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A SPACE-TIME SPECTRAL COLLOCATION
METHOD FOR SOLVING THE
VARIABLE-ORDER FRACTIONAL
FOKKER-PLANCK EQUATION

Ahmed Z. Amin', Anténio M. Lopes®' and Ishak Hashim'

Abstract A numerical approach for solving the variable-order fractional Fokker-
Planck equation (VO-FFPE) is proposed. The computational scheme is based
on the shifted Legendre Gauss-Lobatto and the shifted Chebyshev Gauss-
Radau collocation methods. The VO-FFPE is written as a truncated series
of shifted Legendre and shifted Chebyshev polynomials for space and time
variables, respectively. The residuals of the VO-FFPE at the shifted Legen-
dre Gauss-Lobatto and shifted Chebyshev Gauss-Radau quadrature points are
estimated. The original problem is converted into a system of algebraic equa-
tions that can be solved easily. Several examples are presented to demonstrate
the efficacy of the technique.
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1. Introduction

Fractional calculus (FC) [32,34-36] is the branch of calculus that generalizes the
concepts of derivative and integral to non-integer orders. The FC has become an
active area of research and development in many fields of science [9,23,28,40], due to
its suitability for describing a wide range of physical phenomena, involving diffusion
and damping laws. Indeed, fractional derivatives are a powerful tool for modeling
memory and heredity effects in a variety of materials and processes. Fractional
differential equations (FDEs) [3,43,44] are well suited to a wide range of engineering
and physics problems [13]. However, finding accurate techniques for solving FDEs is
a demanding and motivating topic in engineering, physics, and mathematics, since
most FDEs do not have exact or analytic solutions.

The Fokker-Planck equation [31,38] describes the time evolution of a probability
density function. It is also known as the Kolmogorov forward equation. The Fokker-
Planck equation was firstly used in the statistical description of the Brownian motion
of a particle in a fluid. Fractional Fokker-Planck equations (FFPEs) [29,30,33] were
then adopted to describe the Brownian motion of particles, to model the change of
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probability in time and space of random functions, and to model the transport of
solutes [25,26,38], just to mention a few applications. Finding numerical solutions
of FFPEs has received great interest recently, namely in stochastic dynamical sys-
tems. In [45] the Galerkin finite elements approach was proposed, in [21] the finite
differences and the shifted Chebyshev collocation methods were adopted, in [41]
the Chebyshev wavelet scheme was investigated, and in [22] the Jacobi collocation
method was used, just to cite a few.

Several numerical methods for solving variable-order (VO) fractional differential
equations (VO-FDEs) have been investigated. In [10] Bernstein polynomials were
used to solve a linear VO fractional cable equation, in [4] a collocation method
for solving a 2D nonlinear VO fractional cable equation was employed, and in [39]
incorporating the Caputo derivative for solving VO-FDEs was suggested. Other
numerical techniques can be found in [1,5,14,17,18,42].

A frequent objection against the use of one-step or multi-step methods for solv-
ing FDEs is that these methods are local. This seems to contradict the concepts
underneath fractional operators, which are intrinsically non-local. One potential
and promising approach in this direction is the use of spectral methods [13]. The
spectral methods [11,12, 16, 27] have better accuracy than other numerical tech-
niques and possess exponential rates of convergence [2,6,7, 15,19, 20]. Spectral
techniques have been broadly utilized in several areas, with those that are depen-
dent upon the Fourier expansion being applied to problems with periodic boundary
conditions.

The contribution of this paper is to present a new scheme based on the shifted
Legendre Gauss-Lobatto collocation (SL-GL-C) and shifted Chebyshev Gauss-Radau
collocation (SC-GR-C) methods to solve the VO fractional Fokker-Planck equation
(VO-FFPE) given by

DY o(g, p) = [x1 (€)D" + x2() DT p(€, p) +w(E,p),  (11)

subject to the initial condition

(£, 0) = (8), §elo, 1, (1.2)

and boundary conditions

©(0,p) =wo(p),  @(L,p)=wilp), p=1[0,T]. (1.3)

The shifted Legendre Gauss-Lobatto (SL-GL) and shifted Chebyshev Gauss-
Radau (SC-GR) points are used to approximate the solution of the VO-FFPE in
space and time, respectively. The VO-FFPE is written as a truncated series of
shifted Legendre polynomials (SLP) and shifted Chebyshev polynomials (SCP).
The residuals of the VO-FFPE at the SL-GL and SC-GR quadrature points are es-
timated. Finally, a system of algebraic equations is obtained and solved. Numerical
simulations are presented to verify the accuracy of the procedure.

The paper organization is as follows: Section 2 introduces preliminary concepts
and recalls some properties of SLP and SCP. Section 3 is divided into two sub-
sections: subsection 3.1 solves the space VO-FFPE (SVO-FFPE) with initial-value
and boundary condition, while subsection 3.2 address the time-space VO-FFPE
(TSVO-FFPE). Section 4 presents numerical examples to illustrate the performance
and accuracy of the techniques. Section 5 draws the conclusions.
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2. Mathematical preliminaries

2.1. Fractional calculus
We introduce some definitions [24,32,37] that are useful for the rest of the paper.

Definition 2.1 ( [13,32]). The fractional integral (or Riemann-Liouville integral)
of order o > 0 of the function ¢(&), & € (a,b), is given by:

1o 1 ¢ o—1 d 0
(I7¢)(€) = m/@ (£ = 5)" " p(s)ds, o >0, (2.1)
‘p(f)’ o=0.

Definition 2.2 ( [24]). The left and right Riemann-Liouville derivatives of order
o > 0 of the function p(§), £ € (a,b), are given by:

rRLDY (€)= dg—":n (D, p(€)] (2.2)
and
am o
rLDEye () = (CU" g (D™ 7e(6)], (2.3)

respectively, where m is a positive integer satisfying m —1 < o < m.

Definition 2.3 ( [24]). The left and right Caputo derivatives of order o > 0 of the
function ¢(§), € € (a,b), are given by:

cDZ (&) = D, "7 [ (¢)] (2.4)
and
cDZ (€)= (~1)" D" [p™ (€)], (2.5)

respectively, where m is a positive integer satisfying m —1 < o < m.

Definition 2.4 ( [4]). The Caputo derivative of VO o (¢, p) is defined as:

3
DI (e, p) = m/o (€ — 2) &P oM (e, p)de. (2.6)

Definition 2.5 ( [15]). The Riemann-Liouville fractional derivative of VO o (¢, p)
is defined by:

1 d?n

: m—o(€,t)-1
m%/o €—¢ Dl o(e, p)de. (2.7)

DI (¢, p) =

2.2. Shifted Legendre polynomials
The Legendre polynomials £,(§), v =0,1..., satisfy the Rodrigues formula

(=1~

T D=8, (2:8)

Ev(@ =
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Also, L£,(§) are polynomials of degree v and, therefore, we get ﬁ(f )(5) (the pth
derivative of £, (£)) as

7=p
cPE= 3 GOL©), (2.9)
1=0(y+v=even)
where 1 + +y+v+1
2P~ 1(2u 4 1) (=2 (B2
Cp(% V) = ( 2—)17-&-(7—1/2 )3—(17+w+2u ) (2'10)
L(p)T (=)0 (=57)
The Legendre polynomials satisfy the relations
‘CO(S) =1,
L1(8) =¢, (2.11)
_+3 o+l
Ly2(8) = 2 ELy41(8) 7+2/~‘v(§)7
and we get the orthogonality by
1
(6O L@ = [ £,(OLAE) w(©) = b (2.12)
-1

where w(§) =1, hy = 27%

The Legendre Gauss-Lobatto quadrature has been used to evaluate the preceding
integrals efficiently. For any 1 € So,_1[—1,1], we have

1 17
JIREGLED ST (213)
-1 7=0
Let us introduce the discrete inner product as
o
(Y, 0w = Z V(&) P(6ur) Tpr- (2.14)
7=0
For the Legendre Gauss-Lobatto we find that {,0 = —1, ¢,, =1, &.-(7 =

1,--+,pu — 1) are the zeros of (lu(f)),, and @, , = 2/p(p + 1)(Lu(€u-))?, where
&ur (0 <7 <p)and w,, (0 < 7 < p) are utilized as the nodes and the corre-
sponding Christoffel numbers within [—1, 1], respectively ( [8]). In order to adopt
these polynomials in the interval £ € (0,l;) we define the so-called SLPs by using

€=2¢/l, — 1.

2
We denote by £, ., (§) the SLPs £, (lé — 1). Then, £;, ,(§) can be acquired
as !
28
(V+1>£l1,l/+1(§) = (2y+1) E -1 Eh,y(é-) _Vﬁll)y,]_(f), V= 1727""
(2.15)
The analytic form of the SLPs £;, ,,(§) of degree v is given by
_ = _ v+ (V—’_’Y)' y
L, (&) =) (-1) TERE (2.16)

~7=0
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The expression of the orthogonality condition reads as

l
A@m@gaw%@%zm%7 (2.17)
where w;, (§) =1 and iy =1 /(2y+1).

A function ¥(&), square integrable in (0,1), may be expressed in terms of SLPs
as

&)= cLy, (9, (2.18)
7=0

and the coefficients ¢, are given by

1 l
o= | vOL Ot =012 (2.19)

In practice, only the first (1 4+ 1)-terms of the SLPs are applied. Thus, ¢(£) is
written as

GRS (2.20)
=0

2.3. Shifted Chebyshev polynomials
The Chebyshev polynomials are defined in [—1, 1] by [§]

T+ (p) = cos(r arccos(p)), 7 >0. (2.21)

Also,
To(#1) = (217, To(—p) = (~1)" T (p). (2.22)
Let us consider w(p) = 11—p2 Then, we introduce the L2. weighted space

inner product and norm as

1ellwe = (2,0)2e, (95 X)we =/ o(p) x(p)w(p)dp. (2.23)

-1

The set of Chebyshev polynomials satisfies

0, o#m,
I TollZe =R = ~ Ww=2 7=1 o>L (2.24)
Y _
™ =T

Now, we define the norm and discrete inner product

1
lelwe = (0, 0)ae, (@ X)we = Z‘P Enr) X(Epr) TE - (2.25)

Let us denote by T ,(p) the SCPs in [0, L]. The analytic form of 7z, ,(p) is acquired
from

]+7—_ 1)' 227- 7'
7—L,J —TLZ W 5 (226)
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where 77, ,(0) = (=1) and T, ,(p) = 1.
The orthogonality condition is

L
/ Toy(0)Te.(P)Wi(p)dp = 6,- hE. (2.27)
0

If o(p) € L2 ([0, L], we can write

=Y e T (o), (2.28)
7=0

where .
1
o= [ SO T Wip, T =012 (2.29)

3. Numerical algorithm to solve VO-FFPEs

Our method uses the spectral collocation approximation by merging the SL-GL and
SC-GR quadrature formulas for solving SVO-FFPEs and TSVO-FFPEs.

3.1. Space VO-FFPEs

Herein, we derive a numerical scheme for solving the SVO-FFPE

Dypl€,p) = [x1()DF ) + xa2(6)DI | o (€, p) + W (€, ), (3.1)

with initial condition

and boundary condition
90(07 P) = OJo(p)7 @(Lv p) = w1 (p)7 p= [0, T], (33)

where (&, p) is unknown, the functions o (&, p), ¥(&,p), x1(€), ¥(&, p)x2(8), ¢(&),
wo(p), wi(p) are well-known, and

¢
“Po(E,p) = 0ol i’(f,p)) /O (€ = 0)~ @MW (v, p)do,

) ¢ (3.4)
2a (&.p) (f ,0) m/o (¢ _U)—20(§7P)—1(p(2)(v,p)dv’

are the space-fractional derivatives of ¢(&, p).
We use the SL-GL points and the SC-GR points [8] for space and time approx-
imations, respectively. In the follow-up, we outline the primary steps for solving

SVO-FFPEs.
We denote by @approx (€, p) the approximate solution of (3.1), yielding

P Approx & p) Z Z ey LL 'y §)Trrs (3.5)

v=07=0
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and we compute the time partial derivative D,p(&, p) as

Dyp(€.p) = ZZewﬁLv oD, Tr - = Zzewm &p)  (36)

v=07=0 ~v=07=0

where 1" (€, p) = L14(€)DpTr,-(p)-
Also, we approximate the terms on the right-hand-side of (3.1) as

LK
= Z Z e'y,TWQ’T(g7 p)7

e (3.7
DF o, p) =3 s 137 (€ p),
~=07=0
where 3" (€,p) = D{“ L1, (&) Tr,r (p) and 3" (&, p) = D" L1 (€)1 (p)-
Therefore, adoptmg Egs. (3.5)—(3.7), we rewrite (3. )
ZZewm (& p) = Zzewnz (& p)
~=017=0 Y= OLOK (38)
+ XQ(E) Z Z 67,777;7(& ,0) + 77[’(57 p)v
v=07=0

for (&, p) € [0, L] x [0,T]. We can rewrite the initial and boundary conditions as

m

(5 0 Zzey TLL,'y(g),]’—T T( ): ¢(€)7
y=0T71= 0
(0, p) Zzewcm( )Tr-(p) = wo(p), (3.9)
Y= O'r 0
S e i (D) = (0
v=07=0

By applying the proposed SL-GL-C and SC-GR-C technique, and setting the
residual of (3.1) equal to zero at (u — 1)k collocation nodes, we have x(p — 1)
algebraic equations for (u + 1)(k) unknowns e, ,,

13 K
Z Z 67v‘rn’lWT (fL,,M», PT k,s)

v=07=0
o

:Xl(gL,p,,r) Z Zev,Tn;)T(gL,u,WpT,m,s) (310)

~v=07=0

LK
+ X2 (€L,p,r) Z Z €y713" (ELyurs PToms) + V(€L s PT ok .s)s

v=07=0

forr=1,...,u— 1 and s = 1,...,x. The initial and boundary conditions now
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become

[T
Z Z e’YvTﬁLK)’(fL,M,T')%,T(O) = QS(fL,,U.,?")a r= 17 Y 17

v=07=0
w

Z Z e’y,‘rﬁL,fy(O)%,T(pT,n,s) = WO(PT,K,s% s = 07 ey Ry (311)

707—0

Zzevrﬁlmy %T(ans)—wl(ans) s=0,...,K,

v=07=0

and combining Eq.(3.10) and (3.11), we get

m

K
Z Z erTn¥7T (gL’lL,Ta pT,n,s)

v=071=0
"

K
= X1 (€L7u7r) Z Z ev,Tn;’T(fL,u,rv PT,mS)

~=07=0

K
+ X2 (gL,u,T') Z Z 67,7773’T (fL,u,ra pT,r@,s) + ¢(€L,u,ra pT,H,S)a

v=07=0
r=1,...,u0—1,8=1,...,K, (3.12)

[
Z Z 677T£L7“/(§L7M77‘)7}',T(0) = ¢(§L,M,T>7 r= 1) RN ¥ 1a

v=071=0
m ]
> oY L (OTrr(prims) = wolpras), 8 =00k,
’y 07‘ 0
ZZGWT‘CL'\/ %T(ans)*wl(ans) 5:07“'5/{'
~=07=0

Finally, the previous system of (u + 1) algebraic equations can be solved. As a
result, @approx(€, p) can be calculated.

3.2. Time-space VO-FFPEs
Now, we extend the preceding technique to the TSVO-FFPE

DN (e, p) = [x1 (€)D" + x2(&)DF ] p(€, p) + B (&, p), (3.13)

subject to the initial condition (3.2) and boundary conditions (3.3).
We compute the time partial derivative Dggo(f ,p) as

13 K 1 K
DY o(E,p) =Y e LLA(O)DYE T =" eyl (€, p),  (3.14)

v=07=0 ~v=07=0

where 0} (€. p) = L1.5(6) Dy T+ (p).
Following the steps provided in the preceding subsection and using Eqs. (3.5),
(3.7) and (3.14), we obtain

22677774 (& p) = Zzew%’ & p)

v=07=0 ~=07=0
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+x2(6) Y23 ey (€ p) + B(E p), (3.15)

v=07=0
for (&, p) € [0, L] x [0, T]. We approximate Eq. (3.15) at x(p — 1) points as

©w

Z Z 6%7771’7 (é-L,,U«,N pT,n,s)

v=071=0

T
:X1(§L7M,T) Z Z e"/,Tn;J(gL,u,ra pT,K,,s) (316)

v=071=0
[

+ X2 (§L7M77‘) Z Z 67,777;,/’7(5L,u,r7 pT,ms) + w(§L7M77‘7 pT,m,s)7

~=07=0

forr=1,...,u—1and s =1,...,k. By utilizing Egs. (3.11) and (3.16) we obtain

bk
DY et €ur Prs)
y=071=0
[T
= x1(€Lur) DY erry (L PTn0)
v=07=0
[T
+ X2 (Enr) DD e (€L PTom,s) + PEL i PT1,5):
v=07=0
gr=1,...,u0—1,s=1,... K, (3.17)
T
SN eyl ELp)Tre(0) = ¢(€Lpr)s  T=1,..,u—1,
v=07=0
7
DY e L0 Trr(proms) = wolprms), =000k,
v=07=0
7
Z Z e'y,TﬁL,'y(L)%,T(pT,n,s) = w1 (pT,/{,s) §=0,...,k.
v=071=0

4. Numerical results

We solve several examples to verify the effectiveness and accuracy of the proposed

methodology.
We define the absolute error (AFE) as

AE(E,p) = |¢(§; p) — Papprox(§; p)l, (4.1)

where (&, p) and Yapprox(§, p) are the exact and approximate solutions at point
&, p, respectively. The maximum absolute error (M AFE) is calculated as

MAE = max{AE(,p)}. (4.2)
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Example 4.1. Consider the SVO-FFPE

(&, 9o (&:p) 2 §20(&.p)
et = [~ gy + 5 gl )+ e ),

©(0,p) =0, ©(3,p) = 3e”, (4.3)
¢(€7 0) - 67

and ¥(&, p) is given from the exact solution ¢(&, p) = Ee”.

Applying our algorithm to this example we get the absolute errors shown in
Table 1, for o(&,p) = %n(g) and o(&,p) = %03(5), and 4 = k = 12. Table 2
lists the respective M AE at various values of 1 and k. Fig. 1, and 2 represents &
and p direction curve of the AE of Ex.4.1 for p = k = 12, and o(&,p) = %n(g).
Fig. 3 we represent the logarithmic of the M AE (log,g M AE) versus p and x. In
Table 3 we compare our method with the approach presented in [22], in terms of
the M AFE. From the results, we verify that our scheme reveals superior accuracy,

even for just a few points.

Table 1. The AE of EX. 4.1 for o(§, p) = %"(5) and o(&,p) = M, and p =k = 12.

6-+sin(& T+&cos(§

0'(5,,0) 1 ) 3 )
(0,0) 6.29307 x 10717 | 1.37663 x 10716
(0.2,0.2) | 1.03274 x 10716 | 1.77047 x 1015
(0.4,0,4) | 8.72077 x 10716 | 3.21823 x 10~14
(0.6,0.6) | 9.1076 x 10716 | 8.02812 x 10~1°
(0.8,0.8) | 1.3219 x 107'° | 1.5338 x 1014
(1.0,1.0) | 1.67408 x 10716 | 2.30909 x 10~16

Table 2. The M AE of Ex.4.1 for o(&, p) = W%(E) and o(&, p)= 7"{%5(5), at several values of p and k.

U(g,p) U=Kk=2 | p=kK= p=k=6| p=k=8 | u=k=10 | p=r=12
GO 194x 1072 [ 5.7x107° [ 83x 1078 [ 7.2x 107 [ 40x 101 | 3.6 x 1071
THeeos(®) | 75 %1078 | 7.2x 1070 | 5.5x 1076 | 1.7x 10710 | 1.2x 10713 | 9.3 x 10~

Table 3. The M AE of Ex.4.1 obtained with our method and with the approach reported in [22].

Our Method

Method in [22]

o u=rk=28

p=r=10

pn=r=12

u=rK=28

pn=r=12

n=r=16

0.5 | 7.2 x 10711

4.0x 10714

3.6 x 1071°

7.3x 1074

2.1x 1077

3.6 x 2.7 x 1071

Example 4.2. We consider the TSVO-FFPE

%P (€, p) € 07&r) g2 §2osr)

ap = |- 68&0(&’0) 58520(57p)](p(£’p) + ¢(§>P)7 (4 4)
©(0,p) =0, ©(1,p) = p, '
¢(£,0) =0,

and (&, p) is given from the exact solution ¢ (¢, p) = &2p.
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. . . . .
25x10710 3x1070 A
25x107 -
2.x107"6 |
_ 251070 F
S 15x1070F 5 \
o g 15x107"0
1.x1071
- 1.x1070F |
5.x10°17 5.x10-7F
of " of
\ . . . . . . , . . , .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
4 P
. . . 64sin
Figure 1. £ and p direction curve of the AE of Ex.4.1 for p = k = 12, o(§, p) = Stsin(e) T G}
106k N
25x10716F 1.8x10 \A
[N
| |
2.x10-16 | ||
1.x10°18 | [\ [
= = o
S 15x107°F g - ‘
2 2 [
1.x10-18F A | |
5.x10717 |~/ | | ‘*
f | |
5.x10717 [ | | J
i
of " ol ]
\ . . . . . . . . , , .
00 0.2 0.4 06 08 1.0 0.0 0.2 04 06 08 10
¢ P

—e— 0=1/4(6+sn[e]) ]

= 0=1/3(7+€Cos[e])

Figure 3. The log;q M AFE versus u of Ex.4.1 for o(&, p) = %n(g) and o (&, p) = %"5(5)

Table 4 shows the AE for o(&,p) = %ﬁ(g) and o(§,p) = 6%#52(5), when
0(&,p) = &sin(p) and p = k = 14. Fig. 4 presents the The AFE of Ex.4.2 for

_ 6+E&sin®(8) d _ 6+&cos’(§) hen § o du—=rk—
(&, p) = i and o(§,p) = 1 , when (&, p) = Esin(p) and p = k =
14. Again, the effectiveness of the proposed approach is well illustrated.

Example 4.3. Consider the TSVO-FFPE

%P (€, p) € 9°&r) g2 §2o(&n)
ap - - 635‘7(579) + 58520(571))]%0(57/)) + 1/}(57p))
2 (4.5)
©(0,p) =0, ©(1,p) = p”sin(1),
¢(&,0) =¢,
and ¥ (&, p) is given from the exact solution ¢(&, p) = psin(§).
Table 5 presents the M AFE for o(&, p) = &7“(5), 5(€,p) = €3 sin(p) and several

values of u and k. Fig. 5 we represent £ and p direction curve of the AF of Ex.4.3
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sin2 2
Table 4. The AE of Ex.4.2 for o(&, p) = M and o(§, p) = 6+§+5(£), when §(€, p) = &sin(p)
and p = Kk = 14.

a(&,p)

6+€ sin” (€)
4

6+€ cos>(€)
4

2,8381 x 10717

6.5204 x 1017

9.8862 x 10~17

6.4085 x 1017

1.7144 x 10~17

9.0250 x 1018

2.5633 x 1017

4.6364 x 10717

2.0467 x 1077

5.0805 x 1017

Figure 4. The AFE versus £ and p of Ex.4.2 for (&, p) =

(&, p) = €sin(p) and p = k = 14.

6+ sin?
SO and o (€, p) =

6+€ cos?(€)
1 ,

when

for o(&,p) = %ﬂm, 5(&,p) = Esin(p) and p = k = 12. Fig. 6 illustrates the
proximity between @approx (€, p) and (&, p) for p = k = 12. Fig. 7 represent the AE
versus & and p of Ex.4.3 for o(¢, p) = %‘317;(5), 5(&,p) = E3sin(p) and p = k = 12.

Table 5. The MAE of Ex.4.3 for (¢, p) = 215 anq §(¢, p) = €% sin(p).

olp) | p=rk=2 n=r=4 nw=rk=06 nw=rk=3=8 nw=rk=10 | u=r=12
IO 1177 % 104 | 1453 1075 | 2.63 x 1075 | 214 x 10~ | 114 x 1014 | 3.75 x 101
‘2‘"’46" 151078 | N
8.x10 1.x107"0 - \“ “‘
4.x1077 5.x107"7 [ / “ “ “‘\‘

L L
0.0 0.2

L
08

L L
0.8 1.0

Figure 5. £ and p direction curve of the AE of Ex.4.3 for o(§,p) = w, 5(¢, p) = &3 sin(p) and
n=r=12.
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Figure 6. The @approx(&,p) and @(&,p) of Ex.4.3 for o(¢,p) = 2 5(g,p) = € sin(p) and
p=r=12.

Figure 7. The AFE versus £ and p of Ex.4.3 for o(§, p) = w, 5(&,p) = E3sin(p) and p = k = 12.

Example 4.4. Consider the TSVO-FFPE

D°EP (£, p) 9o&r) g2 §2o(&p)

oy " L Saeten T 3 peeen ) ¥ HUER), »
©(0,p) =0, ¢(1,p) = psin(1), (46)
P(6,0) =&,

and (&, p) is obtained from the exact solution ¢ (&, p) = p?sin(&).

Table 6 gives the MAE for o(&,p) = m, 5(&,p) = €2 sin(p) and sev-
eral values of p and k. Fig. 8 compare wapprox(§,p) and ¢(§, p) of Ex.4.4 for

a(&p) = %, 5(€,p) = E%sin(p) and p = k = 14. Fig. 9 The AE of Ex.4.4

3 a2
for (&, p) = %m(g)’ 5(&,p) = E2sin(p) and p = k = 14. Fig. 10 plots the
log,o M AE, illustrating the exponential convergence of our algorithm for diverse
values of p. This shows that the suggested strategy produces accurate approxima-
tions and good convergence rates.

_ T4&3sin?(9) — 2
Table 6. The M AFE of Ex.4.4 for o(&,p) = 5 and §(&, p) = &° sin(p).

(&, p) p=rk=2 | p=rk=4 | p=rk=6 | p=rk=8 | pu=k=10 | p=k=12 | p=r=14
o
T E 126 x 1073 | 8.2x 1070 | 2.2x 1078 | 2.6 x 10711 | 1.5 x 1071 | 6.7 x 10710 | 4.5 x 10716
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Figure 8. The papprox(§; p) and ¢(&, p) of Ex.4.4 for o(§,p) = HE%“'(&), 5(&, p) = &2 sin(p) and

: _ 743 sin?(9) — g2y =
Figure 9. The AFE of Ex.4.4 for 0(&, p) = ————=%, §(§,p) = £~ sin(p) and p =k = 14.

0F 3
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Figure 10. The log;q M AE versus p of Ex.4.4 for o(&, p) = 7+§+m(§>, 5(¢, p) = &% sin(p).

5. Conclusion

In this paper, we introduced a new numerical technique for solving VO-FFPEs.
The numerical scheme relies on the SL-GL-C and SC-GR-C methods, where the
SL-GL and SC-GR points are used to approximate the solution of the VO-FFPE in
space and time, respectively. The VO-FFPE is written in terms of SLP and SCP.
The residuals of the VO-FFPE at the SL-GL and SC-GR quadrature points are
estimated, and a system of algebraic equations is obtained and solved. Numerical
results illustrated the accuracy of the procedure when solving TVO-FFPEs and
TSVO-FFPEs.
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