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Abstract In this paper, we investigate the finite-time stability of non-instant-
aneous impulsive set differential equations. By using the generalized Gronwall
inequality and a revised Lyapunov method, the finite-time stability criteria
for such equations are obtained. Finally, an example is given to illustrate the
validity of the results.
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1. Introduction
For the real situation, we pay more attention to the stability of the system in a fixed
finite time. Research on the issue of finite time control first started in the 1960s, the
concept of finite-time stability is proposed for the first time by Weiss and Infante
in [30], that is, for a given initial state of the system, its state trajectory always
remains in a given range within a given time interval. Many results [5,6,18,24,33] on
finite-time stability are based on the Lyapunov method under strict assumptions,
that is, the derivative of Lyapunov function is negative. In 2020, Wang et al.
proposed a revised Lyapunov method that weakened the constraints of the Lyapunov
function to study the finite/fixed-time stability of discontinuous systems, where the
derivative of Lyapunov function is indefinite [29]. Moreover, from the perspective
of practical application, the finite-time stability is concerned with the transient
performance of the system within a finite time interval, which has more practical
significance.

Since Millman and Mishki [22, 23] first proposed instantaneous impulse differ-
ential equation in the 1960s, impulse differential equation theory has become an
important research field of differential equations [25, 26, 31]. Recently, the theory
of impulsive differential equation has become an important research field. Impulses
can be divided into instantaneous impulses and non-instantaneous ones according
to the time of action of the impulses. The non-instantaneous pulse means that the
interference process depends on the state and lasts for a period of time. In real life,
non-instantaneous pulse phenomenon is ubiquitous, and it has been widely used
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in pharmacokinetics, population ecological dynamics, infectious disease dynamics
and so on. In 2013, Hernandez and O’Regan [12] first proposed the theory of non-
instantaneous impulsive differential equations and studied the existence of weak and
classical solutions. The research on the theory and application of non-instantaneous
ones has just started, and has attracted the attention of scholars rapidly. The basic
results can be found in the literature [1] and the papers [2–4,11,13,14,17,19,28].

Set differential equations are effective tools for describing uncertain systems.
It has been widely used in the fields of control science, biology, computer and in-
formation processing and so on. In 1969, Pinto, Blasi and Iervolino proposed the
existence and uniqueness of solutions for set differential equations [9]. For system-
atic work on set differential equations, see [15,20]. For most works investigating the
Lyapunov asymptotic stability of instantaneous impulsive set differential equations
in an infinite time interval, see [7, 8, 10,21,27,32].

It is noted that there are few results of non-instantaneous impulsive set dif-
ferential equations. The main contribution of this paper is to give its finite-time
stability criteria by using the generalized Gronwall inequality and an improved Lya-
punov method.

2. Preliminaries
Let Kc(Rn) denote the collection of all nonempty, compact and convex subsets of
Rn. Define the Hausdorff metric

D[A,B] = max{sup
x∈B

d(x,A), sup
y∈A

d(y,B)},

where d(x,A) = inf{d(x, y) : y ∈ A}, A,B ∈ Kc(Rn). In particular,

D[A, θ] = sup
y∈A

d(y, θ),

where θ is the zero element of Kc(Rn).
Given any two sets A,B ∈ Kc(Rn). We called the set C is the Hukuhara

difference of the sets A and B, when A = B + C, where C ∈ Kc(Rn), and it is
denoted by A−B.

Definition 2.1 ( [15]). The mapping F : I = [0, T ] → Kc(Rn) has a Hukuhara
derivative DHF (t0) at a point t0 ∈ I, if

DHF (t0) = lim
h→0+

F (t0 + h)− F (t0)

h
= lim

h→0+

F (t0)− F (t0 − h)

h
,

where h > 0.

Definition 2.2 ( [15]). The Hukuhara integral of F is given by∫
I

F (s)ds =

{∫
I

f(s)ds : f is measurable selector of F

}
.

For the properties of Hukuhara derivative and Hukuhara integral of set-valued
functions, please refer to the literature [15].

Let two increasing sequences of points {tk}m−1
k=1 and {sk}m−1

k=0 be given s.t. 0 <
s0 < tk ≤ sk < tk+1, k = 1, 2, . . . ,m− 1, m ∈ N. Let t0 ∈ [0, s0) ∪

(
∪m−1
k=1 [tk, sk)

)
be a given arbitrary point. Without losing generality, we assume that t0 ∈ [0, s0).
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Consider the non-instantaneous impulsive set differential equation (NISDE)
given by 

DHX = F (t,X), t ∈ (tk, sk] ∪ (tm,+∞),

X(t) = ϕk(t,X(sk − 0)), t ∈ (sk, tk+1],

X(t0) = X0,

(2.1)

where X0 ∈ Kc(Rn), F : ∪m−1
k=0 (tk, sk] ∪ (tm,+∞) × Kc(Rn) → Kc(Rn), ϕk :

(sk, tk+1]×Kc(Rn) → Kc(Rn), k = 0, 1, . . . ,m− 1.
The solution X(t, t0, X0) of the NISDE (2.1) is given by

X(t, t0, X0) =



X0(t), t ∈ (t0, s0],

ϕ0(t,X0(s0 − 0)), t ∈ (s0, t1],

...

Xk(t), t ∈ (tk, sk],

ϕk(t,Xk(sk − 0)), t ∈ (sk, tk+1],

...

Xm(t), t ∈ (tm,+∞),

where k = 1, 2, . . . ,m − 1, X0(t) is the solution of the IVP of the set differential
equation

DHX = F (t,X) for t ∈ [τ, sk] with X(τ) = X̃0 ∈ Kc(Rn), τ ≥ 0, (2.2)
for τ = t0, sk = s0, X̃0 = X0 and Xk(t) is the solution of the IVP of the set
differential equation (2.2) for τ = tk, X̃0 = ϕk−1(tk, Xk−1(sk−1 − 0)).

Defining the functions Ik(t,X) = ϕk(t,X) −X, k = 0, 1, . . . ,m − 1. We know
that the solution X(t, t0, X0) of NISDE (2.1) also satisfies the following equations

X(t, t0, X0) =



X0 +

∫ t

t0

F (s,X(s, t0, X0))ds, t ∈ [t0, s0],

X0 + Ik(t,X(sk − 0, t0, X0)) +

k∑
i=0

∫ si

ti

F (s,X(s, t0, X0))ds

+

k−1∑
i=0

Ii(ti+1, X(si, t0, X0)), t ∈ (sk, tk+1], k = 0, 1, . . . ,m− 1,

X0 +

k−1∑
i=0

∫ si

ti

F (s,X(s, t0, X0))ds+

∫ t

tk

F (s,X(s, t0, X0))ds

+

k−1∑
i=0

Ii(ti+1, X(si, t0, X0)), t ∈ (tk, sk], k = 1, 2, . . . ,m− 1,

X0 +

m−1∑
i=0

∫ si

ti

F (s,X(s, t0, X0))ds+

∫ t

tm

F (s,X(s, t0, X0))ds

+

m−1∑
i=0

Ii(ti+1, X(si, t0, X0)), t ∈ (tm,+∞).

(2.3)
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If F (t, θ) = θ for t ∈ ∪m−1
k=0 (tk, sk] ∪ (tm,+∞) and ϕk(t, θ) ≡ θ for t ∈ (sk, tk+1],

k = 0, 1, . . . ,m− 1, then NISDE (2.1) has a trivial solution X(t) = θ.

3. Criteria for Finite-time Stability
We first discuss the finite-time stability of NISDE (2.1) by using the generalized
Gronwall inequality. Secondly, we use the improved Lyapunov method to discuss
its finite-time uniformly stability and fixed-time uniformly stability.

For convenience, we first give the following sets required in this paper.

K = {c ∈ C[R+,R+] : c is strictly increasing and c(0) = 0},
K∞ = {c ∈ K : lim

s→+∞
c(s) = +∞}.

We now introduce the class Λ of Lyapunov-like functions.

Definition 3.1. Let J ⊂ R+ is a given interval, ∆ ⊂ Kc(Rn) be a given set, and
θ ∈ ∆. We say that the function V (t,X) : J ×∆ → R+, V (t, θ) ≡ 0 belongs to the
class Λ(J,∆) if

(H1) The function V (t,X) is continuous on J/{sk ∈ J} ×∆ and

|V (t,X)− V (t, X̄)| ≤ LD[X, X̄],

where | · | denotes the absolute value in R, X, X̄ ∈ ∆, L > 0.
(H2) For each sk ∈ J and X ∈ ∆ there exists finite limits

V (sk − 0, X) = lim
t→s−k

V (t,X), V (sk + 0, X) = lim
t→s+k

V (t,X),

and V (sk − 0, X) = V (sk + 0, X) = V (sk, X).
(H3) For any X ̸= 0, V (t,X) > 0, V (t, 0) = 0, and V (t,X) → +∞ when D[X, θ] →

+∞.

Remark 3.1. We note that the constraint of the Lyapunov function is weakened if
the derivative of the function V ∈ Λ(R+,Kc(Rn)) is relaxed to have indefiniteness
for almost every t. Such a type of Lyapunov function may be called almost indefinite
Lyapunov-like function.

Definition 3.2. The trivial solution of NISDE (2.1) is said to be

(S1) finite-time stable, if for given values 0 < c1 < c2 < ∞, t0 ∈ [0, s0) ∪
(
∪m−1
k=1

[tk, sk)
)
, T > 0, the inequality D[X0, θ] < c1 implies D[X(t, t0, X0), θ] < c2

for any t ∈ [t0, t0 + T ];
(S2) finite-time attractive, if there exists a T (t0, X0) > 0 s.t. for any t0 ∈ [0, s0) ∪(

∪m−1
k=1 [tk, sk)

)
, the equalities limt→T X(t, t0, X0) = θ and X(t, t0, X0) = θ

hold for t ≥ T (t0, X0), where the settling time T (t0, X0) > 0;
(S3) Lyapunov uniformly stable, if for each ϵ > 0 there exists a δ = δ(ϵ) > 0

s.t. for any t0 ∈ [0, s0) ∪
(
∪m−1
k=1 [tk, sk)

)
with D[X0, θ] < δ, the inequality

D[X(t, t0, X0), θ] < ϵ holds for t ≥ t0;
(S4) finite-time uniformly stable, if (S2) and (S3) hold.
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(S5) fixed-time uniformly stable, if (S4) holds and T (t0, X0) is uniformly bounded
on X0, that is, there exists Tmax > 0 s.t. T (t0, X0) ≤ t0 + Tmax.

In order to get the main results of this paper, the following necessary conditions
are given:

(A1) The function F ∈ C
(
∪m−1
k=0 (tk, sk] ∪ (tm,+∞)

)
,Kc(Rn)

)
is such that for any

(τ,X0) : τ ∈ [tk, sk), X0 = X̃0 ∈ Kc(Rn), k = 0, 1, . . . ,m − 1, the system of
SDE (2.2) has a solution X(t, τ,X0) ∈ C1([τ, sk],Kc(Rn)).

(A2) The function ϕk ∈ C((sk, tk+1] × Kc(Rn),Kc(Rn)) is such that for any t ∈
(sk, tk+1] there exists at the least one function Z : (sk, tk+1] × Kc(Rn) →
Kc(Rn) such that Z(t,X) = ϕk(t,X) and Z(t, θ) ≡ θ.

Lemma 3.1 ( [16]). Assume that the following conditions are satisfied:

(B1) The function u(t) is nonnegative, piecewise continuous and left continuous at
the discontinuities of the first type for each t ≥ t0.

(B2) The inequality u(t) ≤ u(t0) +

∫ t

t0

λ(s)u(s)ds +
∑

t0<ti≤t

βiu(ti), t ≥ t0 holds,

where the continuous function λ(t) is nonnegative and the constant βi ≥ 0.

Then, u(t) ≤ u(t0)
∏

t0<ti≤t

(1 + βi) exp(

∫ t

t0

λ(s)ds), t ≥ t0.

Theorem 3.1. Assume that the conditions of (A1) and (A2) are satisfied, and

(A3) There exists a continuous function λ(t) > 0 such that D[F (t,X(t)), θ] ≤
λ(t)D[X(t), θ], t /∈ (sk, tk+1], X ∈ Kc(Rn) holds, where k = 0, 1, · · · ,m− 1.

(A4) The function Ik(t,X) is non-increasing in t, k = 0, 1, . . . ,m− 1.
(A5) There exist constants βi ≥ 0 such that

D[
∑

t0≤ti<t

Ii(ti+1, X(si − 0)), θ] ≤
∑

t0≤ti<t

βiD[X(ti), θ],

t ∈ (sk, tk+1], X ∈ Kc(Rn) holds, where k = 0, 1, · · · ,m− 1;

(A6) The inequality
∏

t0≤ti<t

(1+βi) exp(

∫ t

t0

λ(s)ds) <
c2
c1

, t ∈ [t0, t0+T ] holds, where

0 < c1 < c2 < ∞.

Then the solution X(t, t0, X0) of NISDE (2.1) is finite-time stable.

Proof. Let t ∈ [t0, s0]. From (2.3), we get X(t) = X0 +

∫ t

t0

F (s,X(s, t0, X0))ds.

Then from condition (A3), we obtain

D[X(t), θ] ≤ D[X0, θ] +

∫ t

t0

λ(s)D[X(s), θ]ds.

Due to Lemma 3.1, one has

D[X(t), θ] ≤ D[X0, θ] exp(

∫ t

t0

λ(s)ds).
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Let t ∈ (s0, t1]. From (2.3) and condition (A4), we obtain

X(t) ≤ X0 +

∫ s0

t0

F (s,X(s, t0, X0))ds+ I0(t1, X(s0 − 0, t0, X0)).

From condition (A3), (A5), we get

D[X(t), θ] ≤ D[X0, θ] +

∫ t

t0

λ(s)D[X(s), θ]ds+ β0D[X(t0), θ].

Due to Lemma 3.1, one derives

D[X(t), θ] ≤ D[X0, θ](1 + β0) exp(

∫ t

t0

λ(s)ds).

Let t ∈ (t1, s1]. Similarly, from (2.3), (A3) and (A5), one has

X(t) =X0 +

∫ s0

t0

F (s,X(s, t0, X0))ds+

∫ t

t1

F (s,X(s, t0, X0))ds

+ I0(t1, X(s0 − 0, t0, X0)),

D[X(t), θ] ≤D[X0, θ]+

∫ s0

t0

λ(s)D[X(s), θ]ds+

∫ t

t1

λ(s)D[X(s), θ]ds+β0D[X(t0), θ]

≤ D[X0, θ] +

∫ t

t0

λ(s)D[X(s), θ]ds+ β0D[X(t0), θ].

Thus, by Lemma 3.1, one derives

D[X(t), θ] ≤ D[X0, θ](1 + β0) exp(

∫ t

t0

λ(s)ds).

Let t ∈ (s1, t2]. From (2.3) and conditions (A3)− (A5), one has

X(t) = X0 +

1∑
i=0

∫ si

ti

F (s,X(s, t0, X0))ds+ I0(t1, X(s0 − 0, t0, X0))

+ I1(t,X(s1 − 0, t0, X0))

≤ X0 +

1∑
i=0

∫ si

ti

F (s,X(s, t0, X0))ds+

1∑
i=0

Ii(ti+1, X(si, t0, X0)),

D[X(t), θ] ≤ D[X0, θ] +

1∑
i=0

∫ si

ti

λ(s)D[X(s), θ]ds+

1∑
i=0

βiD[X(ti), θ]

≤ D[X0, θ] +

∫ t

t0

λ(s)D[X(s), θ]ds+

1∑
i=0

βiD[X(ti), θ].

Furthermore, one derives

D[X(t), θ] ≤ D[X0, θ]

1∏
i=0

(1 + βi) exp(

∫ t

t0

λ(s)ds).
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Continue this process and from induction argument, one obtains

D[X(t), θ] ≤ D[X0, θ]
∏

t0≤ti<t

(1 + βi) exp(

∫ t

t0

λ(s)ds), t ≥ 0. (3.1)

Whenever D[X0, θ] < c1, from (3.1) and condition (A6), one derives

D[X(t), θ] < c2, t ∈ [t0, t0 + T ].

Therefore, Theorem 3.1 is proved.

Theorem 3.2. Assume that the conditions of (A1), (A2) are satisfied, the functions
r(t), p(t) are respectively indefinite and negative, and

(A7) For the function V ∈ Λ(R+,Kc(Rn)),
(i) the inequality V̇ (t,X(t)) ≤ r(t)V (t,X(t)) + p(t)V a(t,X(t)), t /∈ (sk, tk+1],
X ∈ Kc(Rn) holds, where 0 < a < 1, k = 0, 1, · · · ,m− 1;
(ii) the inequality V (t, ϕk(t,X(t))) ≤ η

1
1−aV (s−k , X(s−k )), t ∈ (sk, tk+1], X ∈

Kc(Rn) holds, where η > 0, k = 0, 1, · · · ,m− 1;
(iii) the inequality φ1(D[X(t), θ]) ≤ V (t,X(t)) ≤ φ2(D[X(t), θ]), t ∈ R+,
X ∈ Kc(Rn) holds, where φ1, φ2 ∈ K∞.

(A8) There exists G ≥ 0, γ > 0 and H ≥ 0 such that∫ +∞

0

|r(s)|ds < G,

∫ t

t0

|p(s)|ds < −γ(t− t0) +H.

Then the solution X(t, t0, X0) of NISDE (2.1) is finite-time uniformly stable. More-
over, the settling time T (t0, X0) is given by

T (t0, X0) = t0 +
V 1−a(t0, X0)e

G(1−a) + ηm(1− a)H

ηm(1− a)γ
, 0 < η < 1

and

T (t0, X0) = t0 +
ηmV 1−a(t0, X0)e

G(1−a) + (1− a)H

(1− a)γ
, η ≥ 1.

Proof. Let t0 ∈ [0, s0). From the conditions (A7)(i), (ii), one gets

V̇ (t,X(t)) · V −a(t,X(t)) ≤ r(t)V 1−α(t,X(t)) + p(t), t ∈ (tk, sk], (3.2)
V 1−a(t, ϕk(t,X(t))) ≤ ηV 1−a(s−k , X(s−k )), t ∈ (sk, tk+1]. (3.3)

Defining Y (t) = V 1−a(t,X(t)). From (3.2), (3.3) and 0 < a < 1, one gets

Ẏ (t) ≤ (1− a)|r(t)|Y (t) + (1− a)p(t), t ∈ (tk, sk], (3.4)
Y (t) ≤ ηY (s−k ), t ∈ (sk, tk+1]. (3.5)

Let t ∈ [t0, s0]. According to inequality (3.4), one gets

Y (t) ≤ Y (0)e
(1−a)

∫ t
t0

|r(ϱ)|dϱ
+ (1− a)

∫ t

t0

p(s)e(1−a)
∫ t
s
|r(ϱ)|dϱds. (3.6)
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From the continuity of Y (t) and inequality (3.6), one gets

Y (s−0 ) ≤ Y (0)e(1−a)
∫ s0
t0

|r(ϱ)|dϱ + (1− a)

∫ s0

t0

p(s)e(1−a)
∫ s0
s

|µ(ϱ)|dϱds. (3.7)

Let t ∈ (s0, t1]. From inequalities (3.5) and (3.7), we obtain

Y (t1) ≤ ηY (s−0 ) ≤ ηY (0)e(1−a)
∫ s0
t0

|r(ϱ)|dϱ + (1− a)η

∫ s0

t0

p(s)e(1−a)
∫ s0
s

|r(ϱ)|dϱds.

(3.8)
Let t ∈ (t1, s1]. Similarly, due to inequalities (3.4) and (3.8), one has

Y (t) ≤ Y (t1)e
(1−a)

∫ t
t1

|r(ϱ)|dϱ
+ (1− a)

∫ t

t1

p(s)e(1−a)
∫ t
s
|r(ϱ)|dϱds

≤ ηY (0)e
(1−a)

∫ t
t0

|r(ϱ)|dϱ
+ (1− a)η

∫ s0

t0

p(s)e(1−a)
∫ t
s
|r(ϱ)|dϱds

+ (1− a)

∫ t

t1

p(s)e(1−a)
∫ t
s
|r(ϱ)|dϱds,

(3.9)

Y (s−1 ) ≤ ηY (0)e(1−a)
∫ s1
t0

|r(ϱ)|dϱ + (1− a)η

∫ s0

t0

p(s)e(1−a)
∫ s1
s

|r(ϱ)|dϱds

+ (1− a)

∫ s1

t1

p(s)e(1−a)
∫ s1
s

|r(ϱ)|dϱds.

(3.10)

Let t ∈ (s1, t2]. From formulas (3.5) and (3.10), we obtain

Y (t2) ≤ ηY (s−1 ) ≤ η2Y (0)e(1−a)
∫ s1
t0

|r(ϱ)|dϱ + (1− a)η2
∫ s0

t0

p(s)e(1−a)
∫ s1
s

|r(ϱ)|dϱds

+ (1− a)η

∫ s1

t1

p(s)e(1−a)
∫ s1
s

|r(ϱ)|dϱds.

Continue this process. By the method of induction, we get

Y (t) ≤ ηkY (0)e
(1−a)

∫ t
t0

|r(ϱ)|dϱ
+ (1− a)ηk

∫ s0

t0

p(s)e(1−a)
∫ t
s
|r(ϱ)|dϱds

+ (1− a)
k−1∑
j=1

ηk−j

∫ sj

tj

p(s)e(1−a)
∫ t
s
|r(ϱ)|dϱds

+ (1− a)

∫ t

tk

p(s)e(1−a)
∫ t
s
|r(ϱ)|dϱds

holds for t ∈ [tk, sk], k = 2, 3, · · · ,m− 1, and

Y (t) ≤ ηk+1Y (0)e(1−a)
∫ sk
t0

|r(ϱ)|dϱ + (1− a)ηk+1

∫ s0

t0

p(s)e(1−a)
∫ sk
s

|r(ϱ)|dϱds

+ (1− a)

k−1∑
j=1

ηk+1−j

∫ sj

tj

p(s)e(1−a)
∫ sk
s

|r(ϱ)|dϱds

+ (1− a)η

∫ sk

tk

p(s)e(1−a)
∫ sk
s

|r(ϱ)|dϱds
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holds for t ∈ (sk, tk+1], k = 2, 3, · · · ,m− 1.
Therefore, we have

Y (t) ≤ ηmY (0)e
(1−a)

∫ t
t0

|r(ϱ)|dϱ
+ (1− a)ηme

(1−a)
∫ t
t0

|r(s)|ds
∫ s0

t0

p(s)ds

+ (1− a)

m−1∑
j=1

ηm−je
(1−a)

∫ t
tj

|r(s)|ds
∫ sj

tj

p(s)ds

+ (1− a)e(1−a)
∫ t
tm

|r(s)|ds
∫ t

tm

p(s)ds

(3.11)

holds for t ∈ [tm,+∞].
The following discussion is divided into two cases according to the value of η.
Case I. 0 < η < 1. From (A8), (3.11) and 0 < a < 1, one gets

Y (t) ≤ Y (0)e(1−a)
∫ +∞
0

|r(ϱ)|dϱ ≤ eG(1−a)Y (0).

Furthermore, one gets
V (t,X(t)) ≤ eGV (t0, X0). (3.12)

Combined with condition (A7)(iii), we get

V (t0, X0) ≤ φ2(D[X0, θ]), (3.13)
D[X(t), θ] ≤ φ−1

1 (V (t,X(t))). (3.14)

From inequalities (3.12) and (3.13), one gets

V (t,X(t)) ≤ eGφ2(D[X0, θ]). (3.15)

Combined with formulas (3.14) and (3.15), we have

D[X(t), θ] ≤ φ−1
1 (eGφ2(D[X0, θ])). (3.16)

For ϵ > 0, we choose δ = φ−1
2 (φ1(ϵ)

eG
) > 0, then, for D[X0, θ] < δ, one has

D[X(t), θ] ≤ φ−1
1 (eGφ2(φ

−1
2 (

φ1(ϵ)

eG
))) = ϵ.

That is, the solution of NISDE (2.1) is Lyapunov uniformly stable.
In addition, from (A8), (3.11) and 0 < a < 1, we can also get

Y (t) ≤ Y (0)e(1−a)
∫ +∞
0

|r(ϱ)|dϱ + (1− a)ηm
∫ t

t0

p(s)ds

≤ Y (0)e(1−a)G + (1− a)ηm(−γ(t− t0) +H).

Obviously, we get that V (t,X(t)) ≡ 0 when t ≥ t0 +
V 1−a(t0,X0)e

(1−a)G+ηm(1−a)H
ηm(1−a)γ .

Therefore the solution of NISDE (2.1) is finite-time attractive.
Case II. η ≥ 1. From (A8), (3.11) and 0 < a < 1, one gets

Y (t) ≤ ηmY (0)e(1−a)
∫ +∞
0

|r(ϱ)|dϱ ≤ ηme(1−a)GY (0).



Stability of non-instantaneous impulsive SDEs 963

Furthermore, one gets

V (t,X(t)) ≤ eGη
m

1−aV (t0, X0). (3.17)

From inequalities (3.13), (3.17), one gets

V (t,X(t)) ≤ eGη
m

1−aφ2(D[X0, θ]). (3.18)

Combined with inequalities (3.14) and (3.18), we have

D[X(t), θ] ≤ φ−1
1 (η

m
1−a eGφ2(D[X0, θ])). (3.19)

Thus, for ϵ > 0, we can choose δ = φ−1
2 ( φ1(ϵ)

η
m

1−a eG
) > 0, then, for D[X0, θ] < δ,

one gets
D[X(t), θ] ≤ φ−1

1 (η
m

1−a eGφ2(φ
−1
2 (

φ1(ϵ)

η
m

1−a eG
))) = ϵ.

That is, the solution of NISDE (2.1) is Lyapunov uniformly stable.
From condition (A8), formula (3.11) and 0 < a < 1, one has

Y (t) ≤ Y (0)ηme(1−a)
∫ +∞
0

|r(ϱ)|dϱ + (1− a)

∫ t

t0

p(s)ds

≤ Y (0)ηme(1−a)G + (1− a)(−γ(t− t0) +H).

Similarly, one gets that V (t,X(t)) ≡ 0 when t ≥ t0 +
ηmV 1−a(t0,X0)e

(1−a)G+(1−a)H
(1−a)γ .

Therefore the solution of NISDE (2.1) is finite-time attractive.
Taken together, the solution of NISDE (2.1) is finite-time uniformly stable.

Theorem 3.3. Assume that the conditions of (A1), (A2) are satisfied, the function
r(t) is indefinite, p(t) and q(t) are negative functions, and

(A9) For the function V ∈ Λ(R+,Kc(Rn)),
(i) the inequality V̇ (t,X(t)) ≤ r(t)V (t,X(t))+p(t)V a(t,X(t))+q(t)V b(t,X(t)),
t /∈ (sk, tk+1], X ∈ Kc(Rn) holds, where 0 < a < 1, b > 1, k = 0, 1, · · · ,m− 1;
(ii) the inequality V (t, ϕk(t,X(t))) ≤ η

1
(1−a)(1−b)V (s−k , X(s−k )), t ∈ (sk, tk+1],

X ∈ Kc(Rn) holds, where η > 0, k = 0, 1, · · · ,m− 1;
(iii) the inequality φ1(D[X(t), θ]) ≤ V (t,X(t)) ≤ φ2(D[X(t), θ]), t ∈ R+,
X ∈ Kc(Rn) holds, where φ1, φ2 ∈ K∞.

(A10) There exists positive numbers G, γ,H, ξ and K such that∫ +∞

0

|r(s)|ds < G,

∫ t

t0

|p(s)|ds < −γ(t−t0)+H,

∫ t

t0

|q(s)|ds < −ξ(t−t0)+K.

Then the solution X(t, t0, X0) of NISDE (2.1) is fixed-time uniformly stable, and
the settling time T (t0, X0) is given by

T (t0, X0) = t0 +
e(1−a)Gη

m
1−b +H(1− a)

γ(1− a)
+

1 + (b− 1)Ke(1−b)Gη
m

1−a

(b− 1)ξe(1−b)Gη
m

1−a
, 0 < η < 1

and

T (t0, X0) = t0 +
e(1−a)G + (1− a)Hη

m
1−b

(1− a)γη
m

1−b
+

1 + (b− 1)Ke(1−b)G

(b− 1)ξe(1−b)G
, η ≥ 1.
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Proof. First, we proved that the solution of NISDE (2.1) is fixed-time attractive,
that is, there exists positive numbers T1 and t̃ with t0 < t̃ < T1 s.t. V (t̃, X̃) ≤ 1.
Instead, we assume V (t,X) > 1 for t ∈ [t0, T1].

Let t0 ∈ [0, s0). Since p(t) < 0, b > 1, from conditions (A9)(i), (ii), one gets

V̇ (t,X(t)) · V −b(t,X(t)) ≤ q(t) + |r(t)|V 1−b(t,X(t)), t ∈ (tk, sk], (3.20)

V 1−b(t, ϕk(t,X(t))) ≥ η
1

1−aV 1−b(s−k , X(s−k )), t ∈ (sk, tk+1]. (3.21)

Defining Z(t) = V 1−b(t,X(t)). From formulas (3.20), (3.21) and b > 1, we have

Ż(t) ≥ (1− b)q(t) + (1− b)|r(t)|Z(t), t ∈ (tk, sk], (3.22)

Z(t) ≥ η
1

1−aZ(s−k ), t ∈ (sk, tk+1]. (3.23)

Let t ∈ [t0, s0]. According to formula (3.22), one derives

Z(t) ≥ Z(0)e
(1−b)

∫ t
t0

|r(ϱ)|dϱ
+ (1− b)

∫ t

t0

q(s)e(1−b)
∫ t
s
|r(ϱ)|dϱds. (3.24)

From the continuity of Z(t) and formula (3.24), we obtain

Z(s−0 ) ≥ Z(0)e(1−b)
∫ s0
t0

|r(ϱ)|dϱ + (1− b)

∫ s0

t0

q(s)e(1−b)
∫ s0
s

|r(ϱ)|dϱds. (3.25)

Let t ∈ (s0, t1]. From inequalities (3.23) and (3.25), we obtain

Z(t1) ≥ η
1

1−aZ(s−0 ) ≥ η
1

1−aZ(0)e(1−b)
∫ s0
t0

|r(ϱ)|dϱ

+ (1− b)η
1

1−a

∫ s0

t0

q(s)e(1−b)
∫ s0
s

|r(ϱ)|dϱds.
(3.26)

Let t ∈ (t1, s1]. Due to formulas (3.22) and (3.26), one has

Z(t) ≥ Z(t1)e
(1−b)

∫ t
t1

|r(ϱ)|dϱ
+ (1− b)

∫ t

t1

q(s)e(1−b)
∫ t
s
|r(ϱ)|dϱds

≥ Z(0)η
1

1−a e
(1−b)

∫ t
t0

|r(ϱ)|dϱ
+ (1− b)η

1
1−a

∫ s0

t0

q(s)e(1−b)
∫ t
s
|r(ϱ)|dϱds

+ (1− b)

∫ t

t1

q(s)e(1−b)
∫ t
s
|r(ϱ)|dϱds.

(3.27)

and combined with the continuity of Z(t), we have

Z(s−1 ) ≥ η
1

1−aZ(0)e(1−b)
∫ s1
t0

|r(ϱ)|dϱ + (1− b)η
1

1−a

∫ s0

t0

q(s)e(1−b)
∫ s1
s

|r(ϱ)|dϱds

+ (1− b)

∫ s1

t1

q(s)e(1−b)
∫ s1
s

|r(ϱ)|dϱds. (3.28)

Let t ∈ (s1, t2]. From inequalities (3.23) and (3.28), we obtain

Z(t2) ≥ η
1

1−aZ(s−1 ) ≥ Z(0)η
2

1−a e(1−b)
∫ s1
t0

|r(ϱ)|dϱ

+ (1− b)η
2

1−a

∫ s0

t0

q(s)e(1−b)
∫ s1
s

|r(ϱ)|dϱds

+ (1− b)η
1

1−a

∫ s1

t1

q(s)e(1−b)
∫ s1
s

|r(ϱ)|dϱds.
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Repeating the above process, we get

Z(t) ≥η
k

1−aZ(0)e
(1−b)

∫ t
t0

|r(ϱ)|dϱ
+ (1− b)η

k
1−a

∫ s0

t0

q(s)e(1−b)
∫ t
s
|r(ϱ)|dϱds

+(1−b)

k−1∑
j=1

η
k−j
1−a

∫ sj

tj

q(s)e(1−b)
∫ t
s
|r(ϱ)|dϱds+(1−b)

∫ t

tk

q(s)e(1−b)
∫ t
s
|r(ϱ)|dϱds

holds for t ∈ [tk, sk], k = 2, 3, · · · ,m− 1, and

Z(t) ≥ η
k+1
1−aZ(0)e(1−b)

∫ sk
t0

|r(ϱ)|dϱ + (1− b)η
k+1
1−a

∫ s0

t0

q(s)e(1−b)
∫ sk
s

|r(ϱ)|dϱds

+ (1− b)

k−1∑
j=1

η
k+1−j
1−a

∫ sj

tj

q(s)e(1−b)
∫ sk
s

|r(ϱ)|dϱds

+ (1− b)η
1

1−a

∫ sk

tk

q(s)e(1−b)
∫ sk
s

|r(ϱ)|dϱds

holds for t ∈ (sk, tk+1], k = 2, 3, · · · ,m− 1.
Therefore, one gets

Z(t) ≥ η
m

1−aZ(0)e
(1−b)

∫ t
t0

|r(ϱ)|dϱ
+ (1− b)η

m
1−a e

(1−b)
∫ t
t0

|r(s)|ds
∫ s0

t0

q(s)ds

+ (1− b)

m−1∑
j=1

η
m−j
1−a e

(1−b)
∫ t
tj

|r(s)|ds
∫ sj

tj

q(s)ds

+ (1− b)e(1−b)
∫ t
tm

|r(s)|ds
∫ t

tm

q(s)ds

(3.29)

holds for t ∈ [tm,+∞].
The following discussion is divided into two cases according to the value of η.
Case I. 0 < η < 1. From condition (A10), formula (3.29) and b > 1, we have

Z(t) ≥ η
m

1−a (1− b)e(1−b)
∫ +∞
0

|r(ϱ)|dϱ
∫ t

t0

q(s)ds

≥ η
m

1−a (1− b)e(1−b)G(−ξ(t− t0) +K).

(3.30)

Set T1 = t0 +
1+(b−1)η

m
1−a e(1−b)GK

(b−1)ξη
m

1−a e(1−b)G
, inequality (3.30) implies that Z(T1) ≥ 1. From

Z(T1) = V 1−b(T1, X(T1)) and b > 1, we get V (T1, X(T1)) ≤ 1. This contradicts
V (t,X(t)) > 1 for all t ∈ [t0, T1].

Case II. η ≥ 1. From condition (A10), formula (3.29) and b > 1, we have

Z(t) ≥ (1− b)e(1−b)
∫ +∞
0

|r(ϱ)|dϱ
∫ t

t0

q(s)ds

≥ (1− b)e(1−b)G(−ξ(t− t0) +K).

(3.31)

Set T1 = t0 + 1+(b−1)e(1−b)GK
(b−1)ξe(1−b)G , formula (3.31) implies that Z(T1) ≥ 1, that is

V (T1, X(T1)) ≤ 1. This contradicts V (t,X(t)) > 1 for all t ∈ [t0, T1].



966 P. Wang, M. Guo & J.Bao

Similar to the proof of Theorem 3.2, we derive the solution of NISDE (2.1) is
finite-time uniformly stable. Therefore, according to the result of settling time in
Theorem 3.2, we derive that since V 1−a(t̃, X̃) < 1, t0 < t̃ ≤ T1, the inequality
V (t,X(t)) ≡ 0 holds, for

t ≥ t0 +
e(1−a)Gη

m
1−b +H(1− a)

γ(1− a)
+

1 + (b− 1)Ke(1−b)Gη
m

1−a

(b− 1)ξe(1−b)Gη
m

1−a
, 0 < η < 1

and
t ≥ t0 +

e(1−a)G + (1− a)Hη
m

1−b

(1− a)γη
m

1−b
+

1 + (b− 1)Ke(1−b)G

(b− 1)ξe(1−b)G
, η ≥ 1.

Therefore, the solution of NISDE (2.1) is fixed-time uniformly stable.
To verify the validity of the result in this paper, we give the following example.

Example 3.1. Consider the following system:
DHX = r(t)X(t) + p(t), t ∈ (tk, sk] ∪ (tm,+∞),

X(t) = ηX(sk − 0), t ∈ (sk, tk+1],

X(t0) = X0,

(3.32)

where r(t) = 1
1+t2 , X(t) = [x1(t), x2(t)] and p(t) = [−t| sin t|,−t| cos t|] are interval

functions, k = 0, 1, . . . ,m− 1.
Choosing the Lyapunov function as V (t) = (D[X(t), θ])2 = x2

1(t) + x2
2(t),

then one has V̇ (t) ≤ 2r(t)V (t) + 2
√
2q(t)V

1
2 (t) for t ∈ (tk, sk] ∪ (tm,+∞) and

V (t) ≤ η2V (sk − 0) for t ∈ (sk, tk+1], where q(t) = max{−t| sin t|,−t| cos t|},
k = 0, 1, . . . ,m− 1.

Since
∫ +∞

0

2r(ϱ)dϱ = π and
∫ t

t0

2
√
2q(ϱ)dϱ ≤ −8

√
2

3π
(t−t0)+16

√
2, we can find

that the conditions of Theorem 3.2 are satisfied, where a = 0.5, G = π, γ = 8
√
2

3π ,
H = 16

√
2. Therefore, the trivial solution of system (3.32) is finite-time uniformly

stable.
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