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SOLUTIONS OF THE YANG-BAXTER-LIKE
MATRIX EQUATION FOR THE MATRIX
WITH NONSINGULAR JORDAN BLOCKS*

Saijie Chen', Xiaoli Li', Lanping Zhu' and Qianglian Huang"!

Abstract Let A be a nonsingular matrix with only one Jordan block, we
prove that the Yang-Baxter-like matrix equation AX A = X AX has no nonzero
singular solution. When A is a nonsingular matrix with at least two Jordan
blocks, the ranks of all nonzero singular solutions are obtained. This provides
a necessary condition for a matrix to be a solution of the Yang-Baxter-like
matrix equation. As applications, we obtain a family of nontrivial solutions
for the nonsingular Jordan block with 3 x 3, and further investigate the non-
commuting solutions for the nonsingular matrix with n x n.
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1. Introduction
Let C™*"™ denote the set of all matrices with m x n over the complex field, and
Crxm ={AeC™ " rank A =r}.

The matrix equation
AXA=XAX, (1.1)

where A € C"*" is a given square matrix, is called the Yang-Baxter-like matrix
equation. The equation (1.1) is closely related to the Yang-Baxter equation (inde-
pendently introduced by C. N. Yang and R. J. Baxter, in statiscial mechanics)

A(u)B(u+v)A(v) = B(v)A(u+ v) B(u),

where A and B are the parameter function about u and v. If A and B are indepen-
dent from u and v, we obtain (1.1). The Yang-Baxter equation has been extensively
studied in the past decades. For more information we refer to [4,10,15].

The Yang-Baxter-like matrix equation (1.1) has two trivial solutions, X = A and
X = 0. But finding all solutions is a complex task, which is equivalent to solving a
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system of n? quadratic equations, even the following 3 x 3 matrix equation

100 abec 100 abec 100 abec
110 def 110 =|def 110 def
011 gh i 011 gh i 011 gh i

The existence of nontrivial solutions to the equation (1.1) is a popular research
topic, and there have been many established tools and methods to solve (1.1) with
the specific matrix A (see [1-3,5-9,11-13,16,17]). For example, if A is a nonsingu-
lar quasi-stochastic matrix such that A~! is a stochastic matrix, the Brouwer fixed
point theorem was used to prove that (1.1) has a nontrivial solution [5]. In [7], all
of the solutions which commute with A were found by the Jordan form structure
of A. Using the technique of diagonalization, the authors obtained some explicit
solutions for an idempotent matrix A in [1], all commuting solutions and some non-
commuting solutions for the matrix A satisfying A% = I in [2].

When the matrix A is singular, all nonzero solutions of the homogeneous equa-
tion AX = 0 are nontrivial singular solutions of (1.1). For any square matrix with
at least two Jordan blocks, some non-trivial singular solutions can be obtained easily
by a constructive way [7]. A natural problem is whether we can find some nontrivial
singular solutions, when the matrix A is nonsingular with only one Jordan block.
In this paper, we use a new approach based on the partitioned skill of group inverse
and give a complete answer to this problem. Let us recall the notion of the group
inverse.

Definition 1.1. Let A € C"*™. The matrix X € C"*™ is said to be the group
inverse of A, always denoted by Af, if X satisfies

(1) AXA=A (2) XAX =X (3) AX = XA.

That A* exists is also called that A is group invertible. It is obvious that if A is
nonsingular, then A is group invertible and A* = A=, As we all know, a singular
matrix A is group invertible if and only if rank A = rank A? if and only if A has
the following block matrix form (see Theorem 2.2.1 and Theorem 2.2.2 in [14]).

Lemma 1.1 ( [14]). Let A € C**™ and 1 < r < n. Then A is group invertible if
and only if there are two invertible matrices P € C2*™ and C € C.*" such that

Co
A=P PL.
00

The paper is organized as follows. In Section 2, we prove that (1.1) has no
nonzero singular solution for the nonsingular matrix A with only one Jordan block.
Furthermore, for any nonsingular matrix, the ranks of all nonzero singular solutions
are obtained. This provides a necessary condition for a matrix to be a solution of the
Yang-Baxter-like matrix equation. As applications, in Section 3, we find a family
of non-commuting solutions for the nonsingular matrix A with 3 x 3. Finally, we
obtain some sufficient conditions on the existence of non-commuting solutions for
the nonsingular matrix A with n x n.
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2. No nonzero singular solution
Theorem 2.1. Let A € C*™ with only one Jordan block, then (1.1) has no nonzero
singular solution.

Proof. Suppose that X € C*"(1 < r < n) is a nonzero singular solution to (1.1),
then
AAXA = AXAX

and so
r = rank(AX) = rank(AAX A) = rank(AX AX).

This implies that AX is group invertible. By Lemma 1.1, we can find two invertible
matrices P € C2*™ and C' € C.*" such that

co
AX =P Pt
00

Hence, the equation (1.1) can be written equivalently as

co L N o ) o N
P PA=A""P PP P,
00 00 00
which means
L Cco L Cc?0
P AP P AP =
00 00

Let P~1AP be partittioned into the 2 x 2 block matrix

piap— [

Y3 Yy

where Y7 € C"*" and Y, € C(»=7)x(n=7) then

iYs co iYs) C?0
Y3 Y, 00 Y3 Y, - 00
and
ey 1CYs | C?0
Y3CY, Y3CY, - 00

It follows from
r = rank C? = rank (Y1CY7) <rank Y7 <r

that the matrix Y7 is invertible. So both Y5 and Y3 are zero matrices. This shows

Y 0
A=p| " Pl
0Y,
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Let the Jordan canonical form of A be
A
1A

|
-
>

J(A\,n)

1A

by the transitivity of similar matrices, we know that

A

1A

Y: O
is similar to 1 A

0 Yy

1A

However, the elementary divisor of the partitioned matrix is composed of the ones
of Y1 and Yy, and the elementary divisor of J(A,n) is only (z — X\)™. This implies
that these two matrices are not similar. This completes the proof. O

Example 2.1. Let
A0
A= , AF£0.
1A

From Theorem 2.1, (1.1) has no nonzero singular solution. We would like to remark
that this conclusion can be drawn by manual calculation. For instance, in [16], all
nontrivial solutions of (1.1) are given by the one-parameter matrices

t —)\?
X(t) = , teC,
($-12% 2x—¢

and consequently, the determinant |X(¢)] = #(2X — ¢) + A (¥ — 1) = X2 # 0.
Therefore, (1.1) has no nonzero singular solution.

Example 2.2. Let
100

A=1(110],
011
then (1.1) has nontrivial two-parameter solutions:
16+65—4t+ 252 —12—4s 8
8+10s—2st+3s2 4353 —4-65—2s2 45 | :s,t € C}.

A~ =

{X(s,t)
—2+4-35+8t+3st+s2—2t2 452t 2—2s—6t—2st 4t
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It should be noted that X (s,t) is invertible with | X (s,t)| = 1.

Corollary 2.1. Let A € CI'*™ with only one Jordan block, then the commuting
solutions of (1.1) are trivial.

Proof. Let X be a nonzero commuting solution to (1.1), then by Theorem 2.1, X
is invertible and so it follows from AXA = XAX and AX = XA that X = A. This
completes the proof. O

From Corollary 2.1, we can see that the matrix X (s,t) in Example 2.2 is a non-
commuting solution. The next corollary is an immediate consequence of Theorem
2.1, we omit the proof.

Corollary 2.2. Let A € C'*™, then (1.1) has nonzero singular solutions if and
only if A has at least two Jordan blocks.

The following theorem points out the ranks of all nonzero singular solutions,
which provides a necessary condition for a matrix to be a solution of the Yang-
Baxter-like matrix equation.

Theorem 2.2. Let A € C*™ if (1.1) has nonzero singular solutions, i.e., the
Jordan canonical form of A is
J(A1, k1)
J(Aa, ko)

J( s, ks)

Then the set to ranks of all nonzero singular solutions is

{Zki: VIC{1,2,...,s}, 0#T#{1,2,..,5} }

icl

Proof. On one hand, let X € C"*™ be a nonzero singular solution to (1.1). From
the proof of Theorem 2.1, the matrix A is similar to

Y1 0
0 Yy

where Y7 € C"*" and Y, € C(»=")*("=7)  Thus, all elementary divisors of ¥; come
from ones of A and suppose that elementary divisors of Y; are

(.13 - /\i1)ki1 ) (Qf - )‘iz)ki27"' 7($ - )‘it)kit’

t
where {i,i2,...,3t} C {1,2,...,s}. Considering Y; € C™*", we can get r = > k;;.
j=1
On the other hand, we can claim that for any nonempty proper subset IC{1,2, ..., s},
> k; is the rank of some nontrivial singular solution. In fact, we can take the same
=
Jordan block J(A;, k;) for any i € I and the Jordan block as 0 for all ¢ ¢ I. Hence
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we obtain a nontrivial singular solution with the rank " k;. For example, suppose
=
I ={1,3}, then

J(A1, k1)

J(As, ks3)

is a nontrivial singular solution to (1.1), where P € C"*" satisfying A = PJP~ L.
This completes the proof. O

Example 2.3. Let

2-1 1 0 0
0 2-1 3-1
A=| 5-2 2-4-2
1-1. 1 0 0
-3 1 0 5 2
and its Jordan canonical form is
10000
11000
00200
00120
00012

Thus, the set of the ranks of all nonzero singular solutions to (1.1) is {2, 3}, and so,
any matrix with rank 1 or rank 4 can not be the solution of (1.1).

Example 2.4. Suppose that the elementary divisors of the nonsingular matrix A
with 20 x 20 are (z — 1)%, (z — 1)8, (z — 2)5, (x — 3)®. From Theorem 2.2, the set of
ranks of all nonzero singular solutions is

{2,5,8 245,545 5+8, 2+5+5 2+5+8, 5+5+8}.

Thus, the set of ranks of all nonzero singular solutions to (1.1) is {2, 5,7,8,10,12, 13,
15,18}, and (1.1) has no solution with the rank in {1,3,4,6,9,11,14,16,17,19}.
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3. Non-commuting solutions

Theorem 3.1. Let

100 A00
A=|110] and J=]1X0

011 01X

If the matriz
abc
dof
Oh i
is a solution of (1.1), then
aX bA? c)\3
d 0 fA\?
0 h X
is a solution of the equation XJX = JX J.

Proof. A direct computation yields

AX0OY [axbA2 eX3) [A00
1AO d 0 fA2 1AO0
01 0 h i\ 01

(a+Db)A3 (b+c)A\* e\’
(a+b+d)A? (b+c+ N (c+ )N
(d+hmX  (f+h+iD)A (f+i)A3

and

aX bA? c)\? A00 aX bAZ c)\?

d 0 f\? 1A0 d 0 f\2

0 h i\ 01\ 0 h i\

(a% + ab + bd + cd)\3 (ab+ b% + ch)A\* (ac + be + bf + cf + ci)A®
= (ad + df)\? (bd + fR)A3 (de+ f2+ fi)A*

(ah + hd + id)\ (bh + hi)\? (ch+hf+if +i?)\3




Solutions of the Yang-Bater-like matrix equation 993

Considering that

abc
dof
0h
is a solution of (1.1), we can complete the proof. O
Corollary 3.1. Let
A00
J=11Xx0]:
01 A
then
20 —2)2 2)3 A —2X2 2)3
10 =211 0 =X
0 0 A 0 —1 2X
and

20 =A% 223 A—A22)3
-1 0 =2X2],]0 0 —2A2
0 1 A 0 2\

[N

are non-commuting solutions of XJX = JXJ.

Proof. In Example 2.2, we take

(S,t) = (717 1); (7172)7 (727 1) and (72,2)

and then
—4—6s—2s2=0, —2+3s+8t+s>+3st—2t>+5%t=0.
Hence
2-2 2 1-2 2 2-1 2 1-1 2
3 0-1],]1 0-1],| -1 0-2]and |0 0-2
0 0 1 0-1 2 0 1 1 0 3 2

are four solutions of (1.1). Therefore, by Theorem 3.1 and Corollary 2.1, we can

get what we desired. O
In order to find more solutions to AXA = XAX, we need the following propo-

sition.

Proposition 3.1. Let A € CI*" and X be a nonzero solution of (1.1), then

(i) If X is nonsingular, X is similar to A;
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(i) If A has only one Jordan block, X is similar to A;
(iii) For any integer k, AKX A=F is a solution of (1.1).

Proof. We only need to prove that (i) and (éi¢). If X is nonsingular, then the
equation (1.1) can be written in the form

A= (XA)X(XA)™,
hence X is similar to A. For any integer k,
(AFX AR A(ARXA™F) = ARXAXATF
= AFAXAATF
= A(AFX AR A
This completes the proof. O

Summarizing Proposition 3.1, if a nonzero solution of (1.1) is found, we can
obtain a family of infinite many similar solutions.

Corollary 3.2. Let

A00
A=1x0[,A#0,
01X
then for any integer k,
(24 3k + K2\ (=2 — 2k)\? 2X7
M (—k — 2k*)\ (=1 +2k)N\2
W k2 — k3 (1 —2k+ k3N

is a solution of the equation X AX = AXA.

Proof. Since

2) —2)2 2)\3
Xl = % 0 _)\2
0 0 X

is a solution of the equation XAX = AX A and

Ak 0 0 Ak 0 0
AP = k-t AE o |, AR = Akt A k0 ],
#}\k72 EAR—1 \k @Afk72 kARl Nk
we know that
(24 3k + k)X (=2 — 2k)\? 2)\3
APXGATE = | LEShASRTA2RT (o)) (=14 2k)N°

12,723,174
b4kt k2 — k3 (1—2k+k?)A
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is a solution of X AX = AXA. This completes the proof. O
Obviously, if A = A (A # 0), then (1.1) has no non-commuting solutions,

since it has only the commuting solution X which satisfies X2 = AX. Now we are

interested in looking for some non-commuting solutions for the matrix A # AI.

Theorem 3.2. Let A be a nonsingular matriz with 3 x 3, then (1.1) has non-
commuting solutions if and only if A # \I.

Proof. We only consider the sufficiency. Let A, u and v be three distinct nonzero
complex numbers, then the Jordan canonical forms J of A must be one of the
followings:

A0O A0O0 A00
MJ=1x0]|; @DJI=]1r0];:B)J=]1Ar0];
01\ 00X\ 00u
A0O0 r0o0
4AJ=]0ox0| and (5)J=]0A0
00w 00w
In case (1), if
A0O

A=P 120 Pilv

01\
then
(2 + 3k + k2N (=2 — 2k)\2 23
X =P 1+3k+5;k2+2k3 (—k — 2k2)A (=14 2k)A2 Pl kez
12,713,714
=Btk 4k k2= k3 (1—2k+k*)A

is a non-commuting invertible solution.
The cases (2) and (3) are similar, we only prove the case (3), if

A00
A=P|1x0 [P
00u
then
t -2 0
—1)22x—t0 [P ', teC



996 S. Chen, X. Li, L. Zhu & Q. Huang

is a non-commuting singular solution when a = 0 and a non-commuting nonsingular
solution when a = p.
The cases (4) and (5) are similar, and we consider the case (5). If

r0O0
A=Ploxo | PY,
00p

then

b 0 0
1 _
X= gl |0 we-Ns e | P 0#seC
0 =Au(N = A+ p?)  N(A—p)s

is a non-commuting singular solution when b = 0 and a non-commuting invertible
solution when b = (A — u)%sv # 0. This completes the proof. O

Theorem 3.3. Let A € CI*" and suppose that the Jordan canonical form of A is

J(A1, k1)
J( A2, k2)

J(As, ks)

then the following statements are true:

(1) if there are two distinct eigenvalues A; and \; such that k; = k;j = 1, then
(1.1) has non-commuting solutions;

(i) if there is a J(\;, k;) such that k; = 2 or 3, then (1.1) has non-commuting
solutions.

Proof. In case (i), we can choose the suitable nonsingular matrix P such that

Ai
Aj

and verify that

1 AT =) (Ai = A))?

X = —
A= A2 Lo (2 = A0 +42) A2\ = A))
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is a non-commuting solution of the equation
diag()\i, )\j)Xdiag()\i, )\J) = Xdiag()\i, )\J)X

Then
X1

is a non-commuting solution of (1.1).
In case (ii), for the sake of simplicity, we suppose k; = 3 and

J(A1, k1)
J (A2, k2)

J(As, ks)

From Corollary 3.1, we can find a non-commuting solution X; of the equation
J(A1, k1) X T (A1, k1) = XJT (A1, k1) X. Tt follows that

Xy
J(Aa, ko)

J(As, ks)

is a non-commuting solution of (1.1). This completes the proof. O

Example 3.1. Suppose that the Jordan canonical form of A; and A, is

1000000
100000

1100000
020000

0020000
00A000

Ji = and o= 000AX000 [, A#0,

001100

0001A00
000120

00001A0
00001\

000001\

respectively, then both A1 XA; = XA; X and A, X Ay = X A5 X has non-commuting
solutions.
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4. Conclutions

We have proved that the Yang-Baxter-like matrix equation AXA = XAX has no
nonzero singular solution, when the nonsingular matrix A has only one Jordan
block. If the nonsingular matrix A has at least two Jordan block, the ranks of all
nonzero singular solutions are given. We find some non-commuting solutions for
any nonsingular 3 x 3 matrix A # Al and some nonsingular n X n matrices. For
more matrices and further applications, we shall discuss them in our consequent
papers.
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