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UPPER SEMICONTINUITY OF UNIFORM
RANDOM ATTRACTORS FOR DELAY

PARABOLIC EQUATION∗

Ting Gong1, Zhe Pu1,† and Dingshi Li1

Abstract This paper concentrates on the upper semicontinuity of uniform
random attractors for a class of delay parabolic equations with additive noise
and nonautonomous external force terms. Firstly, through the uniform es-
timation of the solution, it is proved that the solution of the equation has
a closed uniform pullback absorbing set with respect to the symbolic space.
Then, by Arzela-Ascoli theorem, we prove uniformly pullback compactness of
solutions as well as the existence and uniqueness of uniform random attractors.
Finally, we prove the upper semicontinuity of the uniform random attractors
when time delay approaches to zero.

Keywords Uniform random attractor, delay, upper semicontinuity.

MSC(2010) 35B40, 35B41, 37L30.

1. Introduction
In this paper, we investigate the asymptotic behavior of solutions to the following
delay parabolic partial differential equations defined on the bounded smooth domain
O in Rn:

du−∆udt = (F (x, u (t, x)) + f (x, u (t− ρ, x)) + g (t, x))dt+ h (x) dω,

x ∈ O, t ≥ 0,

u (t, x) = 0, x ∈ ∂O,

(1.1)

where ρ ∈ (0, 1] is small positive parameter, F is a superlinear source term, f
is a nonlinear function that satisfies certain conditions, g is a deterministic time-
dependent forcing, h is the shape of noise, and ω is a two-sided real-valued Wiener
processes on a complete probability space (Ω,F , P ).

Attractors play an important role in the dynamical systems. As an extension
of the global attractor for autonomous dynamical systems, the concept of pull-
back attractor for random dynamical systems was introduced in [6–8]. Since then,
there is lots of literature on dynamics for stochastic partial differential equations,
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see [1–3, 10, 14]. For non-autonomous dynamical systems, the most representative
attractors are pullback attractors and uniform attractors. To study the dynam-
ical behavior of stochastic equations with deterministic non-autonomous terms,
Wang [15] introduced cocycle system, i.e., two driving dynamical systems over two
parameter spaces Ω1 and Ω2 corresponding to non-autonomous terms and random
terms, respectively. He also studied the existence of cocycle attractors of stochas-
tic differential equations with deterministic non-autonomous terms. After that,
Cui and Langa [5] studied the uniform random attractors of stochastic differen-
tial equations with deterministic non-autonomous terms. The existence of pullback
random attractors of non-autonomous stochastic equations without delay has been
investigated by many authors, see, e.g., [11,13,16,19] in the framework established
in [15] and [4, 9, 20] in the framework established in [5]. In the delay case, there
are only a few papers available in the literature dealing with the cocycle attractors,
see [12,17,18]. However, it seems that there are very few works in the literature deal-
ing with uniform random attractors of non-autonomous stochastic delay equations.
In this work, we will address this problem.

As ρ → 0, the equation (1.1) reduces to a non-delay stochastic equation and it
is natural to ask the family of random dynamical systems φρ generated by (1.1) is
close to limiting random dynamical system φ0 generated by the limiting equation?
What is the relation between φρ and φ0? We prove the upper semicontinuity of the
uniform random attractors of φρ when time delay approaches to zero.

The outline of this paper is as follows. In Section 2, we recall the basic concept
of uniform random attractors for nonautonomous random dynamical systems. In
Section 3, we concentrate on studying continuous non-autonomous random dynam-
ical system in C

(
[−ρ, 0] , L2 (O)

)
generated by (1.1). In Section 4, we are devoted

to the study of uniform estimates of solutions. In Section 5, the existence of uni-
form random attractors is obtained. Finally, the upper semicontinuity of uniform
random attractors when time delay approaches to zero was established in Sections
6.

We use ‖·‖ and (·, ·) to denote the norm and inner product of L2(O), respectively,
‖ · ‖p to denote the norm of Lp(O), and Xρ to denote C

(
[−ρ, 0] , L2 (O)

)
with norm

‖φ‖ρ = sup
s∈[−ρ,0]

‖φ (s)‖ for φ ∈ C
(
[−ρ, 0] , L2 (O)

)
. The letters c and ci (i = 1, 2, . . .)

represent generic positive constants.

2. Preliminaries
In this section, we will recall the basic concept of uniform random attractors for
nonautonomous stochastic dynamical systems from [5].

Let (X, d) be a Polish metric space and B(X) be the Borel σ-algebra of X. Then
we study the nonautonomous random dynamical systems φ on X.

Let (Σ, dΣ) be a compact Polish metric space which is invariant in the sense that

θtΣ = Σ, ∀t ∈ R,

where θ is a smooth translation operator such that θ0 is the identity on Σ, θs+t =
θs ◦ θt for all s, t ∈ R and θ : R × Σ → Σ is continuous. We denote by (Ω,F , P ) a
probability space endowed also with a flow {ϑt}t∈R satisfying that ϑ : R × Ω → Ω
is (B(X)×F ,F) -measurable, ϑ0 is the identity on Ω, ϑs+t = ϑs ◦ϑt for all s, t ∈ R
and ϑtP = P for all t ∈ R.
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Definition 2.1. A mapping φ (t, ω, g, x) : R+×Ω×Σ×X → X is called a continuous
nonautonomous random dynamical system(NRDS) on X with base flows {θt}t∈R
and {ϑt}t∈R, if

1) φ is(B (R+)×F × B(Σ)× B(X),B(X))-measurable;

2) φ(0, ω, g, ·) is the identity on X for each g ∈ Σ and ω ∈ Ω;

3) it holds the cocycle property that

φ(t+ s, ω, g, x) = φ (t, ϑsω, θsg) ◦ φ(s, ω, g, x), ∀t, s ∈ R+, g ∈ Σ, x ∈ X,ω ∈ Ω.

4) φ (t, ω, g, ·) is continuous for each t ∈ R+, ω ∈ Ω and g ∈ Σ.

Definition 2.2. A random bounded set {B (ω)}ω∈Ω of X is called tempered with
respect to {ϑt}t∈R if for P−a.e.ω ∈ Ω

lim
t→∞

e−βtd (B (ϑ−tω))=0,

where d (B) = sup
x∈B

‖x‖X and β is a positive constant.

Let D be a collection of random subsets of X satisfying D is neighborhood-
closed, i.e. for each D ∈ D there exits an ε > 0 such that the closed ε-neighborhood
Nε(D) belongs to D, and D is inclusion-closed, i.e., if D ∈ D then each random set
smaller than D belongs to D.

Definition 2.3. A random set D in X is said to be uniformly D-(pullback) ab-
sorbing under the NRDS φ if for each ω ∈ Ω and B ∈ D there exists a time
T = T (ω,B) > 0 such that

φ (t, ϑ−tω,Σ, B (ϑ−tω)) ⊂ D (ω) , ∀t ≥ T.

Definition 2.4. A random set D in X is said to be uniformly D-(pullback) at-
tracting under the NRDS φ if for each B ∈ D,

lim
t→+∞

dist
(
φ
(
t, ϑ−tω,Σ, B

(
ϑ−t

ω
))

, D (ω)
)
= 0, ∀ω ∈ Ω.

Definition 2.5. A NRDS is said to be jointly continuous in Σ and X if for each
t ∈ R+ and ω ∈ Ω, the mapping φ(t, ω, ·, ·) is continuous.

Theorem 2.1 ( [5]). Suppose that φ is a jointly continuous NRDS in both Σ and
X, and Ξ is any a dense subset of Σ. If φ has a compact uniformly D-attracting
set K and a closed uniformly D-absorbing set B ∈ D, then it has a unique uniform
random attractor A ∈ D given by

A (ω) = W (ω,Σ, B) = W (ω,Ξ, B) , ∀ω ∈ Ω.

Moreover, the uniform attractor A is negatively semi-invariant

A(ϑtω) ⊆ φ(t, ω,Σ,A(ω)) for each t ≥ 0, ω ∈ Ω.
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3. Existence of a continuous NRDS
In this section, we show that the stochastic delay equations (1.1) generates a jointly
continuous NRDS. Suppose that the space L2

loc(R,H), where H = L2 (O), consists
of all function g which are 2-power integrable in Bochner sense, i.e.,∫ t2

t1

‖g(s)‖2ds < ∞ for any [t1, t2] ⊂ R.

The space L2
loc(R,H) is endowed with the two-power mean convergence topology

on any bounded segment of R, i.e., gn → g in L2
loc(R,H), namely∫ t2

t1

‖gn(s)− g(s)‖2ds → 0 for any bounded [t1, t2] ⊂ R. (3.1)

Let L2,w
loc (R,H) denote the space L2

loc(R,H) endowed with the local weak conver-
gence topology, i.e., σn ∈ σ in L2,w

loc (R,H) namely∫ t2

t1

〈v(s), σn(s)−σ(s)〉 ds → 0 for any bounded [t1, t2] ⊂ R and v∈L2
loc(R,H∗),

where H∗ is the dual space of H. Now we introduce two useful lemmas.

Definition 3.1 ( [5]). A function g ∈ L2
loc (R,H) is called translation compact in

L2,w
loc (R,H) if its hull H (g) = {θtg (·) : t ∈ R} is compact in L2,w

loc (R,H), where

θtg (·)=g (·+ t) , ∀t ∈ R, g ∈ L2
loc (R,H) . (3.2)

Lemma 3.1 ( [5]). Suppose g ∈ L2
loc (R,H) be translation compact in L2,w

loc (R,H),
then

1) the translation operator θt is continuous on H(g) in L2,w
loc (R,H);

2) the hull of g is translation invariant H(g) = θtH(g), ∀t ∈ R;
3) any function σ ∈ H(g) is translation compact in L2,w

loc (R,H) and H(σ) ⊆
H(g);

4) equivalently, g is translation bounded in L2
loc (R,H), i.e.,

η (g) := sup
τ∈R

∫ τ

τ−1

‖g (s)‖2H ds < ∞; (3.3)

5) for any σ ∈ H(g), η(σ) ≤ η(g).

Lemma 3.2 ( [5]). Let g ∈ L2
loc (R,H) be translation compact in L2,w

loc (R,H).Then

sup
σ∈H(g)

∫ 0

−∞
eλs ‖σ (s)‖2H ds ≤ η (g)

1− e−λ
, ∀λ > 0, (3.4)

where η(g) is the constant given by (3.3).

Let Σ = H (g0), the hull of a given translation bounded function g0 ∈ L2
loc (R,H),

endowed with the local weak convergence topology and a group of translation op-
erator {θt}t∈R defined by (3.2) acting on Σ, which is Polish. The group {θt}t∈R is
a base flow on Σ.
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Consider the following equation:

du−∆udt = F (x, u(t, x))dt+f(x, u(t−ρ, x))dt+g(t, x)dt+h(x)dω, x ∈ O, t ≥ 0,
(3.5)

endowed with the boundary condition

u(t, x) = 0, x ∈ ∂O, t ≥ 0, (3.6)

and the initial condition

u0(s, x) = u(s, x), x ∈ O, s ∈ [−ρ, 0], (3.7)

where ρ ∈ (0, 1], g ∈ Σ, h ∈ L2p−2(O) ∩ H1
0 (O) ∩ W 2,p(O) and ω is a two-sided

real-valued Wiener process on a probability space (Ω,F , P ). The nonlinear term F
and f satisfy the follwing standard conditions:

(H1) F : O × R 7→ R is a continuous function, and for all x ∈ O, s ∈ R,

F (x, s)s ≤ −α1|s|p + β1(x), (3.8)
|F (x, s)| ≤ α2|s|p−1 + β2(x), (3.9)
∂

∂s
F (x, s) ≤ α3, (3.10)∣∣∣∣ ∂∂xF (x, s)

∣∣∣∣ ≤ β3(x), (3.11)

where p ≥ 2, αi(i = 1, 2, 3) is positive constant, βi(i = 1, 2, 3) is nonnegative func-
tion on O satisfying β1 ∈ L

2p−2
p (O) and β2, β3 ∈ L2(O).

(H2) f : O × R 7→ R is continuous, and for all x ∈ O, s1, s2 ∈ R,

|f (x, s1)− f (x, s2)| ≤ Cf |s1 − s2| , (3.12)
|f (x, s1)|2 ≤ L2

f |s1|
2
+ |η1(x)|2 , (3.13)

where Cf and Lf are positive constants, and η1 ∈ L2(O).
By using Poincare’s inequality: there exists a positive constant λ1 such that

‖∇u‖2 ≥ λ1‖u‖2, ∀u ∈ H1
0 (O).

Suppose that λ1 > 4Lf , choosing a positive constant m such that

m− λ1

4
+

4L2
f

λ1
emρ < 0. (3.14)

Let Ω = {ω ∈ C (R,R) : ω (0) = 0}, F be the Borel σ-algebra included by the
compact-open topololgy of Ω, and {ϑt}t∈R be the measure-preserving transforma-
tions on (Ω,F , P ) as defined by

ϑtω(·) = ω(·+ t)− ω(t), ∀ω ∈ Ω, t ∈ R.

Considering the one-dimensional Ornstein-Uhlenbeck equation

dz(ϑtω) + z(ϑtω)dt = dω. (3.15)
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It is easy to verify that a sulution to (3.15) is given by

z(ω) = −
∫ 0

−∞
eτω(τ)dτ, ∀ω ∈ Ω.

Meanwhile, there exists a {ϑt}t∈R-invariant subset Ω̃ ⊆ Ω of full measure such that
z (ϑtω) is continuous in t for every ω ∈ Ω and the random variable |z (·)| is tempered.
For convenience, Ω̃ and Ω will not be distinguished.

Let v(t) = u(t) − hz(ϑtω), where u is a solution of system (3.5)-(3.7), then v
satisfies
dv

dt
−∆v = F (x, u(t, x))+f(x, u(t−ρ, x))+g(t, x)+z (ϑtω) (∆h+h), x ∈ O, t ≥ 0,

(3.16)
with boundary condition

v(t, x) = 0, x ∈ ∂O, t ≥ 0, (3.17)

and initial condition

v0(s, x) = u(s, x)− hz (ϑsω) , x ∈ O, s ∈ [−ρ, 0]. (3.18)

By the Galerkin method, for ω ∈ Ω and for all v0 ∈ Xρ, (3.16)-(3.18) has a
unique solution v :

v (·, ω, g, v0) ∈ C
(
[−ρ,∞], L2(O)

)
∩ L2

loc

(
(0,∞),H1

0 (O)
)
∩ Lp

loc ((0,∞), Lp(O)) .

Moreover, v is continuous in v0 and g, and vt (·, ·, g, v0) is (F ,B (Xρ))-measurable
in ω.

For each t ≥ 0, ω ∈ Ω, g ∈ Σ, u0 ∈ Xρ, let

φ (t, ω, g, u0) = ut (·, ω, g, u0) = vt (·, ω, g, v0) + h(x)z (ϑt+·ω) ,

where ut (s, ω, g, u0) = u (t+ s, ω, g, u0) , s ∈ [−ρ, 0]. Then φ (t, ω, g, u0) is the
solution of (3.5)-(3.7) at time t with initial data u0. It is easy to check that φ
satisfies conditions in Definition 2.1, and hence φ is a jointly continuous NRDS in
Xρ and Σ.

For studying the tempered uniform attractors, take the universe of tempered
random sets in Xρ as the attraction universe D, i.e.,

D={D : D is a bounded random set in Xρ satisfing lim
t→∞

e−
1
2mt ‖D (ϑ−tω)‖2ρ = 0}.

The universe D is both inclusion-closed and neighborhood-closed.

4. Uniform estimates of solutions
In this section, we prove uniform estimates of solutions of (3.5)-(3.7).

Lemma 4.1. Assume that assumptions (H1) , (H2) and (3.14) hold, then for every
D ∈ D, ω ∈ Ω, there exists T = T (D,ω) > 0 such that for all t ≥ T , g ∈ Σ and
v0 ∈ D (ϑ−tω), the solution u of (3.5)-(3.7) satisfies

‖ut (·, ϑ−tω, θ−tg, u0)‖2ρ +
∫ t

0

em(r−t)‖∇u (r, ϑ−tω, θ−tg, u0)‖2dr

+

∫ t

0

em(r−t) ‖u (r, ϑ−tω, θ−tg, u0)‖pLp dr ≤ R0 (ω, ρ) ,

(4.1)
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where R0 (ω, ρ) is determined by

R0 (ω, ρ) =M0
η (g0)

1− e−m
+M0

∫ 0

−∞
emr|z (ϑrω)|pdr +M0

∫ 0

−∞
emr|z (ϑr−ρω)|2dr

+M0 sup
−ρ≤s≤0

|z (ϑsω)|2 +M0, (4.2)

where M0 is a positive constant independent of ω, ρ, Σ and D.

Proof. Taking the inner product of (3.16) with v in L2 (O), we find that

1

2

d

dt
‖v(t)‖2 + ‖∇v‖2 =

∫
O
F (x, u(t, x))vdx+

∫
O
f(x, u(t− ρ, x))vdx

+

∫
O
g(t, x)vdx+

∫
O
z (ϑtω) (∆h(x) + h(x))vdx.

(4.3)

By assumption (3.8)(3.9) and Young’s inequality, we obtain∫
O
F (x, u(t))v(t)dx =

∫
O
F (x, u(t))u(t)dx− z (ϑtω)

∫
O
F (x, u(t))h(x)dx

≤ −α1

2
‖u(t)‖pLp + ‖β1‖L1 + ‖β2‖

p
p−1

L
p

p−1
+ c1 |z (ϑtω)|p .

(4.4)

By (3.13) and Young’s inequality, we have∫
O
f(x, u(t− ρ, x))vdx ≤ λ1

4
‖v(t)‖2 + 1

λ1

∫
O

(
L2
f |u(t− ρ)|2 + |η1(x)|2

)
dx

≤
2L2

f

λ1
‖v(t− ρ)‖2+ λ1

4
‖v(t)‖2+c2 |z (ϑt−ρω)|2 + c2 ‖η1‖2 .

(4.5)
For the last two terms on the right-hand side of (4.3), we get∫

O
g(t, x)vdx+

∫
O
z (ϑtω) (∆h(x) + h(x))vdx

≤λ1

16
‖v(t)‖2+ 8

λ1
‖g(t)‖2+ 1

16
‖∇v‖2+4‖∇h‖2 |z (ϑtω)|2+

8

λ1
‖h‖2 |z (ϑtω)|2 .

(4.6)

By (4.3)-(4.6) and Poincare’s inequality, we have

d

dt
‖v (t)‖2 + ‖∇v‖2 + α1 ‖u (t)‖pLp ≤− λ1

4
‖v (t)‖2 +

4L2
f

λ1
‖v (t− ρ)‖2 + c3‖g (t)‖2

+ c3

(
|z (ϑtω)|p + |z (ϑt−ρω)|2 + 1

)
. (4.7)

Multiply (4.7) by emt, where m satisfies (3.14),

d

dt
(emt‖v (t)‖2) + emt‖∇v‖2 + α1e

mt ‖u (t)‖pLp − emt

(
m− λ1

4

)
‖v(t)‖2

≤emt

(
4L2

f

λ1
‖v (t− ρ)‖2 + c3‖g (t)‖2 + c3

(
|z (ϑtω)|p + |z (ϑt−ρω)|2 + 1

))
.

(4.8)
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Replacing ω and g with ϑ−tω and θ−tg, and then integrating over (0, t+ s) for any
fixed s ∈ [−ρ, 0] with t > ρ, we obtain

em(t+s)‖v (t+ s, ϑ−tω, θ−tg, v0)‖2 +
∫ t+s

0

emr‖∇v (r, ϑ−tω, θ−tg, v0)‖2dr

+ α1

∫ t+s

0

emr ‖u (r, ϑ−tω, θ−tg, u0)‖pLp dr

≤‖v0‖2 +
(
m− λ1

4

)∫ t+s

0

emr‖v (r, ϑ−tω, θ−tg, v0)‖2dr

+
4L2

f

λ1

∫ t+s

0

emr‖v (r − ρ, ϑ−tω, θ−tg, v0)‖2dr + c3

∫ t+s

0

emr‖g (r − t)‖2dr

+ c3

∫ t+s

0

emr
(
|z (ϑr−tω)|p + |z (ϑr−ρ−tω)|2 + 1

)
dr. (4.9)

We now estimate the third term on the right-hand side of (4.9)

4L2
f

λ1

∫ t+s

0

emr‖v (r − ρ, ϑ−tω, θ−tg, v0)‖2dr

≤
4L2

f

λ1

∫ t+s

0

em(r+ρ)‖v (r, ϑ−tω, θ−tg, v0)‖2dr +
4L2

f

mλ1
emρ ‖v0‖2ρ .

(4.10)

Then, it follows from (3.14) and (4.9)-(4.10) that

‖v (t+ s, ϑ−tω, θ−tg, v0)‖2 +
∫ t+s

0

em(r−t−s)‖∇v (r, ϑ−tω, θ−tg, v0)‖2dr

+ α1

∫ t+s

0

em(r−t−s) ‖u (r, ϑ−tω, θ−tg, u0)‖pLp dr

≤c4
4L2

fe
m(ρ−t−s)

mλ1
‖v0‖2ρ + c4

∫ t+s

0

em(r−t−s)‖g (r − t)‖2dr

+ c4

∫ t+s

0

em(r−t−s)|z (ϑr−tω)|pdr + c4

∫ t+s

0

em(r−t−s)
(
|z (ϑr−ρ−tω)|2 + 1

)
dr.

(4.11)
Since s ∈ [−ρ, 0], we have for t > ρ,

‖v (t+ s, ϑ−tω, θ−tg, v0)‖2 +
∫ t+s

0

em(r−t)‖∇v (r, ϑ−tω, θ−tg, v0)‖2dr

+ α1

∫ t+s

0

em(r−t) ‖u (r, ϑ−tω, θ−tg, u0)‖pLp dr

≤c4
4L2

fe
m(2ρ−t)

mλ1
‖v‖2ρ + c4e

mρ

∫ t

0

em(r−t)‖g (r − t)‖2dr

+ c4e
mρ

∫ t

0

em(r−t)|z (ϑr−tω)|pdr + c4e
mρ

∫ t

0

em(r−t)
(
|z (ϑr−ρ−tω)|2 + 1

)
dr.

(4.12)
Note that

v (t+ s, ϑ−tω, θ−tg, v0) = u (t+ s, ϑ−tω, θ−tg, u0)− z(ϑsω)h (x) . (4.13)
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So, by (4.12)-(4.13), we obtain

‖u (t+ s, ϑ−tω, θ−tg, u0)‖2 +
∫ t+s

0

em(r−t)‖∇u (r, ϑ−tω, θ−tg, u0)‖2dr

+

∫ t+s

0

em(r−t) ‖u (r, ϑ−tω, θ−tg, u0)‖pLp dr

≤c5e
−mt

(
‖u0‖2ρ + sup

−ρ≤s≤0
|z (ϑsω)|2

)
+ c5

∫ t

0

em(r−t)‖g (r − t)‖2dr

+ c5

∫ t

0

em(r−t)(|z (ϑr−tω)|p + |z (ϑr−ρ−tω)|2)dr + c5|z (ϑsω)|2 + c5.

(4.14)

Since u0 ∈ D (ϑ−tω) , D ∈ D, the tempered condition of D and continuity of z (ϑtω),
there exists a T = T (ω,D) > 1 such that

‖u (t+ s, ϑ−tω, θ−tg, u0)‖2 +
∫ t+s

0

em(r−t)‖∇u (r, ϑ−tω, θ−tg, u0)‖2dr

+

∫ t+s

0

em(r−t) ‖u (r, ϑ−tω, θ−tg, u0)‖pLp dr

≤1 + c5

∫ 0

−t

emr‖g (r)‖2dr + c5

∫ 0

−t

emr|z (ϑrω)|pdr

+ c5

∫ 0

−t

emr|z (ϑr−ρω)|2dr + c5 sup
−ρ≤s≤0

|z (ϑsω)|2 + c5, t ≥ T.

(4.15)

By (3.4), we get that

‖u (t+ s, ϑ−tω, θ−tg, u0)‖2 +
∫ t+s

0

em(r−t)‖∇u (r, ϑ−tω, θ−tg, u0)‖2dr

+

∫ t+s

0

em(r−t) ‖u (r, ϑ−tω, θ−tg, u0)‖pLp dr

≤c6
η (g0)

1− e−m
+ c6

∫ 0

−∞
emr|z (ϑrω)|pdr + c6

∫ 0

−∞
emr|z (ϑr−ρω)|2dr

+ c6 sup
−ρ≤s≤0

|z (ϑsω)|2 + c6, t ≥ T.

(4.16)

The proof of Lemma 4.1 is cmpleted.
By Lemma 4.1, we next get uniform estimates for v in H1

0 (O).

Lemma 4.2. Assume that (H1) , (H2) and (3.14) hold. Then for every D ∈ D, ω ∈
Ω, there exists T = T (D,ω) > ρ + 1 such that for all t ≥ T , g ∈ Σ and v0 ∈
D (ϑ−tω), the solution v of (3.16)-(3.18) satisfies

‖∇v (t+ s, ϑ−tω, θ−tg, v0)‖2+
∫ t

t−ρ

‖∆v (r, ϑ−tω, θ−tg, v0)‖2dr ≤ R1 (ω, ρ) , (4.17)

where R1 (ω, ρ) given by

R1 (ω, ρ) =M1
η (g0)

1− e−m
+M1

∫ 0

−∞
emr|z (ϑrω)|pdr +M1

∫ 0

−∞
emr|z (ϑr−ρω)|2dr
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+M1 sup
−ρ≤s≤0

|z (ϑsω)|2 +M1, (4.18)

where M1 is a positive constant independent of ω, ρ, Σ and D.

Proof. Taking the inner product of (3.16) with −∆v in L2 (O), we derive that

1

2

d

dt
‖∇v (t)‖2+‖∆v‖2=−

∫
O
F (x, u (t))∆vdx−

∫
O
f (x, u (t−ρ))∆vdx

− z (ϑtω)

∫
O
∆v(∆h (x)+h (x))dx−

∫
O
g (t, x)∆vdx.

(4.19)

Each term of (4.19) is now estimated. By (3.9)-(3.11) and Young’s inequality, we
have

−
∫
O
F (x, u (t))∆vdx

= −
∫
O
F (x, u (t))∆udx+ z (ϑtω)

∫
O
F (x, u (t))∆h (x) dx

≤ ‖β3 (x)‖ ‖∇u‖+ α3‖∇u‖2 + |z (ϑtω)|
∫
O

(
α2|u|p−1

+ β2 (x) |∆h|
)
dx

≤ c1

(
‖∇u (t)‖2 + ‖u (t)‖pLp + |z (ϑtω)|p + 1

)
.

(4.20)

By (3.13) and Young’s inequality, we obtain

−
∫
O
f (x, u (t− ρ))∆vdx ≤

∫
O

(
|f (x, u (t− ρ))|2 + 1

4
|∆v|2

)
dx

≤ L2
f‖u (t− ρ)‖2 + ‖η1‖2 +

1

4
‖∆v (t)‖2.

(4.21)

By Young’s inequality, we have

− z (ϑtω)

∫
O
∆v(∆h (x) + h (x))dx−

∫
O
g (t, x)∆vdx

≤
∫
O
(
1

8
|∆u|2 + 2|z (ϑtω)|2|∆h (x) + h(x)|2)dx+

∫
O

(
1

8
|∆v|2 + 2|g (t, x)|2

)
dx

≤1

4
‖∆v (t)‖2 + c2

(
‖g (t, x)‖2 + |z (ϑtω)|2

)
. (4.22)

By (4.19)-(4.22) and Poincare’s inequality, we get

d

dt
‖∇v‖2 + ‖∆v‖2

≤c3

(
‖∇u (t)‖2 + ‖u (t− ρ)‖2 + ‖u (t)‖pLp + ‖g (t)‖2 + |z (ϑtω)|p + 1

)
.

(4.23)

Now integrating (4.23) from σ to t + s with s ∈ [−ρ, 0], σ ∈ (t+ s− 1, t+ s) and
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t ≥ ρ+ 1, we get

‖∇v (t+ s, ω, g, v0)‖2

≤‖∇v (σ, ω, g, v0)‖2 + c3

∫ t

t−ρ−1

‖∇u (r, ω, g, u0)‖2dr

+ c3

∫ t

t−ρ−1

‖u (r − ρ, ω, g, u0)‖2dr + c3

∫ t

t−ρ−1

‖u (r, ω, g, u0)‖pLp dr

+ c3

∫ t

t−ρ−1

‖g (r)‖2dr + c3

∫ t

t−ρ−1

|z (ϑrω)|pdr + c3.

(4.24)

Replacing ω and g with ϑ−tω and θ−tg, and then integrate over (t+ s− 1, t+ s)
for any fixed s ∈ [−ρ, 0] with t > ρ+ 1, and by (4.13), we obtain

‖∇v (t+ s, ϑ−tω, θ−tg, v0)‖2

≤c4

∫ t

t−ρ−1

‖∇u (r, ϑ−tω, θ−tg, u0)‖2dr + c4

∫ t

t−ρ−1

‖u (r − ρ, ϑ−tω, θ−tg, u0)‖2dr

+ c4

∫ t

t−ρ−1

‖g (r − t)‖2dr + c4

∫ t

t−ρ−1

‖u (r, ϑ−tω, θ−tg, u0)‖pLp dr

+ c4

∫ t

t−ρ−1

|z (ϑr−tω)|pdr + c4. (4.25)

By (4.1), there exists T = T (ω,D) > ρ+ 1 such that for all t ≥ T

e−m(ρ+1)

∫ t

t−ρ−1

(
‖∇u (r, ϑ−tω, θ−tg, u0)‖2 + ‖u (r, ϑ−tω, θ−tg, u0)‖pLp

)
dr

≤
∫ t

t−ρ−1

em(r−t)(‖∇u (r, ϑ−tω, θ−tg, u0)‖2 + ‖u (r, ϑ−tω, θ−tg, u0)‖pLp)dr

≤
∫ t

0

em(r−t)(‖∇u (r, ϑ−tω, θ−tg, u0)‖2+‖u (r, ϑ−tω, θ−tg, u0)‖pLp)dr≤R0 (ω, ρ) .

(4.26)
By (4.15), we find that∫ t

t−ρ−1

‖u (r − ρ, ϑ−tω, θ−tg, u0)‖2dr ≤
∫ t

t−ρ−1

‖ur (·, ϑ−tω, θ−tg, u0)‖2ρ dr

≤ (ρ+ 1) sup
t−ρ−1≤r≤t

‖ur (·, ϑ−tω, θ−tg, u0)‖2ρ

≤c5e
m(ρ+1)

∫ 0

−∞
emr‖g (r)‖2dr + c5e

m(ρ+1)

∫ 0

−∞
emr|z (ϑrω)|pdr

+ c5e
m(ρ+1)

∫ 0

−∞
emr|z (ϑr−ρω)|2dr + c5 sup

−ρ≤s≤0
|z (ϑsω)|2 + c5. (4.27)

Moreover,∫ t

t−ρ−1

‖g (r − t)‖2dr +
∫ t

t−ρ−1

|z (ϑr−tω)|pdr

≤c6e
m(ρ+1)

∫ 0

−∞
emr‖g (r)‖2dr + c6e

m(ρ+1)

∫ 0

−∞
emr|z (ϑrω)|pdr.

(4.28)
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Finally, by Lemma 4.1 and (4.25)-(4.28), we get that for all s ∈ [−ρ, 0] and t > T ,

‖∇v (t+ s, ϑ−tω, θ−tg, v0)‖2

≤c7e
m(ρ+1) η (g0)

1− e−m
+ c7e

m(ρ+1)

∫ 0

−∞
emr|z (ϑrω)|pdr

+ c7e
m(ρ+1)

∫ 0

−∞
emr|z (ϑr−ρω)|2dr + c7 sup

−ρ≤s≤0
|z (ϑsω)|2 + c7.

(4.29)

Now integrating (4.23) from t− ρ to t, there exists T = T (ω,D) ≥ ρ+ 1 such that
for all t ≥ T ,∫ t

t−ρ

‖∆v (r, ϑ−tω, θ−tg, v0)‖2dr

≤‖∇v (t− ρ, ϑ−tω, θ−tg, v0)‖2

+ c3

∫ t

t−ρ

(
‖∇u (r, ϑ−tω, θ−tg, u0)‖2 + ‖u (r, ϑ−tω, θ−tg, u0)‖pLp

)
dr

+ c3

∫ t

t−ρ

‖u (r − ρ, ϑ−tω, θ−tg, u0)‖2dr + c3

∫ t

t−ρ

‖g (r − t)‖2dr

+ c3

∫ t

t−ρ

|z (ϑr−tω)|pdr + c3ρ.

(4.30)

By Lemma 4.1 and (4.26)-(4.30), we obtain

‖∇v (t+ s, ϑ−tω, θ−tg, v0)‖2 +
∫ t

t−ρ

‖∆v (r, ϑ−tω, θ−tg, v0)‖2dr

≤c8
η (g0)

1− e−m
+ c8

∫ 0

−∞
emr|z (ϑrω)|pdr + c8

∫ 0

−∞
emr|z (ϑr−ρω)|2dr

+ c8 sup
−ρ≤s≤0

|z (ϑsω)|2 + c8,

(4.31)

which together with (4.29) completes the proof.
By using (4.13) and Lemma 4.2, we can derive uniform estimates for the solution

u of (3.5)-(3.7) in H1
0 (O).

Lemma 4.3. Assume that (H1) , (H2) and (3.14) hold. Then for every D ∈ D, ω ∈
Ω, there exists T = T (D,ω) > ρ + 1 such that for all t ≥ T , g ∈ Σ and u0 ∈
D (ϑ−tω), the solution u of (3.5)-(3.7) satisfies

‖∇u (t+ s, ϑ−tω, θ−tg, u0)‖2 ≤ R2(ω, ρ), (4.32)

where

R2(ω, ρ) =M2
η (g0)

1− e−m
+M2

∫ 0

−∞
emr|z (ϑrω)|pdr +M2

∫ 0

−∞
emr|z (ϑr−ρω)|2dr

+M2 sup
−ρ≤s≤0

|z (ϑsω)|2 +M2, (4.33)

where M2 is a positive constant independent of ω, ρ, Σ and D.
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Lemma 4.4. Assume that (H1) , (H2) and (3.14) hold. Then for every D ∈ D, ω ∈
Ω, there exists T = T (D,ω) > ρ + 1 such that for all t ≥ T , g ∈ Σ and v0 ∈
D (ϑ−tω), the solution v of (3.16)-(3.18) satisfies

‖∇v (t+s, ϑ−tω, θ−tg, v0)‖pLp+

∫ t

t−ρ

‖v (r, ϑ−tω, θ−tg, v0)‖2p−2
L2p−2 dr≤R3 (ω, ρ) , (4.34)

where R3 (ω, ρ) is given by:

R3 (ω, ρ)=M3
η (g0)

1− e−m
+M3

∫ 0

−∞
emr|z (ϑrω)|2p−2

dr +M3

∫ 0

−∞
emr|z (ϑr−ρω)|2dr

+M3

∫ 0

−∞
emr|z(ϑrω)|pdr +M3 sup

−ρ≤s≤0
|z (ϑsω)|2 +M3, (4.35)

where M3 is a positive constant independent of ω, ρ, Σ and D.

Proof. Taking the inner product of (3.16) with |v|p−2
v in L2 (O), we get that

1

p

d

dt

∫
O
|v|pdx =

∫
O
|v|p−2

v∆vdx+

∫
O
|v|p−2

vF (x, u (t, x)) dx

+

∫
O
|v|p−2

vf (x, u (t− ρ, x)) dx+

∫
O
|v|p−2

vg (t, x) dx

+ z (ϑtω)

∫
O
|v|p−2

v(∆h (x) + h(x))dx.

(4.36)

Integration by parts of the first term on the right-hand side of (4.36), we get that∫
O
|v|p−2

v∆vdx = − (p− 1)

∫
O
|∇v|2|v|p−2

dx ≤ 0. (4.37)

By using Young’s inequality, for p ≥ 2 we obtain

− |u (t)|p ≤ −21−p (|v (t)|p + |z (ϑtω)h (x)|p) . (4.38)

It follows from (3.8), (3.9) and (4.38) that,∫
O
|v|p−2

vF (x, u (t, x)) dx

=

∫
O
|v|p−2

uF (x, u (t, x)) dx−
∫
O
|v|p−2

z (ϑtω)h (x)F (x, u (t, x)) dx

≤− 2k

p
‖v (t)‖2p−2

L2p−2 + c1

(
|z (ϑtω)|2p−2

+ 1
)
.

(4.39)

where k = α1p
2p+2 . By (3.12) and Young’s inequality, the third term on the right-hand

side of (4.36) are bounded by∫
O
|v|p−2

vf (x, u (t− ρ, x)) dx ≤ k

2p

∫
O
|v|2p−2

dx+
p

2k

∫
O
|f (x, u (t− ρ, x))|2dx

≤ k

2p
‖v (t)‖2p−2

L2p−2 + c2‖u (t− ρ, x)‖2 + c2. (4.40)
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For the last two terms on the right-hand side of (4.36), we obtain∫
O
|v|p−2

vg (t, x) dx+ z (ϑtω)

∫
O
|v|p−2

v(∆h (x) + h(x))dx

≤ k

2p
‖v (t)‖2p−2

L2p−2 + c3‖g (t)‖2 + c3|z (ϑtω)|2.
(4.41)

By (4.37) and (4.39)-(4.41), we obtain that

d

dt
‖v (t)‖pLp+k ‖v (t)‖2p−2

L2p−2 ≤ c4

(
‖u (t− ρ)‖2+‖g (t)‖2+|z (ϑtω)|2p−2

+1
)
. (4.42)

Integrating (4.42) over (σ, t+ s) , s ∈ [−ρ, 0], where σ ∈ (t+ s− 1, t+ s) , t ≥ ρ+1,
then we have

‖v (t+ s, ω, g, v0)‖pLp − ‖v (σ, ω, g, v0)‖pLp

≤c4

∫ t

t−ρ−1

‖u (r − ρ, ω, g, u0)‖2dr + c4

∫ t

t−ρ−1

‖g (r)‖2dr

+ c4

∫ t

t−ρ−1

|z (ϑrω)|2p−2
dr + c4 (ρ+ 1) .

(4.43)

Replacing ω and g with ϑ−tω and θ−tg, and then integrating with respect to σ over
(t+ s− 1, t+ s) for any fixed s ∈ [−ρ, 0] ,and by (4.13), we obtain

‖v (t+ s, ϑ−tω, θ−tg, v0)‖pLp

≤
∫ t

t−ρ−1

‖u (r, ϑ−tω, θ−tg, u0)‖pLp dr + c5

∫ t

t−ρ−1

‖ur (·, ϑ−tω, θ−tg, u0)‖2ρ dr

+ c5

∫ t

t−ρ−1

‖g (r − t)‖2dr + c5

∫ t

t−ρ−1

|z (ϑr−tω)|2p−2
dr

+ c5

∫ t

t−ρ−1

|z (ϑr−tω)|pdr + c5 (ρ+ 1) .

(4.44)

By (4.26)-(4.28) and (4.44), there exists T = T (ω,D) > ρ+1, we have for all t ≥ T ,

‖v (t+ s, ϑ−tω, θ−tg, v0)‖pLp

≤c6
η (g0)

1− e−λ
+ c6

∫ 0

−∞
emr|z (ϑrω)|2p−2

dr + c6

∫ 0

−∞
emr|z (ϑr−ρω)|2dr

+ c6

∫ 0

−∞
emr|z(ϑrω)|pdr + c6 sup

−ρ≤s≤0
|z (ϑsω)|2 + c6.

(4.45)

Finally, integrating (4.42) over (t− ρ, t) and replacing ω and g with ϑ−tω and θ−tg,
there exists T = T (ω,D) > ρ+ 1, we find for all t ≥ T ,

k

∫ t

t−ρ

‖v (r, ϑ−tω, θ−tg, v0)‖2p−2
L2p−2

≤‖v (t− ρ, ϑ−tω, θ−tg, v0)‖pLp + c4

∫ t

t−ρ

‖u (r − ρ, ϑ−tω, θ−tg, u0)‖2dr

+ c4

∫ t

t−ρ

‖g (r − t)‖2dr + c4

∫ t

t−ρ

|z (ϑr−tω)|2p−2
d+ c4ρ.

(4.46)
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By (4.26)-(4.28) and (4.45)-(4.46), there exists T = T (ω,D) > ρ+ 1, we get
for all t ≥ T ,

k

∫ t

t−ρ

‖v (r, ϑ−tω, θ−tg, v0)‖2p−2
L2p−2

≤c7
η (g0)

1− e−m
+ c7

∫ 0

−∞
emr|z (ϑrω)|2p−2

dr + c7

∫ 0

−∞
emr|z (ϑr−ρω)|2dr

+ c7

∫ 0

−∞
emr|z(ϑrω)|pdr + c7 sup

−ρ≤s≤0
|z (ϑsω)|2 + c7.

(4.47)

(4.45) and (4.47) lead to conclusion (4.34), which completes the proof.

5. Uniform random attractors
In this section, we prove the existence of tempered uniform random attractors for
(3.5)-(3.7) in Xρ.

Lemma 5.1. Assume that (H1) , (H2) and (3.14) hold. Then the nonautonomous
random dynamical system φ has a closed measurable uniformly D-absorbing set
K = {K (ω) : ω ∈ Ω} ∈ D, that is, for any ω ∈ Ω, D = {D (ω) : ω ∈ Ω} ∈ D, there
is T = T (D,ω) > 0 such that for all t ≥ T , g ∈ Σ and u0 ∈ D (ϑ−tω),

φ (t, ϑ−tω, θ−tg, u0) ⊆ K (ω) ,

where K (ω) is given by:

K (ω) =
{
u ∈ D : ‖ut‖2ρ ≤ R0 (ω, ρ)

}
. (5.1)

Note that

R0 (ω, ρ) =M0
η (g0)

1− e−m
+M0

∫ 0

−∞
emr|z (ϑrω)|pdr +M0

∫ 0

−∞
emr|z (ϑr−ρω)|2dr

+M0 sup
−ρ≤s≤0

|z (ϑsω)|2 +M0. (5.2)

Proof. Given D ∈ D, ω ∈ Ω, by Lemma 4.1, for all t ≥ T , g ∈ Σ and u0 ∈
D (ϑ−tω), we find that

φ (t, ϑ−tω, θ−tg,D(ϑ−tω)) ⊆ K (ω) .

Therefore K uniform attract all elements in D, and then we check that K is tem-
pered. For all γ > 0, we have

e−γt ‖K (ϑ−tω)‖2ρ ≤ e−γtR0 (ϑ−tω, ρ)

=M0e
−γt η (g0)

1− e−m
+M0e

−γt

∫ 0

−∞
emr|z (ϑrω)|pdr+M0e

−γt

∫ 0

−∞
emr|z (ϑr−ρω)|2dr

+M0e
−γt sup

−ρ≤s≤0
|z (ϑsω)|2 +M0e

−γt. (5.3)

By (3.3)-(3.4) and the tempered of z (ϑtω)

lim
t→∞

e−γt ‖K (ϑ−tω)‖2ρ = 0. (5.4)
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Then K ∈ D, which completes the proof.
The the Arzela-Ascoli theorem is then used to prove the uniformly compactness

of the NRDS φ.

Lemma 5.2. Assume that (H1) , (H2) and (3.14) hold. Then the nonautonomous
random dynamical system φ has a uniformly D-pullback compactness absorbing set
in Xρ.

Proof. Set for ω ∈ Ω, for all η > 0, there exists δ = δ(η, ω) > 0, such that

Y1(ω) =
{
y ∈ H1

0 (O) : ‖y‖H1
0 (O) ≤ R(ω)

}
, (5.5)

Y2(ω) =

{
y ∈ Xρ : sup

−ρ≤s1<s2≤0,s2−s1<δ
‖y (s2)− y (s1)‖ ≤ η

}
, (5.6)

and
Y (ω) = Y1(ω) ∩ Y2(ω), (5.7)

where for each ω ∈ Ω, R(ω) is a sufficiently large constant and δ(ω) is a suffi-
ciently small constant. By Arzela-Ascoli theorem and the compactness of embed-
ding H1

0 (O) ↪→ L2(O), Y is compact in Xρ.
Firstly, take the inner product of (3.16) with v in L2 (O), and by (3.8), (3.13)

and Lemmas 4.1–4.4, for every D ∈ D, ω ∈ Ω, there exists T1 = T1 (D,ω) > 0 such
that for all t ≥ T1, g ∈ Σ and u0 ∈ D (ϑ−tω),∫ t

t−ρ

∥∥∥∥ d

dr
v (r, ϑ−tω, θ−tg, v0)

∥∥∥∥2dr ≤ c, (5.8)

where c = c (ω) is positive number. Then for any t ≥ T1 and s1, s2 ∈ [−ρ, 0], we
have

‖vt (s2, ϑ−tω, θ−tg, v0)− vt (s1, ϑ−tω, θ−tg, v0)‖

=

∫ t+s2

t+s1

d

dr
v (r, ϑ−tω, θ−tg, v0) dr

≤|s2 − s1|
1
2

(∫ t+s2

t+s1

∥∥∥∥ d

dr
v (r, ϑ−tω, θ−tg, v0)

∥∥∥∥2dr
) 1

2

≤|s2 − s1|
1
2

(∫ t

t−ρ

∥∥∥∥ d

dr
v (r, ϑ−tω, θ−tg, v0)

∥∥∥∥2dr
) 1

2

≤ c1|s2 − s1|
1
2 .

(5.9)

By using (4.13) and (5.9), we have that for all t ≥ T1 and s1, s2 ∈ [−ρ, 0],

‖ut (s2, ϑ−tω, θ−tng, u0)− ut (s1, ϑ−tω, θ−tg, u0)‖ ≤ c1|s2 − s1|
1
2 + c2 |z (ϑs2−s1ω)| .

(5.10)
Therefore, for all t ≥ T1, ut(·, ϑ−tω,Σ, D) ∈ Y2. By Lemma 4.3, for every

D ∈ D, ω ∈ Ω, there exists T2 = T2 (D,ω) > T1 such that for all t ≥ T2, we have
that u (t, ϑ−tω,Σ, D) ∈ Y1. We get that for all t ≥ T2, ut(·, ϑ−tω,Σ, D) ∈ Y . This
completes the proof.

Now we prove the existence of D-uniform random attractors.
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Theorem 5.1. Assume that (H1) , (H2) and (3.14) hold. Then the nonautonomous
random dynamical system φ has a unique D-uniform random attractors A∈D in
Xρ.

Proof. By Lemmas 5.1, 5.2 and Theorem 2.1, we are able to prove that the NRDS
φ has a unique D-uniform random attractors A={A (ω) : ω ∈ Ω}∈D.

6. Upper semicontinuity of attractors as delay ap-
proaches zero

In order to study the upper semicontinuity of attractors system (3.5)-(3.7) as delay
approaches to zero, we assume that the g0 is an almost periodic function in t ∈ R
with values in H. Since an almost periodic function is bounded and uniformly con-
tinuous on R, it follows that g0 ∈ Cb(R,H), where Cb(R,H) is the space of bounded
continuous functions on R with values in H. Given g ∈ Cb(R,H), denote the norm
of g by ‖g‖Cb(R,H) = sup

t∈R
‖g (t)‖ . Obviously, g ∈ L2

loc (R,H) and is translation com-

pact in L2,w
loc (R,H). Note that all results in the previous sections are valid for the

case that g0 is an almost periodic function.
The following is a basis for judging the upper semicontinuity of attractors when

delay of stochastic delay equation approaches to zero.

Theorem 6.1. Let X be a Banach space. Suppose that for every ρ ≥ 0, let D0 and
Dρ be collections of families of some subsets of X and C([−ρ, 0], X), φ0 and φρ are
continuous nonautonomous random dynamical systems on X and C([−ρ, 0], X). If

(i) for every t ∈ R+, ω ∈ Ω,

lim
n→∞

sup
−ρn≤s≤0

‖φρn
(t, ω, gn, un)(s)− φ0(t, ω, g, x)‖X = 0, (6.1)

for any ρn → 0, gn, g ∈ Σ with gn → g in (Σ, ‖ · ‖Cb(R,X)), un ∈ C([−ρn, 0], X) and
x ∈ X with sup

−ρn≤s≤0

‖un(s)− x‖ → 0;

(ii) φρ has a uniformly Dρ-absorbing set Bρ and a Dρ-uniform random attractors
Aρ ⊆ Bρ, φ0 has a uniformly D0-absorbing set B0 and a D0-uniform random
attractors A0 ⊆ B0, where

Bρ = {Bρ(ω) = {u ∈ C([−ρ, 0], X) : ‖u‖C([−ρ,0],X) ≤ Rρ(ω)}, ω ∈ Ω} ∈ Dρ,

B0 = {B0(ω) = {x ∈ X : ‖x‖X ≤ R0(ω)}, ω ∈ Ω} ∈ D0,

and Rρ(ω) : Ω → R+(ρ ≥ 0) such that for all ω ∈ Ω,

lim sup
ρ→0

sup
u∈Bρ(ω)

‖u‖C([−ρ,0],X) ≤ R0(ω); (6.2)

(iii) for every ω ∈ Ω, if ρn → 0 and un ∈ Aρn(ω), there exist x ∈ X and a
subsequence {unm

}∞m=1 such that

lim
m→∞

sup
−ρnm≤s≤0

‖unm
(s)− x‖X = 0; (6.3)

Then for every ω ∈ Ω,

dH(Aρ(ω),A0(ω)) → 0 as ρ → 0, (6.4)
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where the distance dH is defined for any subset E of C([−ρ, 0], X) and S of X by

dH(E,S) = sup
u∈E

inf
x∈S

sup
−ρ≤s≤0

‖u(s)− x‖X . (6.5)

Proof. If (6.4) is not true, then there exist η > 0 and ρn → 0 such that for all
n ∈ N,

dH(Aρn
(ω),A0(ω)) ≥ 2η,

which implies that there exist un ∈ Aρn
(ω) such that for every fixed n

dH(un,A0(ω)) ≥ η. (6.6)

By (6.3), there exist x0 ∈ X and a subsequence (which is not relabeled) such that

lim
m→∞

sup
−ρn≤s≤0

‖un(s)− x0‖X = 0. (6.7)

Take a sequence {tm}∞m=1 with tm → ∞. By the negatively semi-invariance of Aρn ,
we derive that for each n ∈ N, there exists u1,n ∈ Aρn(ϑ−t1ω) and g1,n ∈ Σ such
that

un = φρn
(t1, ϑ−t1ω, θ−t1g1,n, u1,n). (6.8)

Since u1,n ∈ Aρn
(ϑ−t1ω), by (6.3) we get that there exists x1 ∈ X such that

lim
n→∞

sup
ρn≤s≤0

‖u1,n(s)− x1‖X = 0. (6.9)

Meanwhile, since {g1,n} ⊂ Σ and Σ is compact, there exists g1 ∈ Σ and a subse-
quence of {g1,n} (which is not relabeled) such that

g1,n → g1 as n → ∞. (6.10)

By (6.1) and (6.9)-(6.10) we derive that

lim
n→∞

dH(φρn(t1, ϑ−t1ω, θ−t1g1,n, u1,n), φ0(t1, ϑ−t1ω, θ−t1g1, x1)) = 0. (6.11)

By (6.7)-(6.8) and (6.11) we obtain

x0 = φ0(t1, ϑ−t1ω, θ−t1g1, x1). (6.12)

Since Aρn
(ϑ−t1ω) ⊆ Bρn

(ϑ−t1ω) and u1,n ∈ Aρn
(ϑ−t1ω), by (6.2) we derive that

lim sup
n→∞

‖u1,n‖C([−ρn,0],X) ≤ R0(ϑ−t1ω). (6.13)

By (6.9) and (6.13) we get

‖x1‖X ≤ R0(ϑ−t1ω).

Repeating this process for every m ≥ 1, we infer that there exist xm ∈ X and
gm ∈ Σ such that for all m ≥ 1,

x0 = φ0(tm, ϑ−tmω, θ−tmgm, xm), (6.14)

and
‖xm‖X ≤ R0(ϑ−tmω). (6.15)
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Since A0 is a D0-uniform random attractors of φ0, by (6.14)-(6.15) we get

dX(x0,A0(ω)) ≤ dX(φ0(tm, ϑ−tmω, θ−tmgm, B0(ϑ−tmω)),A0(ω)) → 0 as m → 0.
(6.16)

Therefore we have x0 ∈ A0(ω). By (6.7) we derive that

dH(un,A0(ω)) ≤ dH(un, x0) → 0 as n → ∞.

So it contradicts (6.6). The proof of Theorem 6.1 is completed.
For ρ ∈ (0, 1], we write the solution and NRDS of system of (3.5)-(3.7) as uρ

and φρ, and let Aρ = {Aρ(ω) : ω ∈ Ω} be the uniform random attractors of φρ in
Xρ. By Lemma 5.1, we find that the uniformly D-absorbing set Bρ of φρ satisfies
that for all ω ∈ Ω,

Bρ (ω) =
{
u ∈ D : ‖ut‖2ρ ≤ R0 (ω, ρ)

}
, (6.17)

where R0 (ω, ρ) is given by

R0 (ω, ρ) =M0
η (g0)

1− e−m
+M0

∫ 0

−∞
emr|z (ϑrω)|pdr +M0

∫ 0

−∞
emr|z (ϑr−ρω)|2dr

+M0 sup
−ρ≤s≤0

|z (ϑsω)|2 +M0.

Then for every ω ∈ Ω, we get that

Aρ(ω) ⊆ Bρ(ω). (6.18)

For ρ = 0, from (3.5)-(3.7) we obtain

du−∆udt=F (x, u (t, x)) dt+f (x, u (t, x)) dt+ g (t, x) dt+ h (x) dω, x ∈ O, t ≥ 0,
(6.19)

with boundary condition

u (t, x) = 0, x ∈ ∂O, t ≥ 0, (6.20)

and initial data
u0 (x) = u (0, x) , x ∈ O. (6.21)

The NRDS generated by (6.19)-(6.21) is denoted by φ0, and the collection of all
tempered families of nonempty subsets of L2(O) is denoted by D0:

D0 = {{D(ω) ⊆ L2(O) : ω ∈ Ω} : lim
t→−∞

ect ‖D(t, θtω)‖ = 0, ∀c > 0}.

By section 4, we obtain that φ0 has a D0-random uniform attractors A0 = {A0(ω) :
ω ∈ Ω} in L2(O) and a uniformly D0-absorbing set B0 = {B0(ω) : ω ∈ Ω} given by

B0(ω) = {u ∈ L2(O) : ‖u‖2 ≤ R0(ω)}, (6.22)

where R0(ω) is given by

R0(ω) = M0
η (g0)

1− e−m
+M0

∫ 0

−∞
emr|z (ϑrω)|pdr +M0

∫ 0

−∞
emr|z (ϑrω)|2dr +M0.
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By (6.17) and (6.22), we get

lim sup
ρ→0

‖Bρ(ω)‖ρ =
∥∥B0(ω)

∥∥ . (6.23)

Now we study the convergence of solution of (6.19)-(6.21) as ρ → 0, for which
we need the following assumption:

(H3) There exist α4 > 0 and β4 ∈ Lp∗
(O) such that for all x ∈ O and s ∈ R,∣∣∣∣∂F∂s (x, s)

∣∣∣∣ ≤ α4|s|p−2
+ β4(x), (6.24)

where p∗ = ∞ for p = 2 and p∗ = p
p−2 for p > 2.

Lemma 6.1. Assume that (H1)-(H3) hold. Let uρ and u be the solutions of (3.5)-
(3.7) and (6.19)-(6.21), respectively, then for every ω ∈ Ω, T > 0, η ∈ (0, 1] and
gn, g ∈ Σ, n ∈ N , there exists ρ0 = ρ0(ω, T, η) ∈ (0, 1] such that for all ρ ≤ ρ0 and
t ∈ [0, T ],

sup
−ρ≤s≤0

‖uρ(t+ s, ω, gn, u
ρ
0)− u(t, ω, g, u0)‖

2

≤c( sup
−ρ≤s≤0

‖uρ
0 − u0‖

2
+ ‖gn − g‖Cb(R,H)) + cη(1 + ‖uρ

0‖
2
ρ + ‖u0‖2).

(6.25)

Proof. Let vρ(t, ω, g, vρ0) = uρ(t, ω, gn, u
ρ
0)−hz (ϑtω) and v(t, ω, g, v0) = u(t, ω, gn,

u0)−z (ϑtω) where uρ
0(s) = vρ0(s)+h(x)z (ϑsω) , u0(x) = v0(x), s ∈ [−ρ, 0]. Fix s ∈

[−ρ, 0], and let ṽ(t) = vρ(t+ s)− v(t). Then ṽ satisfies that for t > −s, s ∈ [−ρ, 0],

dṽ

dt
−∆ṽ =F (x, uρ (t+ s))− F (x, u (t))+f (x, uρ (t+s−ρ))− f (x, u (t))

+ gn (t+ s, x)−g (t, x)+(z (ϑt+sω)−z (ϑtω)) (∆h (x)+h(x)).
(6.26)

Taking the inner product of (6.26) with ṽ in L2 (O), we obtain for t > −s, s ∈
[−ρ, 0],

1

2

d

dt
‖ṽ(t)‖2 + ‖∇ṽ(t)‖2

=

∫
O
(F (x, uρ (t+s))−F (x, u (t)))ṽdx+

∫
O
(f (x, uρ (t+s−ρ))−f (x, u (t)))ṽdx

+

∫
O
(gn (t+ s, x)− g (t, x))ṽdx+ (z (ϑt+sω)− z (ϑtω))

∫
O
(∆h (x) + h(x))ṽdx.

(6.27)
For the first term on the right-hand side of (6.27), from (3.10) and (6.24) we get∫

O
(F (x, uρ (t+ s))− F (x, u (t)))ṽdx =

∫
O

∂F

∂s
(x, s) (uρ (t+ s)− u (t)) ṽdx

=

∫
O

∂F

∂s
(x, s) ṽ2dx+ (z (ϑt+sω)− z (ϑtω))

∫
O

∂F

∂s
(x, s)h(x)ṽdx

≤α3‖ṽ‖2 + |z (ϑt+sω)− z (ϑtω)|
∫
O

(
α4(|uρ (t+ s)|+ |u (t)|)p−2

+ β4(x)
)
h(x)ṽdx

≤α3‖ṽ‖2 + c1 |z (ϑt+sω)− z (ϑtω)| (‖uρ (t+ s)‖pLp + ‖u (t)‖pLp + 1)

+ c1|z (ϑt+sω)− z (ϑtω)|2.
(6.28)
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For the second term on the right-hand side of (6.27), from (3.12) we have∫
O
(f (x, uρ (t+s−ρ))−f (x, u (t)))ṽdx≤

∫
O
Cf |uρ (t+s−ρ)−u (t)| |ṽ| dx

≤c2‖ṽ‖2+c2‖uρ (t+s−ρ)−u (t)‖2.
(6.29)

For the last two term on the right-hand side of (6.27), we have∫
O
(gn (t+ s, x)− g (t, x))ṽdx ≤ 1

2
‖ṽ‖2 + 1

2
‖gn (t+ s, x)− g (t, x)‖2. (6.30)

and

(z (ϑt+sω)−z (ϑtω))

∫
O
(∆h (x)+h(x))ṽdx≤‖ṽ‖2+c3|z (ϑt+sω)−z (ϑtω)|2. (6.31)

In conclusion, from (6.27)-(6.31) we get for t > −s, s ∈ [−ρ, 0],

d

dt
‖ṽ(t)‖2 ≤c4‖ṽ(t)‖2 + c4|z (ϑt+sω)− z (ϑtω)|2

+ c4 |z (ϑt+sω)− z (ϑtω)| (‖uρ (t+ s)‖pLp + ‖u (t)‖pLp + 1)

+ c4‖uρ (t+ s− ρ)− u (t)‖2 + ‖gn (t+ s, x)− g (t, x)‖2.

(6.32)

Let t ∈ [0, T ], t ≥ −s. Integration (6.32) over (−s, t), we obtain

‖ṽ(t)‖2≤‖ṽ(−s)‖2+c4

∫ t

−s

‖ṽ(r)‖2dr+c4

∫ t

−s

|z (ϑr+sω)− z (ϑrω)|2dr

+ c4

∫ t

−s

|z (ϑr+sω)− z (ϑrω)| (‖uρ (r + s)‖pLp + ‖u (r)‖pLp + 1) dr

+c4

∫ t

−s

‖uρ (r+s−ρ)−u (r)‖2dr+
∫ t

−s

‖gn (r + s, x)−g (r, x)‖2dr.

(6.33)

For the fifth term on the right-hand side of (6.33), we have∫ t

−s

‖uρ (r + s− ρ)− u (r)‖2dr

≤
∫ ρ−s

−s

‖uρ (r + s− ρ)− u (r)‖2dr +
∫ t

ρ−s

‖uρ (r + s− ρ)− u (r)‖2dr

≤2

∫ ρ−s

−s

‖uρ (r + s− ρ)− u0‖2dr + 2

∫ ρ−s

−s

‖u (r)− u0‖2dr

+

∫ t−ρ

−s

‖uρ (r + s)− u (r + ρ)‖2dr

≤2

∫ 0

−ρ

‖uρ (r)− u0‖2dr + 2

∫ ρ−s

−s

‖u (r)− u0‖2dr + 2

∫ t

−s

‖uρ (r + s)− u (r)‖2dr

+ 2

∫ t

−s

‖u (r + ρ)− u (r)‖2dr

≤2ρ sup
−ρ≤s≤0

‖uρ
0 (s)− u0‖

2
+ 2

∫ ρ−s

−s

‖u (r)− u0‖2dr + 4

∫ t

−s

‖ṽ‖2dr



Upper semicontinuity of attractors for equation 949

+ 4‖h‖2
∫ t

−s

|z (ϑr+sω)− z (ϑrω)|2dr + 2

∫ t

−s

‖u (r + ρ)− u (r)‖2dr. (6.34)

By (6.33)-(6.34) we obtain that for t ∈ [0, T ], t ≥ −s,

‖ṽ(t)‖2≤‖ṽ(−s)‖2 + c5

∫ t

−s

‖ṽ(r)‖2dr + c5

∫ t

−s

|z (ϑr+sω)− z (ϑrω)|2dr

+ c5

∫ t

−s

|z (ϑr+sω)− z (ϑrω)| (‖uρ (r + s)‖pLp + ‖u (r)‖pLp + 1) dr

+ c5ρ sup
−ρ≤s≤0

‖uρ
0 (s)− u0‖

2
+ c5

∫ 2ρ

0

‖u (r)− u0‖2dr

+c5

∫ t

−s

‖u (r+ρ)−u (r)‖2dr+c5

∫ t

−s

‖gn (r+s, x)−g (r, x)‖2dr.

(6.35)

Since z (ϑtω) is uniformly continuous on [−1, T ], given η > 0, there exists ρ1 ∈ (0, 1],
such that for all ρ < ρ1, s ∈ [−ρ, 0] and r ∈ [0, T ],

|z (ϑr+sω)− z (ϑrω)| ≤ η. (6.36)

Since lim
ρ→∞

∫ 2ρ

0
‖u(r)− u0‖2dr = 0, we get that there exists ρ2 ≤ ρ1 such that for

all ρ < ρ2, ∫ 2ρ

0

‖u(r)− u0‖2dr ≤ η. (6.37)

Since u is uniformly continuous on [0, T + 1],we obtain that there exists ρ3 ≤ ρ2
such that for all ρ < ρ3 and r ∈ [0, T ],

‖u(r + ρ)− u(r)‖ ≤ η. (6.38)

Since g ∈ L2
loc

(
R, L2 (O)

)
, we get that there exists ρ4 ≤ ρ3 such that for all ρ < ρ4

and s ∈ [−ρ, 0], ∫ T

0

‖g (r + s)− g (r)‖2dr ≤ η,

which implies that for s ∈ [−ρ, 0],∫ T

0

‖gn (r + s)− g (r)‖2dr

≤2

∫ T

0

‖gn (r + s)− g (r + s)‖2dr + 2

∫ T

0

‖g (r + s)− g (r)‖2dr

≤2T ‖gn − g‖Cb(R,H) + 2η.

(6.39)

By (4.8), we obtain for ρ ∈ (0, 1],∫ t

−s

‖uρ (r + s)‖pLpdr =

∫ t+s

0

‖uρ (t)‖pLpdr

≤c6

(
‖uρ

0‖
2
ρ +

∫ T

0

‖g (r)‖2dr +
∫ T

0

(|z (ϑtω)|p + |z (ϑt−ρω)|p) dr + 1

)
.

(6.40)
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By (6.19), we have that∫ T

0

‖u (r)‖pLpdr ≤ c7

(
‖u0‖2 +

∫ T

0

‖g (r)‖2dr +
∫ T

0

|z (ϑtω)|pdr + 1

)
. (6.41)

By (6.35)-(6.41), we get that for all ρ ≤ ρ4, t ∈ [0, T ], t ≥ −s and s ∈ [−ρ, 0],

‖ṽ(t)‖2 ≤‖ṽ(−s)‖2 + c5

∫ t

−s

‖ṽ(r)‖2dr + c8η(1 + ‖uρ
0‖

2
ρ + ‖u0‖2)

+ c5ρ sup
−ρ≤s≤0

‖uρ
0 (s)− u0‖

2
+ c8 ‖gn − g‖Cb(R,H) .

(6.42)

By Gronwall’s lemma, we obtain that for all ρ ≤ ρ4, t ∈ [0, T ], t ≥ −s and
s ∈ [−ρ, 0],

‖ṽ(t)‖2 ≤c9‖ṽ(−s)‖2 + c9η(1 + ‖uρ
0‖

2
ρ + ‖u0‖2)

+ c9( sup
−ρ≤s≤0

‖uρ
0 (s)− u0‖

2
+ ‖gn − g‖Cb(R,H)).

(6.43)

Since
‖ṽ(−s)‖2 =‖vρ(0)− v(−s)‖2

≤2 ‖uρ(0)− u(−s)‖+ 2‖h‖2|z (ϑ−sω)− z (ω)|2

≤4‖uρ(0)− u0‖2 + 4‖u(−s)− u0‖2 + 2‖h‖2|z (ϑ−sω)− z (ω)|2.

(6.44)

By the continuity of u and z (ϑtω) at t = 0, we obtain that there exists ρ5 ≤ ρ4
such that for all ρ ≤ ρ5,

‖ṽ(−s)‖2 ≤ η + 4 sup
−ρ≤s≤0

‖uρ
0(s)− u0‖

2
. (6.45)

By (6.43)-(6.45), we have that for all ρ ≤ ρ5, t ∈ [0, T ], t ≥ −s and s ∈ [−ρ, 0],

‖ṽ(t)‖2 ≤ c10η(1+‖uρ
0‖

2
ρ+‖u0‖2)+c10( sup

−ρ≤s≤0
‖uρ

0 (s)−u0‖
2
+‖gn−g‖Cb(R,H)). (6.46)

By (6.36)-(6.46), we have that for all ρ ≤ ρ5, t ∈ [0, T ], t ≥ −s and s ∈ [−ρ, 0],

‖uρ(t+ s)− u(t)‖2

≤c11η(1 + ‖uρ
0‖

2
ρ + ‖u0‖2) + c11( sup

−ρ≤s≤0
‖uρ

0 (s)− u0‖
2
+ ‖gn − g‖Cb(R,H)).

(6.47)

By the continuity of u at t = 0, we obtain that there exists ρ6 ≤ ρ5 such that for
all ρ ≤ ρ6, 0 ≤ t ≤ −s,

‖uρ(t+ s)− u(t)‖2 ≤2‖uρ(t+ s)− u0‖2 + 2‖u(t)− u0‖2

≤2 sup
−ρ≤s≤0

‖uρ
0(s)− u0‖

2
+ η.

(6.48)

By (6.47)-(6.48), we get that for all ρ ≤ ρ6, t ∈ [0, T ] and s ∈ [−ρ, 0],

‖uρ(t+ s)− u(t)‖2

≤c12η(1 + ‖uρ
0‖

2
ρ + ‖u0‖2) + c12( sup

−ρ≤s≤0
‖uρ

0 (s)− u0‖
2
+ ‖gn − g‖Cb(R,H)).

(6.49)

The proof of Lemma 6.1 is completed.
We now study that the uniform compactness of attractors with respect to ρ.
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Lemma 6.2. Assume that (H1) , (H2) and (3.14) hold. Let uρ and u be the solutions
of (3.5)-(3.7) and (6.19)-(6.21), respectively. If ω ∈ Ω, ρn ∈ (0, ρ0], ρn → 0, uρn ∈
Aρn (ω), then there exists u ∈ L2 (O) and a subsequence {uρnm }∞m=1 of {uρn} such
that

lim
m→∞

sup
ρnm≤s≤0

‖uρnm (s)− u‖ = 0. (6.50)

Proof. Take a sequence of positive real numbers {tn}∞n=1 , tn → ∞. By the neg-
atively semi-invariance of Aρn , there exists ûn = ûn (ϑ−tnω) ∈ Aρn(ϑ−tnω) and
gn ∈ Σ such that

uρn (ω) =uρn (tn, ϑ−tnω, θ−tngn, ûn)

=φρn (tn, ϑ−tnω, θ−tngn, ûn (ϑ−tnω)) .
(6.51)

By (6.18), we get ûn ∈ Bρn(ϑ−tnω). Due to all estimates in Section 4 are uniform
with respect to ρ and Lemma 5.2, we obtain

1) φρn (tn, ϑ−tnω, θ−tngn, ûn) (0) is precompact in L2 (O) .
2) Given any η > 0, there exists N1 ≥ 1 such that for all n ≥ N1, s ∈ [−ρn, 0],

‖φρn (tn, ϑ−tnω, θ−tngn, ûn) (s)− φρn (tn, ϑ−tnω, θ−tngn, ûn) (0)‖ ≤ η.

By 1), there exists a subsequence of φρn (tn, ϑ−tnω, θ−tngn, ûn) (0) (not relabeled)
is convergent to u ∈ L2(O). We obtain that there exists N2 ≥ N1 such that for all
n ≥ N2,

‖φρn (tn, ϑ−tnω, θ−tngn, ûn) (0)− u‖ ≤ η. (6.52)

By 2) and (6.52), we get that for all n ≥ N2, s ∈ [−ρn, 0],

‖φρn (tn, ϑ−tnω, θ−tngn, ûn) (s)− u‖
≤‖φρn (tn, ϑ−tnω, θ−tngn, ûn) (s)− φρn (tn, ϑ−tnω, θ−tngn, ûn) (0)‖

+ ‖φρn (tn, ϑ−tnω, θ−tngn, ûn) (0)− u‖ ≤ 2η.

By (6.51), we get that for all n ≥ N2, s ∈ [−ρn, 0],

‖uρn(s)− u‖ ≤ 2η.

The proof of Lemma 6.2 is completed.
By Lemma 4.3, Lemma 6.1, Lemma 6.2 and Theorem 6.1, we get that the upper

semicontinuity of attractors as delay approaches to zero.

Theorem 6.2. Assume that (H1) , (H2) , (H3) and (3.14) hold. Then for every
ω ∈ Ω,

lim
ρ→0

dH
(
Aρ (ω) ,A0 (ω)

)
= 0,

where dH is the distance as defined by (6.5) with X = L2(O).
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