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SOLUTIONS OF THE YANG-BAXTER-LIKE
MATRIX EQUATION FOR THE MATRIX

WITH NONSINGULAR JORDAN BLOCKS∗

Saijie Chen1, Xiaoli Li1, Lanping Zhu1 and Qianglian Huang1,†

Abstract Let A be a nonsingular matrix with only one Jordan block, we
prove that the Yang-Baxter-like matrix equation AXA = XAX has no nonzero
singular solution. When A is a nonsingular matrix with at least two Jordan
blocks, the ranks of all nonzero singular solutions are obtained. This provides
a necessary condition for a matrix to be a solution of the Yang-Baxter-like
matrix equation. As applications, we obtain a family of nontrivial solutions
for the nonsingular Jordan block with 3× 3, and further investigate the non-
commuting solutions for the nonsingular matrix with n× n.
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1. Introduction
Let Cm×n denote the set of all matrices with m× n over the complex field, and

Cm×n
r = {A ∈ Cm×n : rank A = r}.

The matrix equation
AXA = XAX, (1.1)

where A ∈ Cn×n is a given square matrix, is called the Yang-Baxter-like matrix
equation. The equation (1.1) is closely related to the Yang-Baxter equation (inde-
pendently introduced by C. N. Yang and R. J. Baxter, in statiscial mechanics)

A(u)B(u+ v)A(v) = B(v)A(u+ v)B(u),

where A and B are the parameter function about u and v. If A and B are indepen-
dent from u and v, we obtain (1.1). The Yang-Baxter equation has been extensively
studied in the past decades. For more information we refer to [4, 10,15].

The Yang-Baxter-like matrix equation (1.1) has two trivial solutions, X = A and
X = 0. But finding all solutions is a complex task, which is equivalent to solving a
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system of n2 quadratic equations, even the following 3× 3 matrix equation
1 0 0

1 1 0

0 1 1




a b c

d e f

g h i




1 0 0

1 1 0

0 1 1

 =


a b c

d e f

g h i




1 0 0

1 1 0

0 1 1




a b c

d e f

g h i

 .

The existence of nontrivial solutions to the equation (1.1) is a popular research
topic, and there have been many established tools and methods to solve (1.1) with
the specific matrix A (see [1–3,5–9,11–13,16,17]). For example, if A is a nonsingu-
lar quasi-stochastic matrix such that A−1 is a stochastic matrix, the Brouwer fixed
point theorem was used to prove that (1.1) has a nontrivial solution [5]. In [7], all
of the solutions which commute with A were found by the Jordan form structure
of A. Using the technique of diagonalization, the authors obtained some explicit
solutions for an idempotent matrix A in [1], all commuting solutions and some non-
commuting solutions for the matrix A satisfying A2 = I in [2].

When the matrix A is singular, all nonzero solutions of the homogeneous equa-
tion AX = 0 are nontrivial singular solutions of (1.1). For any square matrix with
at least two Jordan blocks, some non-trivial singular solutions can be obtained easily
by a constructive way [7]. A natural problem is whether we can find some nontrivial
singular solutions, when the matrix A is nonsingular with only one Jordan block.
In this paper, we use a new approach based on the partitioned skill of group inverse
and give a complete answer to this problem. Let us recall the notion of the group
inverse.

Definition 1.1. Let A ∈ Cn×n. The matrix X ∈ Cn×n is said to be the group
inverse of A, always denoted by A♯, if X satisfies

(1) AXA = A (2) XAX = X (3) AX = XA.

That A♯ exists is also called that A is group invertible. It is obvious that if A is
nonsingular, then A is group invertible and A♯ = A−1. As we all know, a singular
matrix A is group invertible if and only if rank A = rank A2 if and only if A has
the following block matrix form (see Theorem 2.2.1 and Theorem 2.2.2 in [14]).

Lemma 1.1 ( [14]). Let A ∈ Cn×n
r and 1 ≤ r < n. Then A is group invertible if

and only if there are two invertible matrices P ∈ Cn×n
n and C ∈ Cr×r

r such that

A = P

C 0

0 0

P−1.

The paper is organized as follows. In Section 2, we prove that (1.1) has no
nonzero singular solution for the nonsingular matrix A with only one Jordan block.
Furthermore, for any nonsingular matrix, the ranks of all nonzero singular solutions
are obtained. This provides a necessary condition for a matrix to be a solution of the
Yang-Baxter-like matrix equation. As applications, in Section 3, we find a family
of non-commuting solutions for the nonsingular matrix A with 3 × 3. Finally, we
obtain some sufficient conditions on the existence of non-commuting solutions for
the nonsingular matrix A with n× n.
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2. No nonzero singular solution
Theorem 2.1. Let A ∈ Cn×n

n with only one Jordan block, then (1.1) has no nonzero
singular solution.

Proof. Suppose that X ∈ Cn×n
r (1 ≤ r < n) is a nonzero singular solution to (1.1),

then
AAXA = AXAX

and so
r = rank(AX) = rank(AAXA) = rank(AXAX).

This implies that AX is group invertible. By Lemma 1.1, we can find two invertible
matrices P ∈ Cn×n

n and C ∈ Cr×r
r such that

AX = P

C 0

0 0

P−1.

Hence, the equation (1.1) can be written equivalently as

P

C 0

0 0

P−1A = A−1P

C 0

0 0

P−1P

C 0

0 0

P−1,

which means

P−1AP

C 0

0 0

P−1AP =

C2 0

0 0

 .

Let P−1AP be partittioned into the 2× 2 block matrix

P−1AP =

Y1 Y2

Y3 Y4

 ,

where Y1 ∈ Cr×r and Y4 ∈ C(n−r)×(n−r), thenY1 Y2

Y3 Y4

C 0

0 0

Y1 Y2

Y3 Y4

 =

C2 0

0 0


and Y1CY1 Y1CY2

Y3CY1 Y3CY2

 =

C2 0

0 0

 .

It follows from

r = rank C2 = rank (Y1CY1) ≤ rank Y1 ≤ r

that the matrix Y1 is invertible. So both Y2 and Y3 are zero matrices. This shows

A = P

Y1 0

0 Y4

P−1.
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Let the Jordan canonical form of A be

J(λ, n) =



λ

1 λ

1 λ

. . . . . .

1 λ


,

by the transitivity of similar matrices, we know that

Y1 0

0 Y4

 is similar to



λ

1 λ

1 λ

. . . . . .

1 λ


.

However, the elementary divisor of the partitioned matrix is composed of the ones
of Y1 and Y4, and the elementary divisor of J(λ, n) is only (x − λ)n. This implies
that these two matrices are not similar. This completes the proof.

Example 2.1. Let

A =

λ 0

1 λ

 , λ ̸= 0.

From Theorem 2.1, (1.1) has no nonzero singular solution. We would like to remark
that this conclusion can be drawn by manual calculation. For instance, in [16], all
nontrivial solutions of (1.1) are given by the one-parameter matrices

X(t) =

 t −λ2

( t
λ − 1)2 2λ− t

 , t ∈ C,

and consequently, the determinant |X(t)| = t(2λ − t) + λ2( t
λ − 1)2 = λ2 ̸= 0.

Therefore, (1.1) has no nonzero singular solution.

Example 2.2. Let

A =


1 0 0

1 1 0

0 1 1

 ,

then (1.1) has nontrivial two-parameter solutions:

{
X(s, t)=

1

4


16+6s−4t+2s2 −12−4s 8

8+10s−2st+3s2+s3 −4−6s−2s2 4s

−2+3s+8t+3st+s2−2t2+s2t 2−2s−6t−2st 4t

 : s, t ∈ C

}
.
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It should be noted that X(s, t) is invertible with |X(s, t)| = 1.

Corollary 2.1. Let A ∈ Cn×n
n with only one Jordan block, then the commuting

solutions of (1.1) are trivial.

Proof. Let X be a nonzero commuting solution to (1.1), then by Theorem 2.1, X
is invertible and so it follows from AXA = XAX and AX = XA that X = A. This
completes the proof.

From Corollary 2.1, we can see that the matrix X(s, t) in Example 2.2 is a non-
commuting solution. The next corollary is an immediate consequence of Theorem
2.1, we omit the proof.

Corollary 2.2. Let A ∈ Cn×n
n , then (1.1) has nonzero singular solutions if and

only if A has at least two Jordan blocks.

The following theorem points out the ranks of all nonzero singular solutions,
which provides a necessary condition for a matrix to be a solution of the Yang-
Baxter-like matrix equation.

Theorem 2.2. Let A ∈ Cn×n
n , if (1.1) has nonzero singular solutions, i.e., the

Jordan canonical form of A is

J =



J(λ1, k1)

J(λ2, k2)

. . .

J(λs, ks)


, s ≥ 2.

Then the set to ranks of all nonzero singular solutions is{∑
i∈I

ki : ∀I ⊂ {1, 2, ..., s}, ∅ ̸= I ̸= {1, 2, ..., s}

}
.

Proof. On one hand, let X ∈ Cn×n
r be a nonzero singular solution to (1.1). From

the proof of Theorem 2.1, the matrix A is similar toY1 0

0 Y4

 ,

where Y1 ∈ Cr×r and Y4 ∈ C(n−r)×(n−r). Thus, all elementary divisors of Y1 come
from ones of A and suppose that elementary divisors of Y1 are

(x− λi1)
ki1 , (x− λi2)

ki2 , · · · , (x− λit)
kit ,

where {i1, i2, ..., it} ⊂ {1, 2, ..., s}. Considering Y1 ∈ Cr×r, we can get r =
t∑

j=1

kij .

On the other hand, we can claim that for any nonempty proper subset I⊂{1, 2, ..., s},∑
i∈I

ki is the rank of some nontrivial singular solution. In fact, we can take the same

Jordan block J(λi, ki) for any i ∈ I and the Jordan block as 0 for all i /∈ I. Hence



Solutions of the Yang-Bater-like matrix equation 991

we obtain a nontrivial singular solution with the rank
∑
i∈I

ki. For example, suppose

I = {1, 3}, then

P



J(λ1, k1)

0

J(λ3, k3)

0

. . .

0


P−1,

is a nontrivial singular solution to (1.1), where P ∈ Cn×n
n satisfying A = PJP−1.

This completes the proof.

Example 2.3. Let

A =



2 −1 1 0 0

0 2 −1 3 −1

5 −2 2 −4 −2

1 −1 1 0 0

−3 1 0 5 2


and its Jordan canonical form is 

1 0 0 0 0

1 1 0 0 0

0 0 2 0 0

0 0 1 2 0

0 0 0 1 2


.

Thus, the set of the ranks of all nonzero singular solutions to (1.1) is {2, 3}, and so,
any matrix with rank 1 or rank 4 can not be the solution of (1.1).

Example 2.4. Suppose that the elementary divisors of the nonsingular matrix A
with 20× 20 are (x− 1)2, (x− 1)8, (x− 2)5, (x− 3)5. From Theorem 2.2, the set of
ranks of all nonzero singular solutions is

{2, 5, 8, 2 + 5, 5 + 5, 5 + 8, 2 + 5 + 5, 2 + 5 + 8, 5 + 5 + 8}.

Thus, the set of ranks of all nonzero singular solutions to (1.1) is {2, 5, 7, 8, 10, 12, 13,
15, 18}, and (1.1) has no solution with the rank in {1, 3, 4, 6, 9, 11, 14, 16, 17, 19}.
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3. Non-commuting solutions
Theorem 3.1. Let

A =


1 0 0

1 1 0

0 1 1

 and J =


λ 0 0

1 λ 0

0 1 λ

 .

If the matrix 
a b c

d 0 f

0 h i


is a solution of (1.1), then 

aλ bλ2 cλ3

d 0 fλ2

0 h iλ


is a solution of the equation XJX = JXJ.

Proof. A direct computation yields
λ 0 0

1 λ 0

0 1 λ




aλ bλ2 cλ3

d 0 fλ2

0 h iλ




λ 0 0

1 λ 0

0 1 λ



=


(a+ b)λ3 (b+ c)λ4 cλ5

(a+ b+ d)λ2 (b+ c+ f)λ3 (c+ f)λ4

(d+ h)λ (f + h+ i)λ2 (f + i)λ3


and 

aλ bλ2 cλ3

d 0 fλ2

0 h iλ




λ 0 0

1 λ 0

0 1 λ




aλ bλ2 cλ3

d 0 fλ2

0 h iλ



=


(a2 + ab+ bd+ cd)λ3 (ab+ b2 + ch)λ4 (ac+ bc+ bf + cf + ci)λ5

(ad+ df)λ2 (bd+ fh)λ3 (dc+ f2 + fi)λ4

(ah+ hd+ id)λ (bh+ hi)λ2 (ch+ hf + if + i2)λ3

 .
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Considering that 
a b c

d 0 f

0 h i


is a solution of (1.1), we can complete the proof.

Corollary 3.1. Let

J =


λ 0 0

1 λ 0

0 1 λ

 ,

then 
2λ −2λ2 2λ3

1
2 0 −λ2

0 0 λ

 ,


λ −2λ2 2λ3

1 0 −λ2

0 −1 2λ


and 

2λ −λ2 2λ3

−1 0 −2λ2

0 1 λ

 ,


λ −λ2 2λ3

0 0 −2λ2

0 1
2 2λ


are non-commuting solutions of XJX = JXJ.

Proof. In Example 2.2, we take

(s, t) = (−1, 1), (−1, 2), (−2, 1) and (−2, 2)

and then

−4− 6s− 2s2 = 0, −2 + 3s+ 8t+ s2 + 3st− 2t2 + s2t = 0.

Hence 
2 −2 2

1
2 0 −1

0 0 1

 ,


1 −2 2

1 0 −1

0 −1 2

 ,


2 −1 2

−1 0 −2

0 1 1

 and


1 −1 2

0 0 −2

0 1
2 2


are four solutions of (1.1). Therefore, by Theorem 3.1 and Corollary 2.1, we can
get what we desired.

In order to find more solutions to AXA = XAX, we need the following propo-
sition.

Proposition 3.1. Let A ∈ Cn×n
n and X be a nonzero solution of (1.1), then

(i) If X is nonsingular, X is similar to A;
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(ii) If A has only one Jordan block, X is similar to A;

(iii) For any integer k, AkXA−k is a solution of (1.1).

Proof. We only need to prove that (i) and (iii). If X is nonsingular, then the
equation (1.1) can be written in the form

A = (XA)X(XA)−1,

hence X is similar to A. For any integer k,

(AkXA−k)A(AkXA−k) = AkXAXA−k

= AkAXAA−k

= A(AkXA−k)A.

This completes the proof.
Summarizing Proposition 3.1, if a nonzero solution of (1.1) is found, we can

obtain a family of infinite many similar solutions.

Corollary 3.2. Let

A =


λ 0 0

1 λ 0

0 1 λ

 , λ ̸= 0,

then for any integer k,
(2 + 3k + k2)λ (−2− 2k)λ2 2λ3

1+3k+5k2+2k3

2 (−k − 2k2)λ (−1 + 2k)λ2

−k2+k3+k4

2λ k2 − k3 (1− 2k + k2)λ


is a solution of the equation XAX = AXA.

Proof. Since

X1 =


2λ −2λ2 2λ3

1
2 0 −λ2

0 0 λ


is a solution of the equation XAX = AXA and

Ak =


λk 0 0

kλk−1 λk 0

k2−k
2 λk−2 kλk−1 λk

 , A−k =


λ−k 0 0

−kλ−k−1 λ−k 0

k2+k
2 λ−k−2 −kλ−k−1 λ−k

 ,

we know that

AkX1A
−k =


(2 + 3k + k2)λ (−2− 2k)λ2 2λ3

1+3k+5k2+2k3

2 (−k − 2k2)λ (−1 + 2k)λ2

−k2+k3+k4

2λ k2 − k3 (1− 2k + k2)λ
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is a solution of XAX = AXA. This completes the proof.
Obviously, if A = λI (λ ̸= 0), then (1.1) has no non-commuting solutions,

since it has only the commuting solution X which satisfies X2 = λX. Now we are
interested in looking for some non-commuting solutions for the matrix A ̸= λI.

Theorem 3.2. Let A be a nonsingular matrix with 3 × 3, then (1.1) has non-
commuting solutions if and only if A ̸= λI.

Proof. We only consider the sufficiency. Let λ, µ and ν be three distinct nonzero
complex numbers, then the Jordan canonical forms J of A must be one of the
followings:

(1) J =


λ 0 0

1 λ 0

0 1 λ

 ; (2) J =


λ 0 0

1 λ 0

0 0 λ

 ; (3) J =


λ 0 0

1 λ 0

0 0 µ

 ;

(4) J =


λ 0 0

0 λ 0

0 0 µ

 and (5) J =


ν 0 0

0 λ 0

0 0 µ

 .

In case (1), if

A = P


λ 0 0

1 λ 0

0 1 λ

P−1,

then

X = P


(2 + 3k + k2)λ (−2− 2k)λ2 2λ3

1+3k+5k2+2k3

2 (−k − 2k2)λ (−1 + 2k)λ2

−k2+k3+k4

2λ k2 − k3 (1− 2k + k2)λ

P−1, k ∈ Z

is a non-commuting invertible solution.
The cases (2) and (3) are similar, we only prove the case (3), if

A = P


λ 0 0

1 λ 0

0 0 µ

P−1,

then

X = P


t −λ2 0

( t
λ − 1)2 2λ− t 0

0 0 a

P−1, t ∈ C
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is a non-commuting singular solution when a = 0 and a non-commuting nonsingular
solution when a = µ.

The cases (4) and (5) are similar, and we consider the case (5). If

A = P


ν 0 0

0 λ 0

0 0 µ

P−1,

then

X =
1

(λ− µ)2s
P


b 0 0

0 µ2(µ− λ)s (λ− µ)2s2

0 −λµ(λ2 − λµ+ µ2) λ2(λ− µ)s

P−1, 0 ̸= s ∈ C

is a non-commuting singular solution when b = 0 and a non-commuting invertible
solution when b = (λ− µ)2sν ̸= 0. This completes the proof.

Theorem 3.3. Let A ∈ Cn×n
n and suppose that the Jordan canonical form of A is

J =



J(λ1, k1)

J(λ2, k2)

. . .

J(λs, ks)


, s ≥ 2,

then the following statements are true:

(i) if there are two distinct eigenvalues λi and λj such that ki = kj = 1, then
(1.1) has non-commuting solutions;

(ii) if there is a J(λi, ki) such that ki = 2 or 3, then (1.1) has non-commuting
solutions.

Proof. In case (i), we can choose the suitable nonsingular matrix P such that

A = P



λi

λj

∗
. . .

∗


P−1

and verify that

X1 =
1

(λi − λj)2

 λ2
j (λj − λi) (λi − λj)

2

−λiλj(λ
2
i − λiλj + λ2

j ) λ2
i (λi − λj)
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is a non-commuting solution of the equation

diag(λi, λj)Xdiag(λi, λj) = Xdiag(λi, λj)X.

Then

X = P



X1

∗
. . .

∗


P−1

is a non-commuting solution of (1.1).
In case (ii), for the sake of simplicity, we suppose k1 = 3 and

A = P



J(λ1, k1)

J(λ2, k2)

. . .

J(λs, ks)


P−1.

From Corollary 3.1, we can find a non-commuting solution X1 of the equation
J(λ1, k1)XJ(λ1, k1) = XJ(λ1, k1)X. It follows that

X = P



X1

J(λ2, k2)

. . .

J(λs, ks)


P−1,

is a non-commuting solution of (1.1). This completes the proof.

Example 3.1. Suppose that the Jordan canonical form of A1 and A2 is

J1 =



1 0 0 0 0 0

0 2 0 0 0 0

0 0 λ 0 0 0

0 0 1 λ 0 0

0 0 0 1 λ 0

0 0 0 0 1 λ


and J2 =



1 0 0 0 0 0 0

1 1 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 λ 0 0 0

0 0 0 1 λ 0 0

0 0 0 0 1 λ 0

0 0 0 0 0 1 λ


, λ ̸= 0,

respectively, then both A1XA1 = XA1X and A2XA2 = XA2X has non-commuting
solutions.
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4. Conclutions
We have proved that the Yang-Baxter-like matrix equation AXA = XAX has no
nonzero singular solution, when the nonsingular matrix A has only one Jordan
block. If the nonsingular matrix A has at least two Jordan block, the ranks of all
nonzero singular solutions are given. We find some non-commuting solutions for
any nonsingular 3 × 3 matrix A ̸= λI and some nonsingular n × n matrices. For
more matrices and further applications, we shall discuss them in our consequent
papers.
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