 0.208

Table 2. IT of GREK and REK for matrices A with m = 1000 and different n

n 1000 2000 3000 4000 5000

REK IT 1671 1517 1458 1450 1469
CPU 0.574 0.554 0.554 0.567 0.588

GREK IT 1375 1303 1262 1263 1311
CPU 0.514 0.51 0.519 0.537 0.582

Table 3. IT of GREK and REK for matrices A with m = 1000 and different n

n 1000 2000 3000 4000 5000

REK IT 2906 2479 2311 2209 2146
CPU 1.034 0.91 0.87 0.853 0.86

GREK IT 2317 2065 1965 1861 1845
CPU 0.909 0.837 0.847 0.848 0.851

Table 4. IT of GREK and REK for matrices A with n = 50 and different m

m 1000 2000 3000 4000 5000

REK IT 731 681 677 675 647
CPU 0.201 0.189 0.19 0.201 0.228

GREK IT 467 423 412 399 383
CPU 0.181 0.172 0.178 0.184 0.182

Table 5. IT of GREK and REK for matrices A with n = 100 and different m

m 1000 2000 3000 4000 5000

REK IT 1627 1441 1404 1366 1370
CPU 0.554 0.511 0.507 0.505 0.54

GREK IT 1196 986 967 917 881
CPU 0.462 0.414 0.431 0.432 0.448
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Table 6. IT of GREK and REK for matrices A with n = 150 and different m

m 1000 2000 3000 4000 5000

REK IT 2740 2281 2162 2164 2092
CPU 0.959 0.82 0.799 0.828 0.832

GREK IT 2024 1626 1486 1455 1416
CPU 0.815 0.711 0.699 0.732 0.748

(a) (b) (c)

Figure 1. RSE versus IT for GREK and REK with m = 1000, 2000, 3000 and n = 150.

(a) (b) (c)

Figure 2. RSE versus IT for GREK and REK with m = 400 and n = 3000, 4000, 5000.

Table 7. IT of GREK and REK for practical application matrices A

matrix A m ∗ n cond(A) REK(IT(CPU)) GREK(IT(CPU))

Stranke94 10*10 5.17 45330(11.916) 21119(5.908)

divorce 50*9 19.39 3660(1.005) 2391(0.704)

ash291 219*85 3.02 2236(0.776) 1570(0.63)

ash958 958*292 3.2 7035(2.629) 4956(2.012)

ash608 608*188 3.37 4537(1.587) 3170(1.516)

cari 400*1200 3.31 5747(2.14) 4098(1.639)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. RSE versus IT for GREK, GRK and REK with noisy linear systems with noisy level 0.2 (Row
1), 0.3 (Row 2), 0.4 (Row 3) and 0.5 (Row 4). Left: The results for overdetermined systems. Right: The
results for underdetermined systems.
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5. Conclusions
In this paper, we investigate the problem of solving the noisy linear system of
equations. We first prove that the estimate of the greedy randomized Kaczmarz
algorithm for noisy linear system is within a fixed distance from the solution, and
the distance is proportional to the norm of the noise vector. Then we propose a new
greedy randomized extended Kaczmarz algorithm by introducing an effective greedy
criterion for selecting the working rows and a randomized orthogonal projection for
reducing the influence of the noise term. Theoretical results demonstrate that the
convergence rate of the proposed greedy randomized Kaczmarz algorithm is faster
than the randomized extended Kaczmarz algorithm. Numerical experiments also
illustrate the superiority of the proposed algorithm.
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