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1. Introduction
Let H denote the class of analytic functions in the unit disk D := {z ∈ C : |z| < 1}
and denote by A the class of analytic functions in H that are normalized by f(0) =
0 = f ′(0)− 1. Also, let S denote the subclass of A which is composed of functions
which are univalent in D.

A function f in A is said to be γ-spirallike of order α, 0 ≤ α < 1, if

R

{
eiγ

zf ′(z)

f(z)

}
> α cos γ, z ∈ D,

for some real γ with |γ| < π/2. The class of the γ-spirallike functions of order α is
denoted by Sγ(α). The class Sγ(0), which consists of all γ-spirallike functions, was
introduced by Špaček (see [10] or [2, p.52]). We recall that a set G ⊂ C is called
starlike with respect to the origin (or starlike) if the straight line joining any point
in G to the origin lies in G, i.e., tz ∈ G when z ∈ G and t ∈ [0, 1] (cf. [2, p. 40]).
We note that, when γ = 0 and α = 0, the class Sγ(α) reduces the class S∗, which
consists f such that f(D) is a starlike with respect to the origin. The elements in
S∗ are called starlike functions. We also note that Sγ(α) ⊂ S.
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To find conditions for γ-spirallike functions (as well as for univalent functions) is
one of the main problems to study. In [5], several sufficient conditions for functions
in Sγ(α) were investigated. Some coefficients problems of these functions were
raised and solved in [1] and [6]. More recent informations concerning the functions
in Sγ(α) have also found in [4] and [9].

Let β ∈ (0, 1]. If f ∈ A satisfies∣∣∣∣arg{eiφ zf ′(z)

g(z)

}∣∣∣∣ < π

2
β, z ∈ D,

for some g ∈ S∗ and some φ ∈ (−π/2, π/2), then f is said to be strongly close-to-
convex (with respect to g) in D. Let us denote by Cβ the class of strongly close-to-
convex in D. Especially, when β = 1, we have C1 ≡ C the class of close-to-convex
functions was introduced by Kaplan [3]. We note that every close-to-convex function
is univalent [2, p.47]. So, it holds that Cβ ⊂ S for β ∈ (0, 1]. Several geometric
properties of functions in a particular subclass of Cβ were recently introduced in [8].

We say that f ∈ A is a convex function in D if zf ′ ∈ A is starlike in D. Therefore,
if f ∈ A satisfies

R

{
1 +

zf ′′(z)

f ′(z)

}
> 0, z ∈ D,

then f is convex in D. We note that if f ∈ A satisfies

R

{
eiα

f ′(z)

g′(z)

}
> 0, z ∈ D,

for some convex function g ∈ A and real number α ∈ (−π/2, π/2), then f ∈ C.
Let 0 ≤ β < 1. A function p ∈ H is called a Carathéodory function of order β

if p(0) = 1 and it satisfies the condition

R {p(z)} > β, z ∈ D.

The class of the Carathéodory functions of order β will be denoted by P(β). Espe-
cially, we put P(0) ≡ P, which is the class of all Carathéodory functions.

In the present paper, we investigate several new criteria for strongly close-to-
convexity, spirallikeness and starlikeness of functions in A using various new meth-
ods.

2. Main Results
Applying the same idea in [12], we can obtain the following result on Carathéodory
functions.

Theorem 2.1. Let β ∈ (0, 1]. Let p be analytic in D, p(0) = 1 and suppose that

− αβ

2α− β
< R

{
zp′(z)

p(z)

}
< α, z ∈ D, (2.1)

where α is real and α > β/2. Then
∣∣arg {eiφp(z)}∣∣ < πβ/2 for some φ with

|φ| < πβ/2.
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Proof. Let 0 ≤ r < 1 be given. From the hypothesis (2.1), we have p(z) ̸= 0 in D
and ∫

|z|=r

R

{
zp′(z)

p(z)

}
dθ =

∫ 2π

0

d arg p(z)

dθ
dθ = 0. (2.2)

Let ∂Dr := {z ∈ C : |z| = r} and let us put C1 the part of ∂Dr on which

R

{
zp′(z)

p(z)

}
> 0.

Put
l =

∫
C1

d arg z and y1 =

∫
C1

R

{
zp′(z)

p(z)

}
dθ.

On the other hand, let us put C2 the part of ∂Dr on which

R

{
zp′(z)

p(z)

}
≤ 0,

and put
−y2 =

∫
C2

R

{
zp′(z)

p(z)

}
dθ.

Then, we have ∫
C2

d arg z = 2π − l.

From the hypothesis (2.1), we have

y1 < αl (2.3)

and
y2 < (2π − l)

αβ

2α− β
.

Also, from (2.2), we have
y1 − y2 = 0. (2.4)

Now, we shall show that y1 < πβ. Suppose that y1 ≥ πβ. Then, from (2.3) and
(2.4), we have

y1 ≥ πβ, y2 ≥ πβ and πβ < αl. (2.5)
It follows from (2.3) that

y2 < (2π − l)
αβ

2α− β
< πβ.

This contradicts (2.5). Therefore, we have y1 < πβ and y2 < πβ. Hence, we have

y1 + y2 =

∫
|z|=r

∣∣∣∣R{zp′(z)

p(z)

}∣∣∣∣dθ
=

∫
|z|=r

∣∣∣∣d arg p(z)dθ

∣∣∣∣dθ < 2πβ.

This shows that ∣∣arg {eiφp(z)}∣∣ < πβ/2, z ∈ D,
for some φ with |φ| < πβ/2.

Let 0 ≤ γ < 1. Putting β = 1/2 and replacing the function p by (p− γ)/(1− γ)
in Theorem 2.1, we can easily obtain the following result.
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Corollary 2.1. Let p be analytic in D and suppose that

− α

4α− 1
< R

{
zp′(z)

p(z)− γ

}
< α, z ∈ D,

where 1/4 ≤ α and 0 ≤ γ < 1. Then p ∈ P(γ).

Letting α → 1/4− or α → ∞ in Theorem 2.1, we have the following corollary.

Corollary 2.2. Let β ∈ (0, 1]. Let p be analytic in D and p(0) = 1. If p satisfies
one of the following conditions

R

{
zp′(z)

p(z)

}
<

β

2
, z ∈ D,

or

−β

2
< R

{
zp′(z)

p(z)

}
, z ∈ D.

Then
∣∣arg {eiφp(z)}∣∣ < πβ/2 for some φ with |φ| < πβ/2.

If we put p(z) = zf ′(z)/g(z), where f and g ∈ A, in Theorem 2.1, then we can
obtain the following corollary.

Corollary 2.3. If f ∈ A and g ∈ S∗ satisfy

− αβ

2α− β
< R

{
1 +

zf ′′(z)

f ′(z)
− zg′(z)

g(z)

}
< α, z ∈ D,

where 0 < β ≤ 1 and α > β/2, then f is a strongly close-to-convex function of order
β.

Now, we find another sufficient conditions for functions in A to be close-to-
convex.

Theorem 2.2. Let β ∈ (0, 1] and f ∈ A. Suppose that there exists a convex
function g ∈ A such that∣∣∣∣zf ′′(z)

f ′(z)
− zg′′(z)

g′(z)

∣∣∣∣ < √
2β, z ∈ D. (2.6)

Then f is a strongly close-to-convex function of order β.

Proof. Let 0 ≤ r < 1. From the hypothesis (2.6), we have

∫
|z|=r

∣∣∣∣zf ′′(z)

f ′(z)
− zg′′(z)

g′(z)

∣∣∣∣2 dθ < 4πβ2.

Since ∫
|z|=r

(
zf ′′(z)

f ′(z)
− zg′′(z)

g′(z)

)2

dθ = 0,
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we have∫
|z|=r

{
R

{
zf ′′(z)

f ′(z)
− zg′′(z)

g′(z)

}}2

dθ

=
1

4

∫
|z|=r

(zf ′′(z)

f ′(z)
− zg′′(z)

g′(z)

)2

+2

∣∣∣∣zf ′′(z)

f ′(z)
− zg′′(z)

g′(z)

∣∣∣∣2+
(
zf ′′(z)

f ′(z)
− zg′′(z)

g′(z)

)2
dθ

<2πβ2.

(2.7)

It follows from Cauchy-Schwarz inequality and (2.7) that∫
|z|=r

∣∣∣∣d arg(f ′(z)

g′(z)

)∣∣∣∣ dθ
=

∫
|z|=r

∣∣∣∣R{zf ′′(z)

f ′(z)
− zg′′(z)

g′(z)

}∣∣∣∣dθ
≤

√
2π

∫
|z|=r

{
R

{
zf ′′(z)

f ′(z)
− zg′′(z)

g′(z)

}}2

dθ

<2πβ.

This shows that ∣∣∣∣arg{eiγ f ′(z)

g′(z)

}∣∣∣∣ < π

2
β, z ∈ D,

for some γ ∈ R with |γ| < πβ/2. Thus, f is a strongly close-to-convex function of
order β.

Theorem 2.3. Let f ∈ A and there exists a function g ∈ S∗ such that∫ 2π

0

∣∣∣∣zf ′(z)

g(z)

∣∣∣∣2 dθ ≤ 4π, z ∈ D. (2.8)

Then f ∈ C.

Proof. Let 0 < r < 1. From (2.8), we have∫ 2π

0

∣∣∣∣zf ′(z)

g(z)

∣∣∣∣2 dθ ≤ 4π,

for |z| = r. And so, we have∫ 2π

0

(
R

{
zf ′(z)

g(z)

})2

dθ

=
1

4

∫ 2π

0

(zf ′(z)

g(z)

)2

+ 2

∣∣∣∣zf ′(z)

g(z)

∣∣∣∣2 +
(
zf ′(z)

g(z)

)2
dθ

≤2π,

since ∫ 2π

0

(
zf ′(z)

g(z)

)2

dθ =

∫ 2π

0

(
zf ′(z)

g(z)

)2

dθ = 0,
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for |z| = r. Therefore, applying Cauchy-Schwarz inequality, we have∫ 2π

0

∣∣∣∣R{zf ′(z)

g(z)

}∣∣∣∣dθ
≤
(∫ 2π

0

dθ

) 1
2

(∫ 2π

0

(
R

{
zf ′(z)

g(z)

})2

dθ

) 1
2

≤2π.

(2.9)

On the other hand, from the hypothesis, we have∫ 2π

0

zf ′(z)

g(z)
dθ =

1

i

∫
|z|=r

f ′(z)

g(z)
dz = 2π.

Therefore, from (2.9), we have

2π =

∫ 2π

0

R

{
zf ′(z)

g(z)

}
dθ ≤

∫ 2π

0

∣∣∣∣R{zf ′(z)

g(z)

}∣∣∣∣dθ ≤ 2π.

This shows that for arbitrary r with 0 < r < 1,

R

{
zf ′(z)

g(z)

}
=

∣∣∣∣R{zf ′(z)

g(z)

}∣∣∣∣ ≥ 0, (2.10)

on |z| = r, or

R

{
zf ′(z)

g(z)

}
≥ 0, z ∈ D.

Now, if there exists a point z0 = r0e
iθ0 , 0 < r0 < 1, for which

R

{
z0f

′(z0)

g(z0)

}
= 0,

then let us take a sufficiently small neighborhood Nδ(z0) which is a disc of center
z = z0 and radius δ < 1− |z0|, then there exists a point z1 ∈ Nδ(z0) for which

R

{
z1f

′(z1)

g(z1)

}
< 0.

This contradicts (2.10) and therefore, we have

R

{
zf ′(z)

g(z)

}
> 0, z ∈ D.

It completes the proof of Theorem 2.3.
Now, we find sufficient conditions for functions in A to be γ-spirallike functions

or starlike functions.

Theorem 2.4. Let f ∈ A and suppose that

− (1− α)β

5α+ 4β − 5
< R

{
zf ′(z)

f(z)
− α

}
< β, z ∈ D, (2.11)
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where 0 ≤ α < 1, β > 0 and 5α+4β− 5 > 0. Then, for arbitrary r with 0 ≤ r < 1,
we have ∫

|z|=r

∣∣∣∣R{zf ′(z)

f(z)
− α

}∣∣∣∣ dθ < 3(1− α)π.

Furthermore, for the case 1/3 < α < 1, we have f ∈ Sγ(α) for some γ ∈ R with
|γ| < π(1− α)/2.

Proof. Let 0 ≤ r < 1. Since f ∈ A, we have∫
|z|=r

(
zf ′(z)

f(z)
− α

)
dθ = 2(1− α)π

=

∫
|z|=r

{
R

{
zf ′(z)

f(z)
− α

}}
dθ.

Now, let ∂Dr := {z ∈ C : |z| = r} and let us put C1 by the part of ∂Dr on which

R

{
zf ′(z)

f(z)
− α

}
> 0

and ∫
C1

d arg z = l.

And put C2 by the part of ∂Dr on which

R

{
zf ′(z)

f(z)
− α

}
≤ 0

and ∫
C2

d arg z = 2π − l.

Furthermore, let us put

y1 =

∫
C1

{
R

{
zf ′(z)

f(z)
− α

}}
dθ

and
−y2 =

∫
C2

{
R

{
zf ′(z)

f(z)
− α

}}
dθ,

then it follows that

y1 − y2 =

∫
|z|=r

{
R

{
zf ′(z)

f(z)
− α

}}
dθ = 2(1− α)π (2.12)

and ∫
|z|=r

∣∣∣∣R{zf ′(z)

f(z)
− α

}∣∣∣∣ dθ = y1 + y2.

From hypothesis (2.11), we have

y1 =

∫
C1

{
R

{
zf ′(z)

f(z)
− α

}}
dθ < βl
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and

y2 =

∫
C2

{
−R

{
zf ′(z)

f(z)
− α

}}
dθ < (2π − l)

(1− α)β

5α+ 4β − 5
=

(2πβ − βl)(1− α)

5α+ 4β − 5
.

(2.13)
We shall show that y1 < 5(1 − α)π/2. On the Contrary, we suppose that y1 ≥
5(1− α)π/2. Then, we have

βl >
5

2
(1− α)π

and this inequality and (2.13) give us that

y2 <
(2πβ − βl)(1− α)

5α+ 4β − 5

<
(2πβ − 5

2 (1− α)π)(1− α)

5α+ 4β − 5

=
π

2
(1− α).

Therefore, we have

y1 − y2 >
5

2
(1− α)π − 1

2
(1− α)π = 2(1− α)π,

which is a contradiction to (2.12). Therefore, we have

y1 <
5

2
(1− α)π,

and so, we have
y1 + y2 = 2y1 − 2(1− α)π < 3(1− α)π.

This shows that for arbitrary r with 0 ≤ r < 1,∫
|z|=r

∣∣∣∣R{zf ′(z)

f(z)
− α

}∣∣∣∣dθ < 3(1− α)π, z ∈ D.

Furthermore, for the case 1/3 < α < 1, we have

R

{
eiγ
(
zf ′(z)

f(z)
− α

)}
> 0, z ∈ D,

for some γ ∈ R with |γ| < (1− α)π/2. That is, f ∈ Sγ(α).

Theorem 2.5. Let f ∈ A and suppose that∫ 2π

0

(
R

{
zf ′(z)

f(z)

})2

dθ ≤ 2π, z ∈ D. (2.14)

Then f ∈ S∗.

Proof. Applying (2.14) and Cauchy-Schwarz inequality, we have

∫ 2π

0

∣∣∣∣R{zf ′(z)

f(z)

}∣∣∣∣ dθ ≤
(∫ 2π

0

dθ

) 1
2

(∫ 2π

0

(
R

{
zf ′(z)

f(z)

})2

dθ

) 1
2

≤ 2π, z ∈ D.

(2.15)
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On the other hand, from the hypothesis (2.14), we have that f(z) ̸= 0 in D \ {0},
because if there exists a point z0, 0 < |z0| < 1, for which f(z0) = 0, then it
contradicts (2.14). Therefore, we have f(z) ̸= 0 in 0 < |z| < 1. We also note that∫ 2π

0

zf ′(z)

f(z)
dθ =

∫
|z|=r

zf ′(z)

f(z)

dz

iz
= 2π.

Applying (2.15), we have

2π =

∫ 2π

0

(
R

{
zf ′(z)

f(z)

})
dθ ≤

∫ 2π

0

∣∣∣∣R{zf ′(z)

f(z)

}∣∣∣∣dθ ≤ 2π. (2.16)

From (2.16), we have

R

{
zf ′(z)

f(z)

}
=

∣∣∣∣R{zf ′(z)

f(z)

}∣∣∣∣ ≥ 0, z ∈ D. (2.17)

On the other hand, if there exists a point z1, |z1| < 1, for which

R

{
z1f

′(z1)

f(z1)

}
= 0,

then, let us take a very small neighborhood of the point z1, Nδ(z1) with the center
z1 and radius δ, 0 < δ < 1− |z1|, then there exists a point z2 ∈ Nδ(z1) for which

R

{
z2f

′(z2)

f(z2)

}
< 0.

This contradicts (2.17), therefore, we have

R

{
zf ′(z)

f(z)

}
> 0, z ∈ D.

It completes the proof of Theorem 2.5.
Applying the same idea in [12], we get the following result.

Theorem 2.6. Let p be analytic in D, p(0) = 1 and suppose that

− |z|R
(
1 + z

1− z

)
≤ R

(
p(z) +

zp′(z)

p(z)

)
≤ (1− |z|)R

(
1 + z

1− z

)
, z ∈ D. (2.18)

Then we have
R

(
p(z) +

zp′(z)

p(z)

)
> 0, z ∈ D.

Proof. Let ∂Dr := {z ∈ C : |z| = r} and let us put C1 the part of ∂Dr on which

R

(
p(z) +

zp′(z)

p(z)

)
> 0.

Then from (2.18), we have

y1 =

∫
C1

R

(
p(z) +

zp′(z)

p(z)

)
dθ

≤ (1− |z|)
∫
C1

R

(
1 + z

1− z

)
dθ

= (1− |z|)
∫
C1

1− r2

1− 2r cos θ + r2
dθ

= 2π(1− |z|),

(2.19)
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where z = reiθ and 0 ≤ θ ≤ 2π. On the other hand, let us put C2 the part of ∂Dr

on which
R

(
p(z) +

zp′(z)

p(z)

)
≤ 0,

then we have

−y2 =

∫
C2

R

(
p(z) +

zp′(z)

p(z)

)
dθ

≥ −|z|
∫
C2

R

(
1 + z

1− z

)
dθ

= −2π|z|.

(2.20)

Now then, from the hypothesis (2.18), we have p(z) ̸= 0 in D, because if p(z) has a
zero z = a0, 0 < |a0| < 1, it contradicts (2.18). Therefore, we have

y1 − y2 =

∫
|z|=r

R

(
p(z) +

zp′(z)

p(z)

)
dθ

=

∫
|z|=r

(
p(z) +

zp′(z)

p(z)

)
dz

iz

= −i

∫
|z|=r

(
p(z)

z
+

p′(z)

p(z)

)
dz

= 2π.

Then, from (2.19) and (2.20), we have

y1 + y2 =

∫
|z|=r

∣∣∣∣R(p(z) + zp′(z)

p(z)

)∣∣∣∣dθ
≤ 2π(1− |z|) + 2π|z|
= 2π.

This shows that∫
|z|=r

R

(
p(z) +

zp′(z)

p(z)

)
dθ =

∫
|z|=r

∣∣∣∣R(p(z) + zp′(z)

p(z)

)∣∣∣∣dθ
and therefore, we have

R

(
p(z) +

zp′(z)

p(z)

)
≥ 0, (2.21)

for all r, 0 < r < 1. Now then, if there exists a point z0, 0 ≤ |z0| < 1, for which

R

(
p(z0) +

z0p
′(z0)

p(z0)

)
= 0,

then p(z0) + (z0p
′(z0))/(p(z0)) is a pure imaginary number and the function p(z) +

(zp′(z))/(p(z)) is continuous at the point z = z0, and so R(p(z) + (zp′(z))/(p(z)))
takes a negative real number at the very small neighborhood of the point z = z0.
It contradicts (2.21) and so, it completes the proof.

It is well-known that a convex univalent function in A is starlike of order 1/2
(see [7,11]). Using this fact and Theorem 2.6, we can obtain the following corollary.
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Corollary 2.4. Let f ∈ A and suppose that

−|z|R
(
1 + z

1− z

)
≤ R

(
1 +

zf ′′(z)

f ′(z)

)
≤ (1− |z|)R

(
1 + z

1− z

)
, z ∈ D.

Then we have
R

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ D,

and so, f ∈ S∗(1/2).
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