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Abstract In this paper, we investigate the finite-time stability of non-instant-
aneous impulsive set differential equations. By using the generalized Gronwall
inequality and a revised Lyapunov method, the finite-time stability criteria
for such equations are obtained. Finally, an example is given to illustrate the
validity of the results.
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1. Introduction

For the real situation, we pay more attention to the stability of the system in a fixed
finite time. Research on the issue of finite time control first started in the 1960s, the
concept of finite-time stability is proposed for the first time by Weiss and Infante
n [30], that is, for a given initial state of the system, its state trajectory always
remains in a given range within a given time interval. Many results [5,6,18,24,33] on
finite-time stability are based on the Lyapunov method under strict assumptions,
that is, the derivative of Lyapunov function is negative. In 2020, Wang et al.
proposed a revised Lyapunov method that weakened the constraints of the Lyapunov
function to study the finite/fixed-time stability of discontinuous systems, where the
derivative of Lyapunov function is indefinite [29]. Moreover, from the perspective
of practical application, the finite-time stability is concerned with the transient
performance of the system within a finite time interval, which has more practical
significance.

Since Millman and Mishki [22, 23] first proposed instantaneous impulse differ-
ential equation in the 1960s, impulse differential equation theory has become an
important research field of differential equations [25,26,31]. Recently, the theory
of impulsive differential equation has become an important research field. Impulses
can be divided into instantaneous impulses and non-instantaneous ones according
to the time of action of the impulses. The non-instantaneous pulse means that the
interference process depends on the state and lasts for a period of time. In real life,
non-instantaneous pulse phenomenon is ubiquitous, and it has been widely used
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in pharmacokinetics, population ecological dynamics, infectious disease dynamics
and so on. In 2013, Hernandez and O’Regan [12] first proposed the theory of non-
instantaneous impulsive differential equations and studied the existence of weak and
classical solutions. The research on the theory and application of non-instantaneous
ones has just started, and has attracted the attention of scholars rapidly. The basic
results can be found in the literature [1] and the papers [2—4,11,13,14,17,19,28].

Set differential equations are effective tools for describing uncertain systems.
It has been widely used in the fields of control science, biology, computer and in-
formation processing and so on. In 1969, Pinto, Blasi and Iervolino proposed the
existence and uniqueness of solutions for set differential equations [9]. For system-
atic work on set differential equations, see [15,20]. For most works investigating the
Lyapunov asymptotic stability of instantaneous impulsive set differential equations
in an infinite time interval, see [7,8,10,21,27,32].

It is noted that there are few results of non-instantaneous impulsive set dif-
ferential equations. The main contribution of this paper is to give its finite-time
stability criteria by using the generalized Gronwall inequality and an improved Lya-
punov method.

2. Preliminaries

Let K.(R™) denote the collection of all nonempty, compact and convex subsets of
R"™. Define the Hausdorff metric

DIA, B] = max{sup d(x,A),sup d(y,B)},
reB yeA

where d(x, A) = inf{d(x,y) : y € A}, A, B € K.(R™). In particular,

D[A, 0] = sup d(y,0),
yeA
where 6 is the zero element of K .(R™).
Given any two sets A, B € K.(R"). We called the set C is the Hukuhara
difference of the sets A and B, when A = B 4+ C, where C € K.(R"), and it is
denoted by A — B.

Definition 2.1 ( [15]). The mapping F' : I = [0,7] — K.(R™) has a Hukuhara
derivative Dy F'(to) at a point to € I, if
F(to+ h) — F(to) — lim F(to) — F(to — h)

DuF(to) = hlgg+ h h—0+ h ’

where h > 0.
Definition 2.2 ( [15]). The Hukuhara integral of F is given by

/F(s)ds = {/f(s)ds : f is measurable selector of F}
I 1

For the properties of Hukuhara derivative and Hukuhara integral of set-valued
functions, please refer to the literature [15].

Let two increasing sequences of points {t;}7";' and {s;}}"5;' be given s.t. 0 <
So <tp <sp <tpr1, k=1,2,....m—1, meN. Let tg € [0,80) @] (U;anzl [tk,sk))
be a given arbitrary point. Without losing generality, we assume that to € [0, s¢).
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Consider the non-instantaneous impulsive set differential equation (NISDE)
given by

DX =F(t,X),t € (tk, sk] U (tm, +00),
X(t) = ¢u(t, X(sk = 0)), t € (sk,trtal, (2.1)
X(to) = Xo,

where Xo € K.(R"), F : Ul te, sk] U (tm, +00) x K (R™) — K.(R"), ¢ :
(Sk,tqul] X Kc(Rn) — KC(Rn), k=0,1,...,m—1.
The solution X(¢,tp, Xo) of the NISDE (2.1) is given by

Xo(t), te (to,So],

¢o(t, Xo(s0 —0)), t € (so0,t1],

X (t,to, Xo) = Xi(t), t e (tk,sk],
(,bk(t,Xk(Sk - 0))7 t S (Sk7tk+1]7

Xm(t), t € (tm, +00),
where kK = 1,2,...,m — 1, Xo(t) is the solution of the IVP of the set differential
equation

DX = F(t,X) for t€[r,s,] with X(7) = Xy € K.(R"),7 >0, (2.2)
for 7 = to, s = So, Xo = Xo and X} (t) is the solution of the IVP of the set
differential equation (2.2) for 7 = tg, Xo = ¢dp—1(tg, Xg—1(sx—1 — 0)).

Defining the functions Iy (t, X) = ¢r(t,X) — X, k =0,1,...,m — 1. We know
that the solution X (¢,tg, Xo) of NISDE (2.1) also satisfies the following equations

t
X0+/ F(S,X(S,to,Xo))dS, te [tQ,SO],

to

ko s
Xo + Ti(t, X (sk —O,fo,Xo))+Z/ F(s,X(s,t0, Xo))ds
i=0 /i

E
—

+ Ii<ti+laX(si7tO>X0)); te (Skatk+1]7 k = 07 17 e, — 1)

i

k—1 Si t
X(t, to, Xo) = X0+Z/t F(s,X(s,tO,XO))ds+/ F(s, X (s, to, Xo))ds
=0 vt

tr

Il
=]

k—1
+Zli(ti+17X(si7t07XO))a te (tlwsk]v k = 1a2a e, — 17
z':Om—l Si t
Xo+ Z/ F(S,X(s,tO,XO))ds+/ F(s,X(s,tg,X0))ds
i=0 7t tm

m—1

+ Ii(ti+17X(5i7t07X0))a te (tm,+OO)

1=0
(2.3)
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If F(t,0) =0 for t € U (g, 8] U (tm, +00) and ¢y (t,0) = 0 for t € (sk, tit1],
k=0,1,...,m— 1, then NISDE (2.1) has a trivial solution X (t) = 0.

3. Criteria for Finite-time Stability

We first discuss the finite-time stability of NISDE (2.1) by using the generalized
Gronwall inequality. Secondly, we use the improved Lyapunov method to discuss
its finite-time uniformly stability and fixed-time uniformly stability.

For convenience, we first give the following sets required in this paper.

K ={ce OR",R"]: ¢ is strictly increasing and ¢(0) = 0},
Ko ={ceK: Sginoo c(s) = +oo}.

We now introduce the class A of Lyapunov-like functions.

Definition 3.1. Let J C RT is a given interval, A C K.(R"™) be a given set, and
6 € A. We say that the function V(¢,X) : J x A = RT, V(¢,0) = 0 belongs to the
class A(J, A) if

(H1) The function V (¢, X) is continuous on J/{sy € J} x A and

where | - | denotes the absolute value in R, X, X € A, L > 0.
(H3) For each s, € J and X € A there exists finite limits
V(s —0,X) = lim V(t,X), V(sp+0,X)= lim V(t X),
t—rs, t%st
and V(s —0,X) = V(s +0,X) = V(sp, X).
(H3) Forany X #0,V(t,X) >0, V(¢,0) =0, and V(t,X) — 400 when D[X, 0] —
+o00.

Remark 3.1. We note that the constraint of the Lyapunov function is weakened if
the derivative of the function V' € A(R*, K.(R")) is relaxed to have indefiniteness
for almost every t. Such a type of Lyapunov function may be called almost indefinite
Lyapunov-like function.

Definition 3.2. The trivial solution of NISDE (2.1) is said to be

(S1) finite-time stable, if for given values 0 < ¢; < ¢y < 00, tg € [0, s0) ( T
[tr,s)), T > 0, the inequality D[Xo,0] < ¢; implies D[X (t,to, Xo),0] < ¢
for any t € [to,to + T;

(S2) finite-time attractive, if there exists a T'(to, Xo) > 0 s.t. for any ¢ € [0,50) U
(Uk:1 [tk,sk)), the equalities lim;_,7 X (¢,tg, Xo) = 0 and X (¢,t9, Xo) = 0
hold for t > T'(to, Xo), where the settling time T'(tg, Xo) > 0;

(S3) Lyapunov uniformly stable, if for each e > 0 there exists a § = d(e) > 0
s.t. for any to € [0,50) U (U5 [tr, si)) with D[Xo,6] < 4, the inequality
D[X(t,to, X0),0] < € holds for t > to;

(S4) finite-time uniformly stable, if (S3) and (S3) hold.
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(S5) fixed-time uniformly stable, if (S4) holds and T'(ty, Xo) is uniformly bounded
on Xy, that is, there exists Tiyax > 0 s.t. T'(to, Xo) < to + Tmax-

In order to get the main results of this paper, the following necessary conditions
are given:
(A1) The function F € C( UL (t, k] U (tm, +00)), K.(R™)) is such that for any

(1,X0) : T € [tr, sx), Xo = Xo € Ko(R"), k=0,1,...,m — 1, the system of
SDE (2.2) has a solution X (¢,7, Xq) € C([r, sx], K.(R™)).

(A2) The function ¢, € C((Sk,tk+1] X K(R™), K.(R™)) is such that for any ¢t €
(Sk, tk+1] there exists at the least one function Z : (sg,tgp+1] X K.(R™) —
K.(R™) such that Z(t, X) = ¢x(¢t, X) and Z(t,0) = 0.

Lemma 3.1 ( [16]). Assume that the following conditions are satisfied:

(B1) The function u(t) is nonnegative, piecewise continuous and left continuous at
the discontinuities of the first type for each t > tg.

¢
(B2) The inequality u(t) < u(to) Jr/ A(s)u(s)ds + Z Biu(t;), t > to holds,
to to<t;<t
where the continuous function A(t) is nonnegative and the constant 5; > 0.

¢

Then, u(t) < u(to) H (1+8) exp(/ A(s)ds), t > to.
to<t; <t to

Theorem 3.1. Assume that the conditions of (A1) and (As) are satisfied, and

(As) There exists a continuous function A(t) > 0 such that D[F(t,X(t)),0] <
A)D[X (2),0], t & (sk,trt1], X € K(R™) holds, where k =0,1,--- ,m — 1.

(Ag) The function Iy (t, X) is non-increasing in t, k =0,1,...,m — 1.
(As) There exist constants ; > 0 such that
D[ Y Li(tisr, X(si —0),00 < > BiD[X(t),0],
to<t;<t to<t; <t
t € (Sk,trt1], X € K(R™) holds, where k =0,1,--- ,m —1;
¢
(Ag) The inequality H (1+5;) exp(/ A(s)ds) < 6—2, t € [to,to+T] holds, where

c
to<t;<t to 1
0<c <eg <o0.

Then the solution X (t,t9, Xo) of NISDE (2.1) is finite-time stable.

¢

Proof. Let t € [tg, so]. From (2.3), we get X(¢t) = X, +/ F(s, X (s,t0, X0p))ds.
¢
Then from condition (As), we obtain ’

t
DLX(1).6) < DIXo.6) + | A&DIX (). 0)ds.
to
Due to Lemma 3.1, one has

DIX(#), 6] < D[Xo, 0] exp(/tt A(s)ds).
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Let ¢ € (so,t1]. From (2.3) and condition (A4), we obtain
X(t) < Xo+ / F(s, X (5, to, Xo))ds + To(t1, X (50 — 0, to, Xo)).
From condition (As), (4s), we get
DIX(#),0] < D[Xo, 0] / A(s 0]ds + BoD[X (o), 0.
Due to Lemma 3.1, one derives
DX (1,61 < DUXo, 61+ o) expl || A(s)s).
0

Let ¢ € (t1,s1]. Similarly, from (2.3), (As) and (As), one has
¢

So
X(t) =Xo+ / F(s, X (s,t0,X0))ds + F(s, X (s,t0, X0))ds
to

t1
+ IO(tle(SO - 07t07X0))7
t

D[X(t),6] <D[Xo, 0]+ /SO)\(s)D[X( ), 6]ds+/)\(s)D[X(s),9]d8+ﬁoD[X(t0)79]

ty

D[Xo,0] / As ,0]ds + Bo DX (to), 0]
Thus, by Lemma 3.1, one derives
t
DIX(#),6] < D[Xo.6](1 + fo) exp(/ A(s)ds).
to

Let t € (s1,t2]. From (2.3) and conditions (Az) — (A45), one has

1 s;
X(t) = Xo + Z/ F(s,X (s, to, Xo))ds + Io(t1, X (so — 0,0, Xo))

+ I (t, X (s1 — 0,0, X0))

<X0+Z/ S X(S tO;XO dS+ZI 7,+17X(sl;t07X0))
=0

DX (£), ] < D[Xo, 0] +Z/‘i )\(s)D[X(s),G]ds—i—ZﬁiD X(t:),0

< D[X,,0] + /t A(s)D[X(s),0)ds + Y ;DX (t
to i=0

Furthermore, one derives

1

DIX(0).6] < DX, 0 [+ A exp | A(s)ds).

=0
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Continue this process and from induction argument, one obtains

D[X(t),0) < D[Xo,0] [] (1+ﬁi)exp(/t)\(s)ds), t>0. (3.1)

to<t;<t to
Whenever D[Xy, 0] < ¢, from (3.1) and condition (Ag), one derives
D[X(t),0] < ca, t € [to,to + T).

Therefore, Theorem 3.1 is proved. O

Theorem 3.2. Assume that the conditions of (A1), (Az2) are satisfied, the functions
r(t), p(t) are respectively indefinite and negative, and

(A7) For the function V € A(RT, K.(R™)),
(i) the inequality V (t, X (t)) < r(t)V(t, X (1)) + p(t)Ve(t, X (1)), t & (s, trs1),
X € K.(R™) holds, where 0 <a <1, k=0,1,--- ,m—1;
(i) the inequality V (t,¢x(t, X (1)) < nTaV(sy, X (sp)),t € (sp,trra], X €
K.(R™) holds, wheren >0, k=0,1,--+ ,m —1;
(iii) the inequality ¢1(D[X(t),0]) < V(t,X(t)) < @2(D[X(¢),0]), t € RT,
X € K.(R™) holds, where ¢1,¢3 € K.

(Ag) There exists G >0, v >0 and H > 0 such that

400 t
/ Ir(s)lds < G, Ip(s)|ds < —v(t —to) + H.
0

Then the solution X (t,to, Xo) of NISDE (2.1) is finite-time uniformly stable. More-
over, the settling time T'(to, Xo) is given by

V1=(ty, X0)eC =) £ (1 — a)H

( ) nm(1—a)y

, 0<n<1

and

nmvl_“(to,XO)eG(l_“) + (1 — a)H
(1-a)y ’

Proof. Let ¢y € [0, s0). From the conditions (A7)(¢), (i7), one gets

T(to,X0)=t0+ ’f]Z 1.

V(LX) V7Ot X (1) < )V, X (1) + p(t), t € (tr, su,
VTt ot X (1)) < nVI 7% sy, X(s5)), € (sks ]

AA
w e
w N

Defining Y (t) = V1=4(¢, X (t)). From (3.2), (3.3) and 0 < a < 1, one gets

V() < (1 =a)lr@®Y () + (1 —a)p(t), te (th, sk,
Y(t) <nY(s;), te€ (s tps]

Let t € [to, So]. According to inequality (3.4), one gets

t t A
Y(t) < Y(0)e= iy IM@lde (1 _ g / p(s)e-0 [ Ir@ldegs  (3.6)

to
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From the continuity of Y'(¢) and inequality (3.6), one gets

s S0 .
Ys3) S YOl O 4 (1) [ o)t S mOles, (37
to
Let ¢ € (sp,t1]. From inequalities (3.5) and (3.7), we obtain
s SO s
Y(t) <nY(sy) < nY(O)e(lfa) Jig Ir(@)lde (1— a)n/ p(s)e(lfa) [0 r(o)lde gq

to

(3.8)
Let ¢ € (t1,s1]. Similarly, due to inequalities (3.4) and (3.8), one has
t t ¢
Y(t) < Y(tl)e(l_a) Ji, Ir()lde +(1— a)/ p(s)e(lf") JiIr()lde g
t1
t S0 t
< Y (0)e= iy Ir@lde (1 _ a)n/ p(s)e=a) [ Ir(@ldegy (3.9)
to
t
(- a)/ p(s)e1=0) S Ir(@lde g
t1
s SO s
Y(s7) < Y (0)et % g Ir(@)lde (1- G)Tl/ p(s)el=a) [t Irelldeg
fo (3.10)
+(1 _a)/ p(s)et=0) [t Ir@)lde g
ty

Let t € (s1,t2]. From formulas (3.5) and (3.10), we obtain

s S0 s
Y(t) < nY(sy) < n2y(0)6(1*a) g Ir(@)lde . (1- G)Tl2/ p(s)ed—® [ ir(o)lde gg

to

+(1— a)n/ 1 p(s)elt=a) [ Irelldeqg,
t1
Continue this process. By the method of induction, we get

t S0 ¢
Y(t) < nkY(O)e(l_a) Jiy Im(@)lde +(1- a)nk/ p(s)e(lfa) Jilr()lde g

to

k—1 .
+( 7G)an—j/ p(s)e(1=) S Ir(@lde g
j=1

Sj
tj

t
+(1— a)/ p(s)et=) IS Ir(e)lde g

ty

holds for t € [tg, sk], k=2,3,--- ,m —1, and

Sk S0 s
Y(t) < nkHY(O)e(l*a) Jig Ir(e)lde . (1— a)nkH/ p(s)e(lfa) JoFIr(e)lde g4

to
k—1 s
+(1—a) Z”HI_J/ p(s)et= [ Ir(@lde g
i=1 b

Sk
(- a)n/ p(s)el1=0) S+ Ir(e)lde g

tr
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holds for ¢ € (s, txy1], k=2,3,--- ,m — 1.
Therefore, we have

t t S0
Y (1) < Y (0)e—9) Sy IM@1de (1 _ y,m o (0-a) [l \r<s>|ds/ p(s)ds

to
m—1 S
_i (1=a) [! |r(s)|ds J
(=) 3o eI [ s (3.11)
j=1 L

t
(1= a)e=) fi (o) lds / p(s)ds

tm

holds for ¢ € [ty,, +o0].
The following discussion is divided into two cases according to the value of 7.
Case I. 0 < n < 1. From (Ag), (3.11) and 0 < a < 1, one gets

Y (t) < Y(0)ed=0 i In@lde < (GO-a)y (@),

Furthermore, one gets
V(t, X(t)) < eV (to, Xo). (3.12)

Combined with condition (A7)(iii), we get

V(to, Xo) < ¢2(D[Xo,0]), (3.13)
DX (1), 6] < o1 '(V(t, X(1)))- (3.14)

From inequalities (3.12) and (3.13), one gets
V(t, X(t) < e%pa(D[Xo, 0]). (3.15)
Combined with formulas (3.14) and (3.15), we have

DIX(1),0] < ¢1 " (e“p2(D[Xo,0])). (3.16)

For € > 0, we choose § = <p2‘1(“’;§>) > 0, then, for D[Xy, 0] < d, one has

_ _1,P1l€
DIX(),6] < o7 (Cpaler (2D ))) = e
That is, the solution of NISDE (2.1) is Lyapunov uniformly stable.
In addition, from (As), (3.11) and 0 < a < 1, we can also get

t
Y(t) < Y(0)et =0 Jo Ir@lde (1 q)pm / p(s)ds

to

<Y (0)eC 4 (1 — a)p™(—~(t — to) + H).

L (t9,X0)e = ™ (1—a) H

Obviously, we get that V (¢, X (t)) = 0 when ¢ > to + ~ o

Therefore the solution of NISDE (2.1) is finite-time attractive.
Case II. > 1. From (A4g), (3.11) and 0 < a < 1, one gets

Y(t) < an(O)e(l_a) f0+oo [r(e)lde < nme(l_(l)GY(O).
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Furthermore, one gets
V(t, X(t) < e“n=aV(to, Xo). (3.17)

From inequalities (3.13), (3.17), one gets

V(t, X (1) < e“nTpa(D[Xo, 0]). (3.18)
Combined with inequalities (3.14) and (3.18), we have
DX (t),0] < ¢7 (177 % pa(D[Xo, ). (3.19)
Thus, for € > 0, we can choose § = @, *( ‘fr_i(e)c) > 0, then, for D[Xy,0] < 6,
one gets !
_m_ _ €
DIX(8),6] < o7 (17 Sl (2RL ) = .
fr]l—ae

That is, the solution of NISDE (2.1) is Lyapunov uniformly stable.
From condition (Ag), formula (3.11) and 0 < a < 1, one has

t
V() < YO M0 (1= a) [ p(s)as
to

<Y(0)yme' G 4 (1= a)(—y(t — to) + H).

Similarly, one gets that V (¢, X(¢)) = 0 when t >t + "mvl_a(to’)?l’)_e;l);a)GJr(l*a)H.
Therefore the solution of NISDE (2.1) is finite-time attractive.
Taken together, the solution of NISDE (2.1) is finite-time uniformly stable. [

Theorem 3.3. Assume that the conditions of (A1), (As) are satisfied, the function
r(t) is indefinite, p(t) and q(t) are negative functions, and
(Ag) For the function V € A(RT, K.(R™)),
(i) the inequality V (t, X (t)) < r(t)V (t, X ())+pt)Ve(t, X (t))+q(t)VO(t, X (1)),
t ¢ (sk,tis1], X € K (R™) holds, where0 <a<1,b>1, k=0,1,--- ,m—1;
(i) the inequality V(t, 6x(t, X(1))) < nT=0=V (s, X (55 ).t € (31 tisa.
X € K.(R"™) holds, wheren >0, k=0,1,--- ,m —1;
(i) the inequality o1(DIX(1),6)) < V(1 X(1)) < @a(DIX(6),6)), ¢ € R,
X € K.(R™) holds, where v1,¢2 € Koo.

(A19) There exists positive numbers G,v, H,& and K such that

+o0 t t
/ Ir(s)lds < G, / Ip(s)|ds < —(t—to) +H, / lq(s)|ds < —E(t—to) 1 K.
0 to to

Then the solution X (t,to, Xo) of NISDE (2.1) is fized-time uniformly stable, and
the settling time T'(to, Xo) is given by

e1-0GnT5 L H(1—a) 14 (b—1)Kel=0Gyt=a

T(to, Xo) = to + )
( 0 0) 0 7(1 . CL) (b _ 1)56(1_b)G77m

0<n<l1

and

e1=0)G L (1 —a)Hn15 14 (b—1)Ke(1-DG

T(to, Xo) = t C o>l
(to, Xo) = to + 1=y b_eea—ne
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Proof. First, we proved that the solution of NISDE (2.1) is fixed-time attractive,
that is, there exists positive numbers T} and ¢ with to < £ < T} s.t. V(i, X') <1
Instead, we assume V (¢, X) > 1 for ¢ € [to, T}].

Let to € [0, s0). Since p(t) < 0, b > 1, from conditions (Ag)(7), (it), one gets

V(t, X (1) - V7t X (1) < q(t) + [r@®)|VI7lt, X (1)), te (tr, sk, (3.20)
VI=b(t, dn(t, X (1)) > nﬁvlfb(s,;,X(s,;)), t € (sp,trs] (3.21)
Defining Z(t) = V1=%(¢, X (¢)). From formulas (3.20), (3.21) and b > 1, we have

Z(t) = (L=0)q(t) + (1 = b)|r(t)|Z(1), € (t, skl, (3.22)
Z(t) 2 n=e Z(sy), € (sk bl (3.23)
Let t € [to, so]. According to formula (3.22), one derives
to. t +
Z(t) > Z(o)e(l—b) fto [r(o)lde + (1 _ b)/ q(s)e(lfb) J! |r(g)|dgds. (324>
to

From the continuity of Z(¢) and formula (3.24), we obtain

s S0 s
Z(s5) > Z(0)el " Jio ‘“@"’19+(1—b)/ g(s)et=0 [0 Ir@ldegs  (3.25)

to

Let t € (sg,t1]. From inequalities (3.23) and (3.25), we obtain

Z(tr) > nT7 Z(sy) = T Z(0)e 0 s Il

+(1- by /So g(s)e1=0) S0 Ir(@lde g, (3:26)
¢
Let t € (t1, s1]. Due to formulas (3.220) and (3.26), one has
Z(t) > Z(tl)e(l—b) i, Ir(@)lde +(1-b) /tq(s)e(lb) IS Ir(o)lde gg
¢
> Z(O)nﬁe(kb) iy Ir(e)lde +(1- ;)nlla /So q(s)e(l—b) Jir(e)ldegg (3.27)
to

t
+(1- b)/ q(s)e(lfb) JiIr(@lde gy,

t1
and combined with the continuity of Z(t), we have
Z(57) > 0 Z(0)e1D Jid Ir@lde (1 _ gy, vt /s‘) o(s)e1=D) 1 Ir(@)lde g
to

51
+(1- b)/ q(s)et =0 S Ir(@lde g (3.28)

t1

Let t € (s1,t2]. From inequalities (3.23) and (3.28), we obtain
Z(ty) > 0T Z(sy) > Z(0)nTa 10 [ In(@)lde

+(1—byr= / q(s)et =0 [t In(@)lde g

to

+ (1= b= / q(s)et=0 [t In(@)lde g

t1
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Repeating the above process, we get

t S0 t
Z(t) Znﬁz(o)e(lfb) ffo [r(e)|de + (1 _ b)nﬁ / q(s)e(l—b) /s \7’(g)|dgds

to
ik k—j [ t ¢ t
+(1-b) Znﬁ/ g(s)e=) |r(g>\dgd8+(1_b)/ o)) I} Ir(@lde g
j=1 tj 23

holds for t € [tg,sk], k=2,3,--- ,m —1, and

k+1

o1 50 s
Z(t) >neZ2(0)er™Y ) [igf Ir(e)lde (1— b)r]ﬁ“ / q(s)et 0 L Ire)ldegg

to

k—1
1 B b an}+1 J / q )e(lfb) f:k |T(9)‘d9ds
Jj=1

+ (1L b= /k q(s)e1=0) [F Ire)lde g
ty

holds for ¢ € (sg,txt1], k=2,3,--- ,m — 1.
Therefore, one gets

t m S0
Z(t) > na 2(0)e1 70 Jiy IM@lde (1 _ pypeme 00 [ | |ds/ o(s)ds
to

m—1
m= 1-b r(s)|ds
(1) 3 g [y, (3.29)
j=1 tj

. t
+ (1 — b)e(lib) ftm ‘T(S)lds/ q(S)dS

tm

holds for t € [ty,, +00].
The following discussion is divided into two cases according to the value of 7.
Case 1. 0 < 7 < 1. From condition (Ajp), formula (3.29) and b > 1, we have

t
Z(t) > nTa (1 — b)e=?) Jo= lr(g)ldg/ q(s)ds
(t) (1-1b) . (s) (3:30)

> 175 (1= D)l ™0 (—¢(t — to) + K).

T ae(l VG ¢

Set Ty =t + H(Z()b 1;; e , inequality (3.30) implies that Z(T7) > 1. From
nl-ae

Z(Ty) = VI7%(Ty, X(Ty)) and b > 1, we get V(T1,X(T1)) < 1. This contradicts
V(t,X(t)) >1forallte [to,Tl].
Case II. > 1. From condition (Ajp), formula (3.29) and b > 1, we have

t
20> (1 — b)ed=0) Jo™ \r(gndg/ d
()= (1-b)e [ ats)as )

> (1= b)e V9 (=¢(t — to) + K).

Set Th = to + %, formula (3.31) implies that Z(Ty) > 1, that is
<1

V(T1, X (T1)) < 1. This contradicts V (¢, X (t)) > 1 for all ¢ € [tg, T4].
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Similar to the proof of Theorem 3.2, we derive the solution of NISDE (2.1) is
finite-time uniformly stable. Therefore, according to the result of settling time in
Theorem 3.2, we derive that since Vl_“(ﬂf() < 1, ty <t < Ty, the inequality
V(t, X(t)) = 0 holds, for

(1-a)CG H(l - 1+ (b—1)Ke(-0Gyr=a
t> 1o+ & TrHH(—ae) 14 G- DEe T

7(1 —a) (b — 1)Ee(1-0)GyTa

and (1-a)G m (1-b)G
—a l—a)Hn™r 14+ (b—1)Ke(l-

1
(1—a)yni=r (b —1)€et=0)
Therefore, the solution of NISDE (2.1) is fixed-time uniformly stable. O

To verify the validity of the result in this paper, we give the following example.

Example 3.1. Consider the following system:

DX =r(t)X(t) +p(t), t € (t, sk] U (tm, +0),

X(t)=nX (s —0), t € (Sk,trt1], (3.32)
X(to) = Xo,
where r(t) = ﬁ, X(t) = [z1(t), 22(t)] and p(t) = [—t|sint|, —t| cost|] are interval
functions, k =0,1,...,m — 1.

Choosing the Lyapunov function as V(t) (D[X(t),0])® = 23(t) + z3(2),
then one has V() < 2r(t)V(t) + 2v/2q(t)V2(t) for t € (ty,sk] U (tm, +00) and
V() < n?V(sg — 0) for t € (s, try1), where g(t) = max{—t|sint|, —t|cost|},
k=0,1,...,m—1.

, oo 8v2
Since 2r(0)dg = 7 and 2\fq( Ydo < —S—(t to) +16+/2, we can find
0

that the conditions of Theorem 3.2 are satisfied, where a = 0.5, G = m, v = 8:;—7(,

H = 161/2. Therefore, the trivial solution of system (3.32) is finite-time uniformly
stable.
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