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UPPER SEMICONTINUITY OF UNIFORM
RANDOM ATTRACTORS FOR DELAY
PARABOLIC EQUATION*

Ting Gong', Zhe Pu'f and Dingshi Li'

Abstract This paper concentrates on the upper semicontinuity of uniform
random attractors for a class of delay parabolic equations with additive noise
and nonautonomous external force terms. Firstly, through the uniform es-
timation of the solution, it is proved that the solution of the equation has
a closed uniform pullback absorbing set with respect to the symbolic space.
Then, by Arzela-Ascoli theorem, we prove uniformly pullback compactness of
solutions as well as the existence and uniqueness of uniform random attractors.
Finally, we prove the upper semicontinuity of the uniform random attractors
when time delay approaches to zero.
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1. Introduction

In this paper, we investigate the asymptotic behavior of solutions to the following
delay parabolic partial differential equations defined on the bounded smooth domain
O in R™:

du — Audt = (F (z,u (t,z)) + f (z,u(t — p,x)) + g (¢, z))dt + h (z) dw,
z€0, t>0, (1.1)
u(t,z) =0, €90,

where p € (0,1] is small positive parameter, F is a superlinear source term, f
is a nonlinear function that satisfies certain conditions, g is a deterministic time-
dependent forcing, h is the shape of noise, and w is a two-sided real-valued Wiener
processes on a complete probability space (92, F, P).

Attractors play an important role in the dynamical systems. As an extension
of the global attractor for autonomous dynamical systems, the concept of pull-
back attractor for random dynamical systems was introduced in [6-8]. Since then,
there is lots of literature on dynamics for stochastic partial differential equations,
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see [1-3,10,14]. For non-autonomous dynamical systems, the most representative
attractors are pullback attractors and uniform attractors. To study the dynam-
ical behavior of stochastic equations with deterministic non-autonomous terms,
Wang [15] introduced cocycle system, i.e., two driving dynamical systems over two
parameter spaces €27 and )5 corresponding to non-autonomous terms and random
terms, respectively. He also studied the existence of cocycle attractors of stochas-
tic differential equations with deterministic non-autonomous terms. After that,
Cui and Langa [5] studied the uniform random attractors of stochastic differen-
tial equations with deterministic non-autonomous terms. The existence of pullback
random attractors of non-autonomous stochastic equations without delay has been
investigated by many authors, see, e.g., [11,13,16,19] in the framework established
in [15] and [4,9,20] in the framework established in [5]. In the delay case, there
are only a few papers available in the literature dealing with the cocycle attractors,
see [12,17,18]. However, it seems that there are very few works in the literature deal-
ing with uniform random attractors of non-autonomous stochastic delay equations.
In this work, we will address this problem.

As p — 0, the equation (1.1) reduces to a non-delay stochastic equation and it
is natural to ask the family of random dynamical systems ¢” generated by (1.1) is
close to limiting random dynamical system ¢° generated by the limiting equation?
What is the relation between ¢” and ¢°? We prove the upper semicontinuity of the
uniform random attractors of ¢” when time delay approaches to zero.

The outline of this paper is as follows. In Section 2, we recall the basic concept
of uniform random attractors for nonautonomous random dynamical systems. In
Section 3, we concentrate on studying continuous non-autonomous random dynam-
ical system in C ([—p,0], L? (O)) generated by (1.1). In Section 4, we are devoted
to the study of uniform estimates of solutions. In Section 5, the existence of uni-
form random attractors is obtained. Finally, the upper semicontinuity of uniform
random attractors when time delay approaches to zero was established in Sections
6.

We use ||| and (-, -) to denote the norm and inner product of L?(O), respectively,
|||y to denote the norm of LP(0), and X, to denote C ([—p, 0], L* (O)) with norm
[¢ll, = sup [|¢(s)| forpeC ([=p,0],L*(0)). The letters cand ¢; (i = 1,2,...)

s€[—p,0
represent [geﬁle]ric positive constants.

2. Preliminaries

In this section, we will recall the basic concept of uniform random attractors for
nonautonomous stochastic dynamical systems from [5].

Let (X, d) be a Polish metric space and B(X) be the Borel g-algebra of X. Then
we study the nonautonomous random dynamical systems ¢ on X.

Let (¥, ds) be a compact Polish metric space which is invariant in the sense that

0,X =%, VteR,

where 6 is a smooth translation operator such that 6y is the identity on 3, 054, =
0500, for all s;,t € R and 0 : R x ¥ — ¥ is continuous. We denote by (2, F, P) a
probability space endowed also with a flow {¥;},. satisfying that ¢ : R x Q@ — Q
is (B(X) x F, F) -measurable, 1y is the identity on Q, J54+ = V509 for all s, € R
and U;P = P for all t € R.
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Definition 2.1. A mapping ¢ (t,w, g, z): RTxQxXx X — X is called a continuous
nonautonomous random dynamical system(NRDS) on X with base flows {6;}, g
and {0}, cp, if

1) ¢ is(B(R1) x F x B(X) x B(X), B(X))-measurable;
2) ¢(0,w,g,-) is the identity on X for each g € ¥ and w € ;

3) it holds the cocycle property that
d(t+s,w,9,7) = ¢ (t,95w,0,9) 0 p(s,w,g,2), Vt,scRT geX ze X,we.
4) ¢ (t,w,g,-) is continuous for each t € RT,w € Q and g € 3.

Definition 2.2. A random bounded set {B (w)},,cq of X is called tempered with
respect to {U¢},cp if for P—a.e.w € Q

lim e~?'d (B (9_;w)) =0,

t—o0

where d (B) = sup ||z||x and 3 is a positive constant.
z€eB

Let D be a collection of random subsets of X satisfying D is neighborhood-
closed, i.e. for each D € D there exits an € > 0 such that the closed e-neighborhood
N:(D) belongs to D, and D is inclusion-closed, i.e., if D € D then each random set
smaller than D belongs to D.

Definition 2.3. A random set D in X is said to be uniformly D-(pullback) ab-
sorbing under the NRDS ¢ if for each w € Q and B € D there exists a time
T =T (w,B) > 0 such that

(9w, %, B(W_w)) C Dw), Vt>T.

Definition 2.4. A random set D in X is said to be uniformly D-(pullback) at-
tracting under the NRDS ¢ if for each B € D,

lim dist ((b (t719,tw, >, B (1944;.))) , D (w)) =0, Ywe

t——+oo

Definition 2.5. A NRDS is said to be jointly continuous in ¥ and X if for each
t € RT and w € §, the mapping ¢(¢,w, -, -) is continuous.

Theorem 2.1 ( [5]). Suppose that ¢ is a jointly continuous NRDS in both ¥ and
X, and Z is any a dense subset of . If ¢ has a compact uniformly D-attracting
set K and a closed uniformly D-absorbing set B € D, then it has a unique uniform
random attractor A € D given by

Aw)=W (w,%,B) =W (w,E,B), YweN.
Moreover, the uniform attractor A is negatively semi-invariant

A(w) C ¢(t,w, X, A(w)) for each t >0, w € Q.
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3. Existence of a continuous NRDS

In this section, we show that the stochastic delay equations (1.1) generates a jointly
continuous NRDS. Suppose that the space L? (R, H), where H = L% (O), consists

loc
of all function g which are 2-power integrable in Bochner sense, i.e.,

to
/ llg(s)||*ds < oo for any [t1,ts] C R.

ty

The space L} (R, H) is endowed with the two-power mean convergence topology

on any bounded segment of R, i.e., g, — ¢ in L} (R, H), namely

ta
/ lgn(s) — g(s)||°ds — 0 for any bounded [t1,t2] C R. (3.1)

t1

Let L (R, H) denote the space L}, (R, H) endowed with the local weak conver-

loc

gence topology, i.e., o, € o in L2“(R, H) namely

loc
to
/ (v(s),0n(8)—a(s))ds — 0 for any bounded [t1,t2] C R and ve L} (R, H*),
t1
where H* is the dual space of H. Now we introduce two useful lemmas.

Definition 3.1 ( [5]). A function g € L? (R, H) is called translation compact in
L2V (R, H) if its hull # (¢) = {6,9 (-) : t € R} is compact in L"* (R, H), where

loc loc
etg () =g ( + t) , VteER, g€ Ll20(: (Ra H) : (32)
Lemma 3.1 ( [5]). Suppose g € L2, (R, H) be translation compact in Ly, (R, H),
then
1) the translation operator 0y is continuous on H(g) in let;ff (R,H);

2) the hull of g is translation invariant H(g) = 6;H(g), Vt € R;

3) any function o € H(g) is translation compact in L" (R, H) and H(o) C
H(g);

4) equivalently, g is translation bounded in L? (R, H), i.e.,

loc

n(g):= sup/ llg (s)||§1 ds < oo; (3.3)
TER 7—1

5) for any o € H(g), n(o) < nlg)-
Lemma 3.2 ( [5]). Let g € L2 (R, H) be translation compact in L>" (R, H). Then

loc loc

0
sup / o ()] ds < 19 ya s, (3.4)
c€H(g) J —0 1-e

where n(g) is the constant given by (3.3).

Let ¥ = H (go), the hull of a given translation bounded function go € L? . (R, H),
endowed with the local weak convergence topology and a group of translation op-
erator {0;},.p defined by (3.2) acting on X, which is Polish. The group {6;},p is
a base flow on X.
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Consider the following equation:

du—Audt = F(z,u(t,z))dt+ f(z,u(t—p,x))dt+g(t, z)dt +h(z)dw, x€ O, t>0,

endowed with the boundary condition (3
u(t,z) =0, x €90, t>0, (3.6)

and the initial condition
uo(s,z) =u(s,x), x€0, séel[—p,0], (3.7)

where p € (0,1], g € ¥, h € L?72(0) N H}(O) N W2P(0) and w is a two-sided
real-valued Wiener process on a probability space (2, F, P). The nonlinear term F
and f satisfy the follwing standard conditions:

(Hy) F: O xR~ R is a continuous function, and for all z € O, s € R,

F(x,s)s < —ays|” + B1(x),
|F(2,8)] < az|s|P~! + Ba(z),

%F(x, s) < ag, (3.10)
)] < palo) )

where p > 2, a;(i = 1,2, 3) is positive constant, §;(i = 1,2, 3) is nonnegative func-
2p—2
tion on O satisfying 8y € L™ 7 (O) and S, B3 € L*(0O).
(H2) f: O xR+ Ris continuous, and for all z € O, s1,s2 € R,

If (x,81) — f(x,82)] < Cfls1 — s2|, (3.12)

|f (@, s0)* < L [s1* + Im ()], (3.13)

where Cy and Ly are positive constants, and n; € L?(0).
By using Poincare’s inequality: there exists a positive constant A\; such that

[Vl > Mlul?, Vu e Hy(O).
Suppose that A; > 4Ly, choosing a positive constant m such that

A\ 4L§ ,
- — 4+ —e™ . 14
m— -+ )\1 e™ <0 (3.14)

Let Q@ = {w e C(R,R):w(0) =0}, F be the Borel o-algebra included by the
compact-open topololgy of €, and {¥;},.p be the measure-preserving transforma-
tions on (Q, F, P) as defined by

Yw() =w(-+1t) —w(t), Ywe, teR.

Considering the one-dimensional Ornstein-Uhlenbeck equation

dz(Vw) + z(Yw)dt = dw. (3.15)
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It is easy to verify that a sulution to (3.15) is given by

0
z(w) = —/ w(r)dr, Ywe Q.
Meanwhile, there exists a {1}, p-invariant subset Q C Q of full measure such that
z (Yw) is continuous in ¢ for every w € €2 and the random variable |z (-)| is tempered.
For convenience, () and © will not be distinguished.

Let v(t) = u(t) — hz(%w), where u is a solution of system (3.5)-(3.7), then v
satisfies

d
dit’ — Av = F(a,u(t, )+ f(z,u(t— p, ) + g(t, x) + 2 (9w) (Ah+h), & € O, >0,
(3.16)
with boundary condition
v(t,z) =0, x€090,t>0, (3.17)

and initial condition
vo(s,z) = u(s,z) — hz (Vsw), z€O, se[—p,0]. (3.18)
By the Galerkin method, for w € Q and for all v9 € X,, (3.16)-(3.18) has a

unique solution v :

v (-,w, g,v0) € C ([—p, 0], L*(0)) N L, ((0,00), Hy (©)) N L},

loc loc

((0,00), LP(0)) -
Moreover, v is continuous in vy and g, and v (-, -, g, vo) is (F, B (X,))-measurable
in w.
Foreacht >0, we Q, g€ X, ug € X, let
¢(t7wvga UO) = Ut ('7&}79,”0) =Vt ('7wvga U()) + h(.’IJ)Z (19754*'(“)) 5

where u; (s,w,g,u9) = u(t+ s,w,g,ug), s € [—p,0]. Then ¢ (t,w,g,ug) is the
solution of (3.5)-(3.7) at time ¢ with initial data ug. It is easy to check that ¢
satisfies conditions in Definition 2.1, and hence ¢ is a jointly continuous NRDS in
X, and X.

For studying the tempered uniform attractors, take the universe of tempered
random sets in X, as the attraction universe D, i.e.,

D={D : D is a bounded random set in X, satisfing tlim emzmt |1D (ﬁ_tw)Hi = 0}.
— 00

The universe D is both inclusion-closed and neighborhood-closed.

4. Uniform estimates of solutions

In this section, we prove uniform estimates of solutions of (3.5)-(3.7).

Lemma 4.1. Assume that assumptions (Hy), (Hz) and (3.14) hold, then for every
D € D,w € Q, there exists T = T (D,w) > 0 such that for allt > T, g € ¥ and
vg € D (J_w), the solution u of (3.5)-(3.7) satisfies

t
[Jue (-, 9 —tw, 09, UO)Hi + / e [V (r, 91w, 0_g, UO)”ZdT
0
t (4.1)
+ / em(T—t) ||U (Ta ﬁ—twa e—tga U’O)”I[),P d?” S RO ((U, p) )
0
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where Ry (w, p) is determined by

o 77(90) 0 mr p 0 mr 2
Ry (w, p) —M07€+M0 ez (Ypw)|"dr + My ez (Vr_pw)|"dr

= .
+ My sup |z (Wsw)|* + Mo, (4.2)
—p<s<0

where My is a positive constant independent of w, p, X and D.

Proof. Taking the inner product of (3.16) with v in L? (O), we find that

3l = 190 = [ Putaode+ [ 1ot = p.a)ode "
+ /O g(t, z)vdx + /O z (hw) (Ah(z) + h(x))vdx.
By assumption (3.8)(3.9) and Young’s inequality, we obtain
/ F(z,u(t))v(t)de = / F(x,u(t))u(t)dr — 2z (ﬂtw)/ F(z,u(t))h(z)dx
o Oa i (4.4)
O A Y P N s A E O

By (3.13) and Young’s inequality, we have

A 1
[ faaate = poedo < S+ 5 [ (Lt = 9P + (o)) do
@) 1JO
212 A
< St = )P+ @I +ea |z ey} P + 2

(4.5)
For the last two terms on the right-hand side of (4.3), we get

/ g(t, z)vdx +/ z (Vw) (Ah(x) + h(x))vdx
© © (4.6)

<T@+ g + 16 I Vol+4IVAI? |2 @)+ 1B 2 (00)
By (4.3)-(4.6) and Poincare’s inequality, we have
2
%HU O + IVol* + aa [lu (07 < - %H’U O + 4)\Llf||v (t =) +esllg ()11
+es (|z (Ow)[” + |2 (D pw)|* + 1) R
Multiply (4.7) by €™, where m satisfies (3.14),

d A
G IO + T+ e Ju Ol ™ (- 3 ) o))

¢ 4Lfc 2 2 p 2 (48)
<em [ o= o)+ esllg (O +es (2 @)l + 12 (B + 1) ).
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Replacing w and g with ¢¥_;w and 6_.;g, and then integrating over (0,¢ + s) for any
fixed s € [—p,0] with ¢ > p, we obtain

t+s
em(t+s) lv(t+s,0_tw,0_g, vo)”2 + / ™|V (1,9 4w, 0 g, UO)”er
0
t+s
+a / e u (r, 910, 019, uo)||%, dr
0

2 A1 EL . 2
<woll” + [ m — — e |v (r, 94w, 0_1g,v0)||"dr
0

4
4L? t+s 9 t+s )
—1—)\—/ e™ v (r — p,d_w, 0_¢g,v0)|| dr—i—c;;/ e™ g (r —)||"dr
1 Jo 0
t+s 5
s / e (|2 B + |2 (9 pg) P 4 1) (4.9)
0

We now estimate the third term on the right-hand side of (4.9)

ALZ i )
A emTHU(T _p779—tw70—tg;7]0)|| dr
1
o Ot+s a2 (4.10)
<t e |y (1,9 _yw, 0y, v0) || Pdr + —L €™ ||vo|?.
-\ 0 ) MmA1 P

Then, it follows from (3.14) and (4.9)-(4.10) that
t+s
o (¢ + 5,904,019, v0)|* + / ™[V (1,9 -, 09, vo) || Pdr
0
t+s
+ aq / em(r_t_S) ||’LL (T7 ﬁftwa 97t97 UO> ||ip dr
0

4L2em(p7tfs) t+s
<ol e [ e g = o) Par
t+s t+s

+ 04/ et | 2 (9, _yw)|Pdr + 04/ e (r—t=s) (|z (ﬁr_p_tw)|2 + 1) dr.

0 0

(4.11)

Since s € [—p, 0], we have for ¢ > p,
t+s
HU (t + s, 19_,5(.4), o—tg7 UO)||2 + / e’m(’l”*t) ||VU (T7 ﬂ—tw7 9—tga UO) ||2d7‘
0

t+s
bar [ e a0 0-1g. ) dr
0

4L2em(2p7t) t

f 2 m m(r—t) 2
< _ P —t)||*d
<o ol e [ g 0

t t

+ C4em”/ ™0 2 (9, _yw)[Pdr + C4€mp/ em(r=t) (|z Oy prw)|* + 1) dr.
0 0

(4.12)

Note that

v(t+ 8,9 _w,0_1g,v0) = u(t + 8,9 4w, 0_1g,up) — z(Vsw)h () . (4.13)
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So, by (4.12)-(4.13), we obtain
t+s
o (¢t + 5,910,019, uo) |* + / e Vu (r, 0w, 019, uo) || *dr
0

t+s
+ / em(r—t) ||u (7“, V_tw,0_4g, UO) lep dr
; (4.14)

t
<ezet (||uo||?,+ sup |z<ﬂsw>|2)+c5 | el oar
< 0 0

—p<s<

t
+ s / ™ (|2 (0, w) [P + |2 (9y— psw) ) dr + es]2 (Dsw)|? + 5.
0

Since ug € D (¥_w), D € D, the tempered condition of D and continuity of z (J;w),
there exists a T'=T (w, D) > 1 such that

t+s
||U (t + s, 19_,5(.1.), o—tg7 Uo) ||2 =+ / em(’l“*t) HVU (T7 ﬂ—twa a—tga uO)HQdT
0

t+s
+ / ™D |l (r, 90, 09, o) |2, dr
0
. . (4.15)
§1—|-C5/ emr||g(r)||2d7"—|—65/ 7|5 (D) [Pl
—t

—t

0
+C5/ emr|z(19r_pw)|2dr+65 sup |z (ow)|® + 5, t>T.
—t —p<s<0

By (3.4), we get that
t+s
||U (t + S, ’19_,5(.«), 0—7597 UO) ”2 + / em(rft) HVU (7‘, 19_15(.(], g—tga UO)”er
0

t+s
+ / em(?“—t) ||u (T,ngtw797tg7u0)‘lzl)/p dr
0 0 0 (4.16)
<eg 190 [ emm )Pl tes [ €Iz (9, ) dr
>C6 1—em 6 o " ’ - o

+cg sup |z(0w)|* +c, t>T.
—p<s<0

The proof of Lemma 4.1 is cmpleted. O
By Lemma 4.1, we next get uniform estimates for v in H{ (O).

Lemma 4.2. Assume that (Hy), (Hz) and (3.14) hold. Then for every D € D,w €
Q, there exists T = T (D,w) > p+ 1 such that for all t > T, g € ¥ and vy €
D (Y_4w), the solution v of (3.16)-(3.18) satisfies

t
V0 (4 5,0 _yw,0_¢g, v0)|? +/ | Av (r,9_yw, O_sg,vo)||>dr < Ry (w, p), (4.17)

t—p
where Ry (w, p) given by

1 (go0) 0 0 2
Ry (w,p) =M 7€+Ml/ emr|z(19rw)|pdr—|—M1/ ez (Vr_pw)|"dr

1
—m
1- —o
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+ M, sup |z (9w)|]> + My, (4.18)
—p<s<0

where My is a positive constant independent of w, p, ¥ and D.

Proof. Taking the inner product of (3.16) with —Aw in L? (O), we derive that

2dtHv ()H2—|—||Av||2 /F x,u(t)) Avdx /f z,u (t—p)) Avdz

—z (ﬁtw)/oAv(Ah (x)+h (x))dx—/o g (t,z) Avdz.
(4.19)

Each term of (4.19) is now estimated. By (3.9)-(3.11) and Young’s inequality, we
have

—/OF(x,u(t))Avdx
:—/ F (z,u(t)) Audw—i—z(ﬁtw)/ F (z,u(t)) Ah(z)dz
o0 (@] (420)
< 118 (@) | 1Vull + asl| V> + |2 (94s0)] /0 (azlul’™" + B () |AN]) da

<1 (V@ + @ + 12 @) +1)

By (3.13) and Young’s inequality, we obtain

— T, U — vax r,Uu — 2 1 ’U2 X
[ f = ave < [ (if @t o) +4|1A|)d o
Lt = o) + > + 2120 ()2

By Young’s inequality, we have

z (hw) /AvAh( )+ h(x dw—/gtw Avdz
o

2 1 2 2
/OHM 2l (0 A (o) @)+ [ (Glao? +2lg o)) do
<180 O + ez (g (D) + 12 @e)?) (422)

y (4.19)-(4.22) and Poincare’s inequality, we get

d

%HWHQHIA’UW
) ) ) (4.23)

<cs (IIVU(t)H + = p)lI” + u @7 + llg (B +|Z(19tw)|p+1)

Now integrating (4.23) from o to t + s with s € [-p,0], 0 € (t+s—1,t+ s) and
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t>p+1, we get

||Vv(t—|—S,w,g,vo)H2
t
<V (0,0, g, w0) |12 + ¢ / I (ry 0, g, wo) | 2dr
t—p—1
‘ , ¢ ) (4.24)
e / lu (r =y, g, uo)|2dr + 3 / (s, g, wo)|[2p dr
t—p—1 t—p—1

t t
oo [ o@Pdrre [ e@ePira,
t—p—1 t—p—1

Replacing w and g with ¥_;w and 6_;g, and then integrate over (t +s—1,¢t+ s)
for any fixed s € [—p, 0] with ¢ > p+ 1, and by (4.13), we obtain

V0 (¢ + 5,91, 09, v0)||*
t t
<ey / IV (r, 9w, 019, uo) || *dr + ¢4 / o (r = p, 90,019, uo) || *dr
t

—p—1 t—p—1
t 5 t
te / lg (r — £)|%dr + cs / e (190,019, o) | dr
t t—p—1

—p—1

¢
+ey / |2 (9r—w)|Pdr + ca. (4.25)
t—p—1
By (4.1), there exists T =T (w, D) > p+ 1 such that for all t > T

t
e_m(p+1) / (Hvu (T7 ﬁ,tw, 971597 UQ> ||2 + ||u (T? 19715&), 9*1597 ’LLQ) HIIJ/P) dr
t

—p—1
t
S/ ™|V (r, 9w, 0—rg, uo) | + [|u (r, 0 —sw, 0_1g,u0) ||}, )dr
t—p—1
t
< /em“*f) IV (7,9 4w, 019, uo) || >+ ||u (r, 9 _ew, 0_1g, uo)||%, )dr < Ro (w, p) .
0

(4.26)
By (4.15), we find that

t

t
/ e (r = pu 90, 0_2g, o) | Pdr < / et - 910,01, uo)| 2 dr
t

—p—1 t—p—1
<(p+1)  sup up (0w, 019, u0)|;
t—p—1<r<t
0 0
<ese 00 [ g (1) P et [ e (0,0
0
+ cgemetl) / ez (Vp_pw)dr +¢5 sup |z (9,w)|° + s (4.27)
—0o0 —p<s<0
Moreover,
t , ¢
[ gt-oPars [ @ wlar
et t=pt (4.28)

0 0
<cge™Pth) / €™ ||g (r)||Pdr + cge™ Pt / ez (Vpw)|Pdr.

— 00
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Finally, by Lemma 4.1 and (4.25)-(4.28), we get that for all s € [-p,0] and ¢t > T,
va (t + s, 19—75‘”7 e—tga UO) H2

0
§C76m(’)+1)71n_(zo_)m +C7em(p+1)/ ™|z (Ypw) [Pdr

(4.29)

0
+ cremPFD) / ez (ﬁr,pw)|2dr +er sup |z (0.w)|]? + e

-0 —p<s<0

Now integrating (4.23) from t — p to ¢, there exists T =T (w, D) > p+ 1 such that
forallt > T,

t
/ 1AV (r, 9w, 0_1g,v0)||*dr
t

—p
SHV’U (t — P, ﬂftwv gftgv UO)”Q

t
+ C3 / (Hvu (T, ﬂ*tw) 9*7597 UO)||2 + ||’LL (T, ﬁ*twa G,tg, U/O)”][),P) dr
t

. (4.30)
! 2 ‘ 2
oo [ utr—pdw 0ogau)Pdr e [ gt —oldr
t—p t—p
¢
+c3 / |2 (9, _w)|Pdr + c3p.
t—p
By Lemma 4.1 and (4.26)-(4.30), we obtain
2 ! 2
||VU (t + s, ﬁ,tw, Q,tg, UO)” + / ||AU (7’7 ﬁ*twv 97&97 UO) || dr
t—p
1 (90) ’ ’ 2
§0817_m + cs / ™" |z (9,w)|Pdr + cs / e |z (Vr_pw)| dr (4.31)
—€ —o0 —o0
+cs sup |z (Dsw)|* + cs,
—p<s<0
which together with (4.29) completes the proof. O

By using (4.13) and Lemma 4.2, we can derive uniform estimates for the solution
u of (3.5)-(3.7) in H} (O).

Lemma 4.3. Assume that (Hy),(Hz) and (3.14) hold. Then for every D € D,w €
Q, there exists T = T (D,w) > p+ 1 such that for allt > T, g € ¥ and uy €
D (Y_sw), the solution u of (3.5)-(3.7) satisfies

[V (t+ s,9_w,0_1g,u0)||> < Ra(w, p), (4.32)
where
o n (gO) 0 mr P 0 mr 2
Ro(w, p) =My——""— + M, ez (9rw)|Pdr + My e |z (Vr_pw)| dr
l—em —00 —00
+ My sup |z (9w)|* + M, (4.33)
—p<s<0

where Ms is a positive constant independent of w, p, ¥ and D.
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Lemma 4.4. Assume that (Hy),(Hz) and (3.14) hold. Then for every D € D, w €
Q, there exists T = T (D,w) > p+ 1 such that for all t > T, g € ¥ and vy €
D (¥_sw), the solution v of (3.16)-(3.18) satisfies

t
(Vv (t+s, 9w, 0_,4, UQ)HZ,—&—/ lv (r, 94w, 0_.g, v0)||i€;,22 dr <R3 (w,p), (4.34)
t—p

where R3 (w, p) is given by:

0 0
Ry (w, m:%%u\@ / €Mz (9,w) [P 2dr + Ms / ™)z (D, w0)|2dr
0
+ M, / |2 (F,w)Pdr + My sup |z (95)[? + M, (4.35)
—o00 —p<s<0

where M3z is a positive constant independent of w, p, ¥ and D.

Proof. Taking the inner product of (3.16) with [v|” ?v in L2 (©), we get that

1d
pdt

/ |v|Pdx :/ | *vAvda + / [P 20F (@, u (t, 2)) do
o o o
b [l s @t = pydo+ [ ol g (ta)de - (430)
o o
+ 2 (Yyw) / [P 20(AR (z) + h(z))dz.
o
Integration by parts of the first term on the right-hand side of (4.36), we get that
/ P20 Avdz = — (p— 1)/ Vo2 [o]”2dz < 0. (4.37)
o o
By using Young’s inequality, for p > 2 we obtain
= u @ < =277 (Jo )" + [z Wew) b (2)[") . (4.38)
It follows from (3.8), (3.9) and (4.38) that,
/ [P 20F (2, u(t, x)) dx
o
:/ [P 2uF (z,u (t,2)) da —/ [[P7%2 (9w) h () F (x,u (t,z))dz  (4.39)
o o

2k B B
<= 2ol + (20w +1).

where k = 5. By (3.12) and Young’s inequality, the third term on the right-hand

side of (4.36) are bounded by

/ WP 20 f (z,u(t — p,z)) de < ﬁ/ |U‘2p_2d$+£/ |f (z,u(t — p,z))|°dx
o 2p Jo 2k Jo

k _
<% lo ()72 + callu (t = @) |* +can (4:40)
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For the last two terms on the right-hand side of (4.36), we obtain

/ 0[P %ug (t,z) da + 2 (9w) / [0]P"v(Ah (z) + h(z))da
© © (4.41)
k 2p—2 2 2

<o 10 O + callg O + calz D)™

By (4.37) and (4.39)-(4.41), we obtain that

d _ _
= o @+ o (1722 < ea (lu = p)IP+llg ()P +]z @) P +1) . (4.42)

Integrating (4.42) over (o,t+s),s € [—p,0], where 0 € (t +s—1,t+s),t > p+1,
then we have

||U (t + svwagaUO)HI[),p - ||U (aawagaUO)HI[),p
t

t
<e4 / la (r = pyw, g, o) |2dr + 4 / lg ()|Pdr
t—p—1 t—p—1 Q£43)

t

+C4/ |2 (0,w) [P 2dr 4+ cq (p+1).
t—p—1

Replacing w and g with ¥_;w and 6_;g, and then integrating with respect to o over

(t+s—1,t+ s) for any fixed s € [—p,0] ,and by (4.13), we obtain

||U (t+ s,9_tw,0_49, UO)HiP

t t
<[ 0w beg )l dr e [ (0, 01,0 dr
t—p—1 t—p—1
! t 4.44
bos [ dg—ofartes [ 0w (449
t—p—1 t—p—1

t
—|—c5/ |2 (0 yw)|Pdr +c5(p+1).
t—p—1

By (4.26)-(4.28) and (4.44), there exists T =T (w, D) > p+1, we have for all ¢t > T,

o (t+ 5,9 _4w,0_¢g,v0) |17
0

n(g ) 0 mr 2p—2 mr 2
<
<67 _x + ¢ [00 e |z (V,w)| dr+cg - ez (Vr—pw)|“dr (4.45)

0
+06/ 2 (Wyw)[Pdr 4+ ¢ sup |z (Fsw)|* + c.
o —p<s<0

Finally, integrating (4.42) over (t — p,t) and replacing w and g with ¥_;w and 6_,g,
there exists T =T (w, D) > p+ 1, we find for all t > T,

t
o A G R RS
t—p

t

<|lv(t—p, 9w, 0_¢g,v0)|5, + 04/ lw(r = p,9_sw,0_sg,uo)||Pdr  (4.46)
t—p

¢ ¢
+C4/ llg (T‘—t)||2d7’+04/ |z(19r,tw)|2p72d—|—04p.
¢

—p t—p
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By (4.26)-(4.28) and (4.45)-(4.46), there exists T =T (w, D) > p + 1, we get
forallt > T,

t
2 / o (ry 90, 0_2g, v0) |25
t

—p

1 (90) 0 2p—2 0 2
§0717_ +c7 / e |z (9pw)| P dr + 07/ ez (Op_pw)|“dr  (4.47)
— e m

— 00 — 00

0
+ 07/ " 2(yw)[Pdr 4+ ¢z sup |z (Fsw)|* + 7.
o —p<s5<0

(4.45) and (4.47) lead to conclusion (4.34), which completes the proof. O

5. Uniform random attractors

In this section, we prove the existence of tempered uniform random attractors for
(3.5)-(3.7) in X,.

Lemma 5.1. Assume that (H1),(Hz) and (3.14) hold. Then the nonautonomous
random dynamical system ¢ has a closed measurable uniformly D-absorbing set
K ={K (w):w e Q} €D, that is, for anyw € Q, D ={D (w) : w € Q} € D, there
is T =T(D,w) > 0 such that for allt > T, g € X and ug € D (¥_w),

QS (t779—tw79—tg7u0) - K (LU) )

where K (w) is given by:

K (w) = {ueD; lue|)? < Ro (w,p)}. (5.1)
Note that
1 (90) 0 0 2
Ro (@) =Moz "y gy / |z (9,00)Pdr + My / ez (9, ) [2dr
+ My sup |z (Osw)|> + M. (5.2)
—p<s<0

Proof. Given D € D, w € Q, by Lemma 4.1, for all t > T, g € X and ugy €
D (¥_4w), we find that

¢ (t,0_w,0_+g9, D(¥_1w)) C K (w).

Therefore K uniform attract all elements in D, and then we check that K is tem-
pered. For all v > 0, we have

e K (9_w)|5 < e "Ry (9_yw, p)

0 0
:Moe_”ytln(ﬂ—&—Moe_”t/ e™|z (19Tw)|pdr+MOe_'yt/ ez (19T,pw)|2dr
—e ™ —o0 —o0

+ Moe™" sup |z (9sw)|* + Moe ™. (5.3)
—p<s<

By (3.3)-(3.4) and the tempered of z (Yw)

2

. —t
Jim e |1 (9 0)|2

= 0. (5.4)
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Then K € D, which completes the proof. O

The the Arzela-Ascoli theorem is then used to prove the uniformly compactness
of the NRDS ¢.

Lemma 5.2. Assume that (H1),(Hsz) and (3.14) hold. Then the nonautonomous
random dynamical system ¢ has a uniformly D-pullback compactness absorbing set
in X,.

Proof. Set for w € Q, for all > 0, there exists 6 = d(n,w) > 0, such that

Yi(w) = {y € H}(O) : Wl y0) < B@) }, (5.5)
E@O{yGXwKSQ§ESS<Jw@ﬁy@ﬂHSn}, (5.6)

and
Y (@) = Yi(w) N Ya(w), (5.7)

where for each w € Q, R(w) is a sufficiently large constant and d(w) is a suffi-
ciently small constant. By Arzela-Ascoli theorem and the compactness of embed-
ding Hj (O) < L*(0), Y is compact in X,,.

Firstly, take the inner product of (3.16) with v in L% (0), and by (3.8), (3.13)
and Lemmas 4.1-4.4, for every D € D,w € (Q, there exists 71 = T} (D,w) > 0 such
that for all t > Ty, g € ¥ and ug € D (¥_w),

t
/tp
where ¢ = ¢ (w) is positive number. Then for any ¢ > T} and s1,s2 € [—p, 0], we
have

2
dr <, (5.8)

d
%IU (Tv 19—tw7 0—t97 UO)

||’Ut (823 79715(")7 H,tg, UO) — Ut (817 19,150.}, 971597 UO)H

t+s2
:/ —o (r, 94w, 0_1g,v9) dr
t+s1 d

1 t+so
<|s2 —s1]? /
t+s1
. t
<|sg — s1]? /
t—p

By using (4.13) and (5.9), we have that for all ¢ > 77 and s1, 2 € [—p, 0],

v (7", ﬁftw; G,tg, ’Uo)

2 dr) : (5.9)

d 2 2 L
s (r, 94w, 0_1g,v0) dr) < cilsg — 1|7
T

1
||we (82,9 —1w, 0, g,u0) — ug (51, F—tw, 0_1g,uo)|| < c1]|s2 — 1|2 + ca |z (Fsy—s,w)] -
(5.10)
Therefore, for all t > Ty, w(-,¥_w, X, D) € Y5. By Lemma 4.3, for every
D € D, w e Q, there exists To = T5 (D,w) > T} such that for all ¢ > T5, we have
that u (t,9_w, 3, D) € Y1. We get that for all ¢ > Ty, us(-,9_w,¥, D) € Y. This
completes the proof. O
Now we prove the existence of D-uniform random attractors.
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Theorem 5.1. Assume that (H;),(Hz) and (3.14) hold. Then the nonautonomous
random dynamical system ¢ has a unique D-uniform random attractors A€ D in

X,.
Proof. By Lemmas 5.1, 5.2 and Theorem 2.1, we are able to prove that the NRDS
¢ has a unique D-uniform random attractors A={A (w): w € Q}€D. O

6. Upper semicontinuity of attractors as delay ap-
proaches zero

In order to study the upper semicontinuity of attractors system (3.5)-(3.7) as delay
approaches to zero, we assume that the gg is an almost periodic function in ¢t € R
with values in H. Since an almost periodic function is bounded and uniformly con-
tinuous on R, it follows that go € Cyp(R, H), where C,(R, H) is the space of bounded
continuous functions on R with values in H. Given g € Cy(R, H), denote the norm

of g by [lgllc, ®, ) = sup|lg ()] . Obviously, g € L? . (R, H) and is translation com-
’ teR

pact in ler’)z’ (R, H). Note that all results in the previous sections are valid for the
case that gg is an almost periodic function.
The following is a basis for judging the upper semicontinuity of attractors when

delay of stochastic delay equation approaches to zero.

Theorem 6.1. Let X be a Banach space. Suppose that for every p > 0, let Dy and

D, be collections of families of some subsets of X and C([—p,0],X), ¢o and ¢, are

continuous nonautonomous random dynamical systems on X and C([—p,0], X). If
(i) for every t € RY, w € Q,

lim  sup ||}, (t,w, gn,un)(s) — ¢o(t,w,g,2)||x =0, (6.1)

N0 —p,<s<0

for any py =0, gn, g € X with g, — g in (5, [ - [lo,®,x)), un € C([—pn,0], X) and
x € X with sup |un(s) —z| — 0;
—Pn<s<0
(it) ¢, has a uniformly D,-absorbing set B, and a D,-uniform random attractors
A, C B,, ¢o has a uniformly Dy-absorbing set By and a Do-uniform random
attractors Ay C By, where

By ={B,(w) = {u € C([=p,0], X) : [ullc(—p,0,x) < Bp(w)},w € 2} € D,
By ={By(w) ={zr € X : ||z||y < Ro(w)},w € Q} € Dy,
and R,(w) : @ — R*(p > 0) such that for allw € Q,

limsup sup |lullo(pop,x) < Ro(w); (6.2)
p=0  u€B,(w)

(iii) for every w € Q, if p, — 0 and u, € A, (w), there exist x € X and a
subsequence {u,, }S°_; such that

lim  sup ||up,, (s) —z|y =0; (6.3)

m—o0 —,Dn,mSSSO
Then for every w € €,
di(Ap(w), Ap(w)) =0 asp—0, (6.4)
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where the distance dy is defined for any subset E of C([—p,0],X) and S of X by

dg(E,S) =sup inf sup |lu(s) — x| y. (6.5)
ueETES —p<s<0

Proof. If (6.4) is not true, then there exist n > 0 and p, — 0 such that for all
n €N,
dy (Apn (W)’ AO(W)) > 2777

which implies that there exist u, € A,, (w) such that for every fixed n
dp (U, Ao(w)) > n. (6.6)
By (6.3), there exist g € X and a subsequence (which is not relabeled) such that

lim  sup |lun(s) —xol x =0. (6.7)

M=o —p,<s<0

Take a sequence {t,, }5°_; with ¢,, — co. By the negatively semi-invariance of A,,,,
we derive that for each n € N, there exists uy, € A,, (V_¢,w) and g1, € 3 such
that

Up = Gp, (t1, 04,0, 01, 91,0, U1,0)- (6.8)

Since uy,, € A,, (V_t,w), by (6.3) we get that there exists 1 € X such that

lim  sup |luin(s) —21]| =0. (6.9)

N0 4 <5<0

Meanwhile, since {g1,,} C X and ¥ is compact, there exists g1 € ¥ and a subse-
quence of {g1 ,} (which is not relabeled) such that

gin—> g1 as n— oo. (6.10)
By (6.1) and (6.9)-(6.10) we derive that
nh_)rr;o du(Pp, (t1,0_t,w,0_4, 91 0 U1 n), Po(t1, Iy, w,0_¢,g1,21)) = 0. (6.11)
By (6.7)-(6.8) and (6.11) we obtain
zo = ¢o(t1,V—1,w,0_¢,91,21). (6.12)
Since A,, (V_,w) C B, (V-4 w) and w1, € A,, (V_¢,w), by (6.2) we derive that

limﬁsup ”ul»”HC([—pn,O],X) < Ro(V_t,w). (6.13)

By (6.9) and (6.13) we get
1]l x < Ro(¥—t,w).

Repeating this process for every m > 1, we infer that there exist z,, € X and
gm € ¥ such that for all m > 1,

To = Qo (tm7 79—tmwa e—tmgwm xm); (614)

and
[zmllx < Ro(d—¢,,w). (6.15)
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Since Ajg is a Dy-uniform random attractors of ¢g, by (6.14)-(6.15) we get

dx (zg, Ao(w)) < dx(do(tm, V-1, w,0_t, Gm, Bo(9—_t, w)), Ap(w)) = 0 asm — 0.

(6.16)
Therefore we have 2y € Ag(w). By (6.7) we derive that
Ay (un, Ag(w)) < dg(un,z9) = 0 asn — oco.
So it contradicts (6.6). The proof of Theorem 6.1 is completed. O

For p € (0,1], we write the solution and NRDS of system of (3.5)-(3.7) as u”
and ¢, and let A? = {A”(w) : w € Q} be the uniform random attractors of ¢” in
X,. By Lemma 5.1, we find that the uniformly D-absorbing set B” of ¢ satisfies
that for all w € Q,

B” (@) = {u€D: |l < Ro(w, )} (6.17)

where Ry (w, p) is given by

Ry (w, p) M 77(90) — + My / e |z (9pw)|Pdr + My /0 em7'|z(19r,pw)\2dr
—o0
+ My sup |z (9w)]> + M.
—p<s<0
Then for every w € 2, we get that
AP (w) C B (w). (6.18)

For p =0, from (3.5)-(3.7) we obtain

du—Audt=F (z,u (t,z)) dt+ [ (z,u (t,z)) dt + g (t,x)dt + h (z)dw, x€ O, t >0,

(6.19)
with boundary condition
u(t,z) =0, ze€00,t>0, (6.20)
and initial data
uo () =u(0,2), =ze€O. (6.21)

The NRDS generated by (6.19)-(6.21) is denoted by ¢°, and the collection of all
tempered families of nonempty subsets of L?(Q) is denoted by D°:

D’ = {{D(w) C L*(0) :we Q}: t_l}r_n e ||D(t, 0;w)|| =0, Ve > 0}.

By section 4, we obtain that ¢° has a D%-random uniform attractors A° = {A%(w) :
weN}in LQ((’)) and a uniformly D%absorbing set B® = { B(w) : w € 2} given by

B%w) = {u e L*(O) : |u|® < R®(w)}, (6.22)

where R?(w) is given by

0
R'(w) = Mo 77(90) +M/ ez (9y w)|pdr+M0/ ez (9pw)|2dr + M.

— 00
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By (6.17) and (6.22), we get
limsgp 1B (w)]|, = HBO(w)H . (6.23)

p—
Now we study the convergence of solution of (6.19)-(6.21) as p — 0, for which
we need the following assumption:
(H3) There exist ay > 0 and 34 € LP"(O) such that for all z € O and s € R,
’8F

55 (9] < auls[P 7 + Balx), (6.24)

wherep*:ooforp:?andp*:]%forp>2.

Lemma 6.1. Assume that (Hy)-(H3) hold. Let u” and u be the solutions of (3.5)-
(3.7) and (6.19)-(6.21), respectively, then for every w € Q,T > 0,n € (0,1] and
gn,g € X, n € N, there exists pg = po(w,T,n) € (0,1] such that for all p < py and
t €10,T],

sup ||up(t+37wvgn7u(p)) _u(t7w7g7u0)”2

—p<s<0
, , 2 ) (6.25)
< sup_lug —uoll” + [lgn — glle, @, m)) + en(l + [lugll, + lluoll”)-
—p<s<0

Proof. Let v”(t,w,g,vl) = u’(t,w, gn,ul)—hz (Yw) and v(t,w, g, vo) = u(t,w, gn,
ug)—z (thw) where uf(s) = vf(s) + h(z)z (Fsw), uo(z) = vo(x), s € [—p,0]. Fix s €
[—p, 0], and let ¥(t) = v”(t + s) — v(t). Then v satisfies that for t > —s, s € [—p,0],

dv

G AT =F (e (4 8) ~ P e u )4 (o (s—p) = f () g o0
+gn (4 5,2) = (6:0)+ (2 (Do) — 2 (910)) (A (2)+h(2).

Taking the inner product of (6.26) with ¥ in L? (O), we obtain for t > —s, s €
[_pv 0}7

1d ,_ .
o I + 193]
- / (F (2,0 (t+5))— F (2, u () fodo + / (f (@, (45— p)— f (2, u (£)))oda
(@) (@}

+ / (gn (E+5,2) — g (£2))Td3 + (2 (Fy4.00) — 2 (D10)) / (Ah (z) + h(z))ida.
O (@)

(6.27)
For the first term on the right-hand side of (6.27), from (3.10) and (6.24) we get

/ (F (z,u’ (t+s)) — F (x,u(t)))vdx = / %—1: (x,s) (u’ (t+s) —u(t)) vde
o o

OF - OF ~
= /C) —_— (IE, S) ’L)Zdl’ =+ (Z (’l9t+3(,U) —Z (ﬂtW))/ a (.’,U, S) h(l’)Udl'

0s o)
<l + |z Oris) =2 @) [ (a1 ¢+ 9] + uO) + Bula)) )i

<as|[o)® + e1 |z (Fersw) — 2 (9| ([l (E+ )70 + lu ()70 +1)

+ 1]z (Yipsw) — 2 (Bw) ]2
(6.28)
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For the second term on the right-hand side of (6.27), from (3.12) we have

/ (f (@ (t+5—p))— f (2, (£)))ode < / Oy Ju (t-+5—p)—u (1)] 7] da
(@] O

<ea[Bl|* + ezl u (45— p) —u ()]

(6.29)

For the last two term on the right-hand side of (6.27), we have

- 1, 1
[ (044 5.2) =g ()t < ST + o (4 0) —g (L) (630)
and

(2 (Vypsw) — 2 (Vyw)) /O (AL (z)+h(z))ode < ||0]]* + 3|2 (9p4sw) —2 ()], (6.31)

In conclusion, from (6.27)-(6.31) we get for t > —s, s € [—p, 0],

LI <cal B + ealz (Ders) — 2 (D)
i |z (Pra) = 2 G| (02 ¢+ 9)Zp + e (@), + 1) (6:52)
et (145 — )~ u (@) + g (4 ,2) — g (1,2)]*

Let t € [0,T], t > —s. Integration (6.32) over (—s,t), we obtain

t

||5(t)||2§||5(—8)H2+C4/ IIG(T)HQdH&l/ |2 (9,45w) = 2 (V) *dr

—S —S

+C4/ |2 (Ursw) = 2 (Frw)| ([ (r + s)I Lo + lu ()7, + 1) dr (6.33)

—S

t t
e ||up<r+s—p>—u<r>||2dr+/ lgn (v + 5,2) —g (r, )| dr-

—S

For the fifth term on the right-hand side of (6.33), we have

/ lwf (r 45— p) —u(r)|*dr

—S

p—s i
s/ Huf’(r+s—p)—u<r>|\2dr+/ la? (r + s — p) — u (r)|Pdr
—s p—s

p—s

p—s
§2/ I (r—|—s—p)—u0||2dr+2/ () — wol|%dr

—S —S

t—p
+/ la? (r+ 5) — u(r + p)2dr

—s
t

0 p—s
gz/ ||up(r)—u0||2dr—|—2/ ||u(7‘)—u0\|2d7“+2/ [ (r 4+ 8) — u ()| 2dr

—p —5 ==

w2 [ Julrtp) - u)Par

—S8

p—s t
<2 s [ ()~ ol +2 [ utr) < uwolPar 4 [ [5ar

—p<s<0
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t t

+4)h)? [ 1z (Orpew) — 2 (9yw)Pdr + 2/ u (r + p) — u (r)|*dr. (6.34)

—S —S8
By (6.33)-(6.34) we obtain that for t € [0,T], t > —s,

t

IBOIP <IF(=3)] + cs / 15 2dr + cs / 2 (Or ) — 2 (D) Pdr

t
s [ 12 s = 2 @) (10 (4 ) + u @) + 1) dr
- i 2 (6.35)
esp sup [l ()~ wol* +es [ ur) = uoldr
0

—p<s<0

t t
+es IIU(7’+p)*U(T)||2dT+C5/ lgn (r+s,) =g (r,z)||"dr.

—S

Since z (%w) is uniformly continuous on [—1, T, given n > 0, there exists p; € (0, 1],
such that for all p < p1, s € [-p,0] and r € [0, T,

|2 (Vr4sw) — 2z (Fpw)| < . (6.36)

Since lim f02p |u(r) — uo||>dr = 0, we get that there exists py < p; such that for
p—r00

all p < pa, )
P
/ lu(r) = uo|[*dr < n. (6.37)
0

Since v is uniformly continuous on [0, 4 1],we obtain that there exists p3 < pa
such that for all p < p3 and r € [0,T],

[u(r + p) —u(r)| <. (6.38)
Since g € Lfoc (R, L? ((’))), we get that there exists py < p3 such that for all p < py
and s € [—p, 0],

/0 lg (r+ 5) — g ()|Pdr <,

which implies that for s € [—p, 0],

T
/0 g (r + 5) — g () |dr

§2/0 llgn (T+8)—g(r+s)||2dr+2/0 lg (r+ s) — g (r)||*dr (6.39)

<2T||gn — 9l w1y + 21

By (4.8), we obtain for p € (0,1],

t t+s
/ [ (r + 8|, dr = / lu? (&), dr

—S

. - (6.40)
<co (nuSI,"; - / lg ()] 2dr + / (12 )" + [z (B ) ) dr + 1) .
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By (6.19), we have that

/O lu () E,dr < cr <||uo||2+ / lo () 2dr + / zwtw>|pdr+1>. (6.41)

By (6.35)-(6.41), we get that for all p < py, t € [0,T], t > —s and s € [—p, 0],
2 2 ! 2 2 2
[le@I” <[[o(=s)| 4-C5j/ [o(r)[IPdr + csn(1 + [lugll, + [luoll) 6.42)
s 6.42

2
+esp sup  lug (s) —uoll” + csllgn — 9lle,®.m -
—p<s<0

By Gronwall’s lemma, we obtain that for all p < py4, ¢t € [0,T], t > —s and
s € [7p7 0]7

~ 2 ~ 2 2 2
[P <collv(=s)II” + con(L + [lugll, + lluoll”)

Fool sup (6 (5) = woll® + lon — dloymrmy)- O
—p<s<0
Since
[5(=s)[1? =[v(0) — v(—s)|
<2 [u?(0) — u(—s)]| + 2|A|]z (9_sw) — 2 () (6.44)

2 2 2 2
<A[[u?(0) = uo||” + 4llu(—=s) — uoll” + 2[[Al[*[z (V—sw) — 2 (w)[".
By the continuity of u and z (9;w) at ¢ = 0, we obtain that there exists ps < py
such that for all p < ps,

~ 2
[5(=s)* < n+4 ggJMH@*Uﬂ~ (6.45)
—p<s<

By (6.43)-(6.45), we have that for all p < p5, t € [0,T], t > —s and s € [—p, 0],

~\ 12 2 2 2
9@ < eron(LH[ugll Hluoll")+eio( %FQJWSG)—UMMHwn—gm%mJD)(64®
—p<s<

By (6.36)-(6.46), we have that for all p < p5, t € [0,T], t > —s and s € [—p, 0],
lu? (¢ + 5) = ()]
o112 2 p 2 (6.47)
<cnn(L+ Jlugll, + lluoll™) + e1a (- sup_[lug (s) = uoll” + llgn — 9llc, @.m))-
—p<s<0
By the continuity of u at ¢ = 0, we obtain that there exists pg < ps such that for
all p < pg,0 <t < —s,

lu? (¢ + 5) = u(®)|* <2/|u’(t + 5) = uol|* + 2[ju(t) - uo|®

<2 sup_uf(s) — wol” + 1. (649
—p<s<0
By (6.47)-(6.48), we get that for all p < pg, t € [0,T] and s € [—p, 0],
2
[ (t + s) — u(t)]|
2 2 6.49
<cran(1+ [[uf |l + lluoll®) + era f&JWMQ_“ﬂ +Mn_wmmﬂﬂ'( )
—p<s<

The proof of Lemma 6.1 is completed. O

We now study that the uniform compactness of attractors with respect to p.
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Lemma 6.2. Assume that (Hy), (Hz2) and (3.14) hold. Let u” and u be the solutions
of (3.5)-(3.7) and (6.19)-(6.21), respectively. If w € Q, p,, € (0, po], pn, = 0,u’r €
AP (w), then there exists u € L* (O) and a subsequence {ufm }%°_, of {uf~} such
that

lim  sup |ju’m (s) —ul =0. (6.50)

m—00 Py <5<0

Proof. Take a sequence of positive real numbers {t,} _, ,t, — oo. By the neg-
atively semi-invariance of AP~ there exists t, = U, (V_¢,w) € AP (V_¢, w) and
Jgn € X such that

uf (W) =u’n (tna ﬁft"‘*% eftngna ﬁ/n)

6.51
=P (tm Yy, w,0_t, gn, Un (ﬁ,tnw)) . ( )

By (6.18), we get @, € BP"(¥_;, w). Due to all estimates in Section 4 are uniform
with respect to p and Lemma 5.2, we obtain

1) ¢Pn (tn, ¢, w,0_¢, gn, Un) (0) is precompact in L? (O) .

2) Given any 7 > 0, there exists N7 > 1 such that for all n > Ny, s € [—p,, 0],

||¢Pn (tna ﬁ—tnwa e—t"gn, ’an) (8) - ¢Pn (tn7 ﬁ—tnwa e—tngn; ﬁ/n) (O)H S UR

By 1), there exists a subsequence of ¢ (t,,0_t, w,0_¢, gn, ) (0) (not relabeled)
is convergent to u € LQ(O). We obtain that there exists No > N such that for all
n > Na,

||¢pn (tnﬂg*tnwﬂ eftng’mﬁn) (0) - u” < n- (652)

By 2) and (6.52), we get that for all n > Na, s € [—p,, 0],

||¢Pn (tn7 7‘9*75"0')1 G*tngnv fl’n) (S) - U’H
< ||¢Pn (tru ﬂ—tn,wa 0—tngn7 ﬁn) (5) — P (tnv ﬁ—tw,wa g—tngn; ﬁn) (0)”
+ ||¢pn (tn,ﬂ_t”w, e_tngn) ﬁn) (O) - UH < 277

By (6.51), we get that for all n > Na, s € [—pp, 0],
[[uf(s) — ul| < 2n.

The proof of Lemma 6.2 is completed. O
By Lemma 4.3, Lemma 6.1, Lemma 6.2 and Theorem 6.1, we get that the upper
semicontinuity of attractors as delay approaches to zero.

Theorem 6.2. Assume that (Hy),(Hs),(Hs) and (3.14) hold. Then for every
w € Q,

. P 0 —

F{Ln%) di (A? (w), A% (w)) =0,

where dy is the distance as defined by (6.5) with X = L*(O).
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