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1. Introduction

Let ‘H denote the class of analytic functions in the unit disk D := {2z € C: |z| < 1}
and denote by A the class of analytic functions in #H that are normalized by f(0) =
0= f'(0) — 1. Also, let S denote the subclass of A which is composed of functions
which are univalent in D.

A function f in A is said to be ~-spirallike of order o, 0 < v < 1, if

%{e”szég)} > acosy, ze€D,

for some real v with |y| < m/2. The class of the 7-spirallike functions of order « is
denoted by S7(«). The class S7(0), which consists of all y-spirallike functions, was
introduced by Spacek (see [10] or [2, p.52]). We recall that a set G C C is called
starlike with respect to the origin (or starlike) if the straight line joining any point
in G to the origin lies in G, i.e., tz € G when z € G and t € [0,1] (¢f. [2, p. 40]).
We note that, when v = 0 and o = 0, the class 87 («) reduces the class S*, which
consists f such that f(ID) is a starlike with respect to the origin. The elements in
S* are called starlike functions. We also note that S¥(a) C S.
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To find conditions for -spirallike functions (as well as for univalent functions) is
one of the main problems to study. In [5], several sufficient conditions for functions
in §7(a) were investigated. Some coefficients problems of these functions were
raised and solved in [1] and [6]. More recent informations concerning the functions
in 87(«) have also found in [4] and [9].

Let 3 € (0,1]. If f € A satisfies

o0 <55 e

for some g € §* and some ¢ € (—m/2,7/2), then f is said to be strongly close-to-
convex (with respect to g) in D. Let us denote by C? the class of strongly close-to-
convex in . Especially, when 3 = 1, we have C' = C the class of close-to-convex
functions was introduced by Kaplan [3]. We note that every close-to-convex function
is univalent [2, p.47]. So, it holds that C® C S for 8 € (0,1]. Several geometric
properties of functions in a particular subclass of C? were recently introduced in [8].

We say that f € Ais a convex function in D if z f’ € A is starlike in D. Therefore,

if f € A satisfies
zf”(Z)}
M1+ >0, zeD,
{ ) ¢

then f is convex in D. We note that if f € A satisfies
!
R {ei”‘ f/(z)} >0, zeD,
9'(2)

for some convex function g € A and real number « € (—7/2,7/2), then f € C.
Let 0 < B < 1. A function p € H is called a Carathéodory function of order 3
if p(0) =1 and it satisfies the condition

R{p(z)} >p, =zeD.

The class of the Carathéodory functions of order § will be denoted by P(8). Espe-
cially, we put P(0) = P, which is the class of all Carathéodory functions.

In the present paper, we investigate several new criteria for strongly close-to-
convexity, spirallikeness and starlikeness of functions in A using various new meth-
ods.

2. Main Results

Applying the same idea in [12], we can obtain the following result on Carathéodory
functions.

Theorem 2.1. Let 5 € (0,1]. Let p be analytic in D, p(0) =1 and suppose that

af zp'(2)
_M—ﬁ<m{M@

where « is real and o > B/2. Then |arg {€¥p(2)}| < 7B/2 for some ¢ with
ol <mB/2.

} <a, zeD, (2.1)
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Proof. Let 0 <r <1 be given. From the hypothesis (2.1), we have p(z) #0 in D

T e e e

Let D, := {2z € C : |z| = r} and let us put C; the part of D, on which
/
WO
p(2)
/
l:/ dargz and 1 :/ D%{Zp (Z)}de.
C1 (e p(z)

On the other hand, let us put Cy the part of 0D, on which
/
% {Zp (Z)} <o,
p(2)
/
1 =/ m{zp (Z)}de.
Ca p(2)

/ dargz =27 — .
Cy

From the hypothesis (2.1), we have

Put

and put

Then, we have

y1 < ol (2.3)
and 5
e
2 —1 .
Y2 < (2m = )5 3
Also, from (2.2), we have
Y1 — Y2 = 0. (24)

Now, we shall show that y; < m3. Suppose that y; > w8. Then, from (2.3) and
(2.4), we have
y1 >1fh, yo > 7B and w5 < al. (2.5)

It follows from (2.3) that

o
2a — 8
This contradicts (2.5). Therefore, we have y; < 78 and yo < 78. Hence, we have

y1+y2=/IZ:T m{zﬁgg)}’de
gt
|z|=r

dé
|arg {ewp(z)}| <mB/2, zeD,

for some ¢ with || < 75/2. O
Let 0 <4 < 1. Putting 8 = 1/2 and replacing the function p by (p —v)/(1 —7)
in Theorem 2.1, we can easily obtain the following result.

Yo < (27T—l)

< 7p.

df < 270.

This shows that
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Corollary 2.1. Let p be analytic in D and suppose that

o zp’(2)
- — D
4@_1<9%{p(z)_7}<a, z €D,

where 1/4 < a and 0 <y < 1. Then p € P(y).
Letting « — 1/4~ or @ — oo in Theorem 2.1, we have the following corollary.

Corollary 2.2. Let 8 € (0,1]. Let p be analytic in D and p(0) = 1. If p satisfies
one of the following conditions

or

Then |arg {"?p(2)}| < wB/2 for some ¢ with || < /2.

If we put p(z) = zf'(2)/g(z), where f and g € A, in Theorem 2.1, then we can
obtain the following corollary.

Corollary 2.3. If f € A and g € §* satisfy

2f"(z) _ 29'(2)

f'z) 9(2)

o
72a—6

<9ﬁi{1+ }<oz, z €D,

where 0 < B <1 and a > /2, then f is a strongly close-to-convex function of order

B.

Now, we find another sufficient conditions for functions in A to be close-to-
convex.

Theorem 2.2. Let § € (0,1] and f € A. Suppose that there exists a convex
function g € A such that

2f"(z) _ z9"(?)

'z g()

<V2B8, zeD. (2.6)

Then f is a strongly close-to-convex function of order 3.

Proof. Let 0 <r < 1. From the hypothesis (2.6), we have
2f"(z) _ 29"(2)
!/

/Z—r f'z) g()

[ G5 =) oo

dé < 4B

Since
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/|Z'—T {9% { ZJ{//;S) - Zgg/';S) }}2 de
2 sz(Z) B Zg”(z)
f'(2) 70

2
> (6 6
+(ff(z) g/<z>>]d‘9

<2mB?
(2.7)
It follows from Cauchy-Schwarz inequality and (2.7) that
/
/ darg (f/(z)) de
|z|=r g (Z)
"
e I f/()_zg/(z)}‘dg
f'z) g(z)
\/ZW/ Zf” B zg”(z) }}Zde
|21= g'(2)
<27p.
This shows that 72)
il LT )
we{e g f| <30 sen
for some v € R with |y| < w3/2. Thus, f is a strongly close-to-convex function of
order f. O
Theorem 2.3. Let f € A and there exists a function g € §* such that
2 ! 2
/ N g <am, e (2.8)
0 9(z)

Then f € C.
Proof. Let 0 <r < 1. From (2.8), we have

[

for 2| = . And so, we have
| ( {75}
( g<i>)> i

<Adr

)

f'(2)
9(2)

— \ 2
22 (R)
+ ( ) ) ] dg

since
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for |z| = r. Therefore, applying Cauchy-Schwarz inequality, we have

i e

9(2)
([ ([ (+{Z2)) )
<2.

On the other hand, from the hypothesis, we have

SO (O
/o o) ¥ i/m_r o(z) =2

Therefore, from (2.9), we have

e [ s [

This shows that for arbitrary r» with 0 < r < 1,

{5 oo

N C ) R
on [z| =, or ER{Z;(/S)}>O’ z€D.

Now, if there exists a point zy = rel?0, 0 < ¢ < 1, for which

m{%f@@}:m

9(20)

then let us take a sufficiently small neighborhood Nj(z) which is a disc of center
z = 29 and radius § < 1 — |zg|, then there exists a point z; € Ns(zo) for which

e )<

This contradicts (2.10) and therefore, we have

m{j&?}>m 2 € D.

It completes the proof of Theorem 2.3. O
Now, we find sufficient conditions for functions in A to be «y-spirallike functions
or starlike functions.

Theorem 2.4. Let f € A and suppose that

_ (1-0)8 ZHON .
5a+4ﬁ_5<%{ ) }<5, eD, (2.11)
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where 0 < a <1, 8> 0 and ba+48 —5 > 0. Then, for arbitrary r with 0 <r <1,

we have /W N {z}{(S) ‘O‘H a0 < 3(1 - a)r.

Furthermore, for the case 1/3 < o < 1, we have f € 8V(a) for some v € R with
[v] < m(1—«)/2.

Proof. Let 0 <r < 1. Since f € A, we have

/z_r (Zj:;i;) - a) 6 =2(1— a)r

({5

Now, let D, := {z € C: |z| = r} and let us put Cy by the part of D, on which
2f'(2) }
R —ar>0
{ i)

/ dargz = 1.
Cq

And put Cs by the part of JD,. on which
!/
m{zf (2) _a} <0
f(z)

/ dargz =27 — .
Cy

and

and

Furthermore, let us put

and

then it follows that

¢

/lz“ R { 2f'(2)

f(2)
From hypothesis (2.11), we have

= [ AT oo

and

a}‘dﬂ—yl + ys.
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and

Yo = /C {%{ZJ{ES) - a}} o < (2m — 1)5;1+_4g)€ - = (%fa;i%(: ).

(2.13)
We shall show that y; < 5(1 — a)7/2. On the Contrary, we suppose that y; >
5(1 — a)m/2. Then, we have

5
Bl > 5(1 —a)m
and this inequality and (2.13) give us that
2np — Bl (1 —
_ (2r8- A1~ )

S5a+48 -5
(20— 3(1 - a)m)(1 - a)
5a 448 —5
= 2(1 —a).
Therefore, we have
5 1
Y1 — Y2 > 5(1 —a)m — 5(1 —a)T =2(1 — a)m,

which is a contradiction to (2.12). Therefore, we have

5
Y1 < 5(1 — O[)ﬂ',

and so, we have
y1+y2 =2y1 — 2(1 —a)m < 3(1 — a).

This shows that for arbitrary r» with 0 < r < 1,

/|Z|T n { ZJJ:;S) - O‘}' df <3(1-a)m, zeD.

Furthermore, for the case 1/3 < o < 1, we have

ol (45-2)) oo weo

for some v € R with |y| < (1 — a)n/2. That is, f € S7(«). O
Theorem 2.5. Let f € A and suppose that
2m / 2
/ (m { 2z) }) 49 <27, zeD. (2.14)
0 f(z)
Then f € S*.

Proof. Applying (2.14) and Cauchy-Schwarz inequality, we have

[ s ([ o) ([ ({F2)) ) <o zeo

(2.15)
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On the other hand, from the hypothesis (2.14), we have that f(z) # 0 in D\ {0},
because if there exists a point zp, 0 < |z9| < 1, for which f(z9) = 0, then it
contradicts (2.14). Therefore, we have f(z) # 0 in 0 < |z| < 1. We also note that

Tf'(z) 2f'(z)dz _
/0 f(z) dg_/zﬂ fz) iz

Applying (2.15), we have

oo [ o [ e
From (2.16), we have
e R ) [

On the other hand, if there exists a point 21, |z1| < 1, for which

e

then, let us take a very small neighborhood of the point z1, Ns(z1) with the center
z1 and radius §, 0 <& <1 — |z|, then there exists a point z5 € Ns(z1) for which

22 f(22) }
R < 0.
{ f(22)
This contradicts (2.17), therefore, we have
2f'(2) }
R >0, zeD.
{ f(2)

It completes the proof of Theorem 2.5. O
Applying the same idea in [12], we get the following result.

Theorem 2.6. Let p be analytic in D, p(0) =1 and suppose that

—z|m<1+z> <m<p(z)+ zp’(z)) < (l—z|)9{<1i—z), seD. (2.18)

1—2 p(2)

R (p(z) n Zﬁé?) >0, zeD.

Proof. Let 9D, :={z € C: |z| =} and let us put C; the part of D, on which

D (p(z) + Zﬁ;g) > 0.

Then we have

Then from (2.18), we have

w- lm(p(z)—k ;’(())>de
<(1- IZI)/ClmGJ_ri) dé (2.19)

—(1—|z|)/ Ldg
N o, 1 —2rcos6 +r?

— 2m(1 - |2]),
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where z = rel? and 0 < # < 2r. On the other hand, let us put Cs the part of 9D,

on which
2 (oo + 2) <o,

e [ 2o+ 7)o
> |4 [ m(1+z> 40 (2.20)

= —2m|z|.

then we have

Now then, from the hypothesis (2.18), we have p(z) # 0 in D, because if p(z) has a
zero z = ag, 0 < |ag| < 1, it contradicts (2.18). Therefore, we have

e [+ 1)

)
- /Z._r (p(z) * Zp(z)/ ) =
L ()

= 2.

Ns\

—
I

~

Then, from (2.19) and (2.20), we have

Y1 +Yy2= /
|z|=r

< or(1 — |2]) + 27|

= 2.

" (v 55|

This shows that

/M:Tm (p(z) + Zﬁéi‘;)) a9 = /|z|=7-

and therefore, we have

zp'(2)
R (p(z) e > 20, (2.21)

for all 7, 0 < r < 1. Now then, if there exists a point zg, 0 < |2¢| < 1, for which

% (o0 - S5 =0

then p(zo) + (200’ (20))/(p(20)) is a pure imaginary number and the function p(z) +
(2p'(2))/(p(2)) is continuous at the point z = zg, and so R(p(z) + (20'(2))/(p(2)))
takes a negative real number at the very small neighborhood of the point z = zg.
It contradicts (2.21) and so, it completes the proof. O

It is well-known that a convex univalent function in A is starlike of order 1/2
(see [7,11]). Using this fact and Theorem 2.6, we can obtain the following corollary.
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Corollary 2.4. Let f € A and suppose that

pm(ij) gm<1+ Z;é?) < (1|z|)m<iz>, 2eD.

Then we have
zf"(z)
f'(2)

m<1+ >>o, 2 eD,

and so, f € §*(1/2).
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