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Abstract This work chiefly develops and discusses a fractional-order predator-
prey model with distributed delay and discrete delay. Applying skilly an ap-
propriate variable substitution, a novel equivalent form of the fractional-order
predator-prey model with distributed delay and discrete delay is derived. By
virtue of the stability theorem and bifurcation principle of fractional-order
dynamical system, we establish a delay-independent stability and bifurcation
criterion ensuring the stability and the onset of Hopf bifurcation for the in-
volved predator-prey system. The role of the time delay in stabilizing system
and controlling Hopf bifurcation of the considered fractional-order predator-
prey model is displayed. Software simulation results are presented to support
the key theoretical fruits.
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1. Introduction
In order to understand the variation regularity of biological population in natural
world, it is very important for us to establish mathematical models to describe the
relation of predator species and prey species. Through the study on the predator-
prey models, we can better control the quantities of predator population and prey
population and maintain the ecological balance. Generally speaking, time delay
continually appears in predator-prey systems since there exists lag of the response
for predator species and prey species. Many scholars argue that the delay will remain
a continuous change state during the course of the response for predator species and
prey species. Based on this point, the predator-prey models with distributed delays
are more suitable forms that describe the interaction of predator species and prey
species. During the past few decades, a great many valuable works on the study
of predator-prey models with distributed delays have been published. For example,
Lin and Yuan [13] discussed the existence and the stability of periodic solution
to predator-prey model involving distributed delays. Yang and Ye [34] analyzed
the Hopf bifurcation of a predator-prey model involving discrete time delays and
distributed time delays. Liu et al. [15] considered the stationary distribution issue
of a stochastic prey-predator system involving distributed time delays. In 2018, Liu
et al. [14] focused on the dynamics of a stochastic prey-predator system involving
distributed time delays. For further concrete knowledge on this aspect, one can
refer to [7, 18,19].

It is worth pointing out that all the above considered literatures only involve
integer-order predator-prey systems. Fractional calculus is an important area in
mathematics, but it has been kept a relatively slow state of development due to
the shortage of basic knowledge on solving fractional-order differential equation and
practical background [36]. Up to now, fractional calculus has received great interest
from numerous researchers and great progress has been made. A lot of scholars argue
that fractional calculus owns the great potential application in many disciplines
such as control science, ecology, physical wave, network science, fluid mechanics
and so on [22, 28, 36]. The advantage of fractional-order differential equation lies
in its owned memory and hereditary peculiarity. Thus it ist a very good tool
which can give a description of true natural phenomena [22,28,36]. Recently, many
works on fractional-order dynamical models have been reported. In particular, a
lot of excellent fruits on fractional-order predator-prey systems have been published
(see [3, 6, 35]).

Hopf bifurcation phenomenon plays a key role in maintaining the balance of
biological population. It naturally attracts great interest from many scholars. At
present, the investigation on Hopf bifurcation of integer-order predator-prey systems
is basically mature. However, the studies on Hopf bifurcation of fractional-order
predator-prey systems are relatively rare. Some researchers have achieved some
interesting results. For instance, Yuan et al. [37] studied the Hopf bifurcation
for a fractional-order predator-prey system with two different time delays; Huang
et al. [10] investigated the Hopf bifurcation control problem for a fractional-order
predator-prey system with delays; Li et al. [12] dealt with the dynamic complexity
for a fractional-order predator-prey model involving both time delays. For more
detailed publications, one can refer to [1,2,4,5,8,9,11,16,17,20,21,23–27,29,30,33].

Here we would like to mention that all the above considered literatures only
involved the predator-prey systems concerning discrete time delays. In fact, the
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time delay maybe extend over the whole past because of the competition among
different biological populations, then there is a distribution of delays over a periodic
time [23], so it is natural to introduce the distributed delays into predator-prey
models. At present, the works on Hopf bifurcation of fractional-order predator-
prey models involving distributed time delays are very rare. This motivates us to
deal with this problem. In [29], Xu and Shao dealt with the following predator-prey
model involving mixed time delays:

dv1(t)

dt
= v1(t)

[
γ1 − α11

∫ t

−∞
G(t− s)v1(s)ds− α12v2(t− ϑ)

]
,

dv2(t)

dt
= v2(t)

[
−γ2 + α21

∫ t

−∞
G(t− s)v1(s)ds− α22v2(t− ϑ)

]
,

(1.1)

where v1(t) and v2(t) stand for the densities of prey population and predator popu-
lation at time t, respectively, G(s), which denotes the delay kernel, is a nonnegative
bounded function defined on [0,∞), ϑ is the time delay that stands for the hunt-
ing time, ϑ, γk, αkl > 0(k, l = 1, 2) are constants. The function G satisfies the
following conditions: (i) G : [0,∞) → [0,∞); (ii) G is piecewise continuous; (iii)∫∞
0
G(s)ds = 1,

∫∞
0
sG(s)ds <∞. The function G owns the following expression:

G(s) = γk+1 s
ke−γs

k!
, s ∈ (0,∞), k = 0, 1, (1.2)

where γ > 0 stands for the rate of fading of past memories. If k = 0, then G(s) =
γe−γs (weak kernel) and if k = 1, then G(s) = γ2se−γs(strong kernel). In the
present work, our will focus on the key issue: the stability and Hopf bifurcation of
fractional-order version of predator-prey system (1.1) with the weak kernel G(s) =
γe−γs. On the basis of the analysis above, we set up the fractional-order predator-
prey system as follow:

dvϱ1(t)

dtϱ
= v1(t)

[
γ1 − α11

∫ t

−∞
G(t− s)v1(s)ds− α12v2(t− ϑ)

]
,

dvϱ2(t)

dtϱ
= v2(t)

[
−γ2 + α21

∫ t

−∞
G(t− s)v1(s)ds− α22v2(t− ϑ)

]
,

(1.3)

where ϱ ∈ (0, 1) is a real number. All the other coefficients own the same meaning
as those of model (1.1).

This work can be planed as follows. Part two gives prerequisite basic knowledge
on fractional-order dynamical system. Part three presents the key results on the
stability and the onset of Hopf bifurcation for predator-prey model (1.3) with weak
kernel case. Part four displays software simulations to sustain the established key
conclusions. Part five draws a conclusion.

2. Indispensable theory
In this section, several definitions, lemmas and theorems on fractional differential
equations are listed as follows.
Definition 2.1.( [17]) The Caputo-type fractional order derivative can be defined
as follows:

Dϱh(ζ) =
1

Γ(s− ϱ)

∫ ζ

ζ0

h(s)(ν)

(ζ − ν)ϱ−s+1
dν,
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where h(ζ) ∈ ([ζ0,∞), R),Γ(ν) =
∫∞
0
ζν−1e−ζdζ, ζ ≥ ζ0 and s ∈ Z+, s− 1 ≤ ϱ < s.

The Laplace transform of Dϱ is given by

L{Dϱh(t); s} = sϱH(s)−
m−1∑
i=0

sϱ−i−1h(i)(0),m− 1 ≤ ϱ < m ∈ Z+,

where H(s) = L{h(t)}. If h(i)(0) = 0, i = 1, 2, · · · ,m, then L{Dϱh(t); s} = sϱH(s).

Definition 2.2.( [2]) (v10, v20) is said to be an equilibrium point of system (1.3)
provided that 

v10

[
γ1 − α11

∫ t

−∞
G(t− s)v10ds− α12v20

]
= 0,

v20

[
−γ2 + α21

∫ t

−∞
G(t− s)v10ds− α22v20

]
= 0.

(2.1)

Lemma 2.1. ( [16,20]) Let q∗ be an equilibrium point of the following system

dϱq(t)

dtϱ
= u(t, q(t)), q(0) = q0, (2.2)

where ϱ ∈ (0, 1] and u(t, q(t)) : R+×Rn → Rn. q∗ is said to be locally asymptotically
stable provided that each eigenvalue σ of ∂u(t,q)

∂q |q=q∗ satisfies |arg(σ)| > ϱπ
2 .

Lemma 2.2.( [4]) Consider the following system:

dϱ1L1(t)

dtϱ1
= d11L1(t− ϑ11) + d12L2(t− ϑ12) + · · ·+ d1nLm(t− ϑ1n),

dϱ2L2(t)

dtϱ2
= d21L1(t− ϑ21) + d22L2(t− ϑ22) + · · ·+ d2nLm(t− ϑ2n),

...

dϱnLn(t)

dtϱn
= dn1L1(t− ϑn1) + dn2L2(t− ϑn2) + · · ·+ dnnLn(t− ϑnn),

(2.3)

where 0 < ϱk < 1(k = 1, 2, · · · , n), the initial values Lk(t) = ψk(t) ∈ C[−maxk,l ϑkl, 0],
t ∈ [−maxk,l ϑkl, 0], k, l = 1, 2, · · · , n. Denote

∆(s) =



sϱ1 − d11e
−sϑ11 −d12e−sϑ12 · · · −d1ne−sϑ1n

−d21e−sϑ12 sϱ2 − d22e
−sϑ22 · · · −d2ne−sϑ2n

...
... . . . ...

−dn1e−sϑn1 −dn2e−sϑn2 · · · sϱn − dnne
−sϑnn


. (2.4)

Then the zero solution of system (2.3) is said to be Lyapunov asymptotically stable
provided that each root of det(∆(s)) = 0 has negative real parts.
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Consider the following system:

dϱ1L1(t)

dtϱ1
= d11L1(t) + d12L2(t) + · · ·+ d1nLm(t),

dϱ2L2(t)

dtϱ2
= d21L1(t) + d22L2(t) + · · ·+ d2nLm(t),

...

dϱnLn(t)

dtϱn
= dn1L1(t) + dn2L2(t) + · · ·+ dnnLn(t),

(2.5)

where ϱl ∈ (0, 1](l = 1, 2, · · · , n) is the rational number. The characteristic equation
of system (2.5) owns the expression:

det



sϱ1 − d11 −d12 · · · −d1n

−d21 sϱ2 − d22 · · · −d2n
...

... . . . ...

−dn1 −dn2 · · · sϱn − dnn


= 0. (2.6)

Set ωl =
al

bl
, al, bl ∈ Z+, (al, bl) = 1 and let κ be the lowest common multiple of bl

of ωl, l = 1, 2, · · · , n.
Lemma 2.3.( [4]) The zero solution of system (2.6) is said to be locally asymptot-
ically stable provided that each root λs of the following equation

det



λκω1 − d11 −d12 · · · −d1n

−d21 λκω2 − d22 · · · −d2n
...

... . . . ...

−dn1 −dn2 · · · λκωn − dnn


= 0 (2.7)

satisfies |arg(λ)| > π
2κ .

3. Bifurcation study for predator-prey system (1.3)
In this part, we are to analyze the stability and the appearance of Hopf bifurcation
for system (1.3) with weak kernel G(s) = γe−γs. Let

v3(t) =

∫ t

−∞
γe−γ(t−s)v1(s)ds. (3.1)

Then system (1.3) becomes

dvϱ1(t)

dtϱ
= v1(t) [γ1 − α11v3(t)− α12v2(t− ϑ)] ,

dvϱ2(t)

dtϱ
= v2(t) [−γ2 + α21v3(t)− α22v2(t− ϑ)] ,

dv3(t)

dt
= γ(v1(t)− v3(t)).

(3.2)
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Apparently, system (3.2) owns the following unique positive equilibrium point

v10 =
γ1α22 + γ2α12

α11α22 + α12α21
,

v20 =
γ1α21 − γ2α11

α11α22 + α12α21
,

v30 =
γ1α22 + γ2α12

α11α22 + α12α21

(3.3)

if the following assumption

(M1) γ1α21 > γ2α11

holds. The linear equation of system (3.2) around (v10, v20, v30) can be expressed
as 

dvϱ1(t)

dtϱ
= a1v3(t) + a2v2(t− ϑ),

dvϱ2(t)

dtϱ
= b1v3(t) + b2v2(t− ϑ),

dv3(t)

dt
= γ(v1(t)− v3(t)),

(3.4)

where 

a1 = −α11(γ1α22 + γ2α12)

α11α22 + α12α21
,

a2 = −α12(γ1α22 + γ2α12)

α11α22 + α12α21
,

b1 =
α21(γ1α21 − γ2α11)

α11α22 + α12α21
,

b2 = −α22(γ1α21 − γ2α11)

α11α22 + α12α21
.

(3.5)

Hence the associated characteristic equation of system (3.4) can be expressed as:

det


sϱ −a2e−sϑ −a1

0 sϱ − a2e
−sϑ −b1

−γ 0 s+ γ

 = 0. (3.6)

Let ϱ = a
b where a, b ∈ Z+ and (a, b) = 1. Set λ = s

1
b . Then Eq. (3.6) becomes

det


λa −a2e−sϑ −a1

0 λa − a2e
−sϑ −b1

−γ 0 λb + γ

 = 0. (3.7)

Lemma 3.1. If every root λ of Eq. (3.7) satisfies |arg(λ)| > π
2b , then the equilibrium

point (v10, v20, v30) of system (3.2) is Lyapunov locally asymptotically stable.
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Proof. Clearly, Eq. (3.7) is the characteristic equation of system (3.2) with ϑ = 0.
Applying Lemma 2.3, one can easily concludes that Lemma 3.1 holds.

By (3.6), one has

s2ϱ+1 + c1s
2ϱ + c2s

ϱ + (d1s
ϱ+1 + d2s

ϱ + d3)e
−sϑ = 0, (3.8)

where  c1 = γ, c2 = −a1γ,

d1 = −a2, d2 = −a2γ, d3 = (a1 − b1)a2γ.
(3.9)

Assume that s = iϕ = ϕ
(
cos π

2 + i sin π
2

)
is the root of Eq.(3.8), then Eq. (3.8)

takes the form:

ϕ2ϱ+1

(
cos

(2ϱ+ 1)π

2
+ i sin

(2ϱ+ 1)π

2

)
+ c1ϕ

2ϱ(cos ϱπ + i sin ϱπ)

+c2ϕ
ϱ
(
cos

ϱπ

2
+ i sin

ϱπ

2

)
+

[
d1ϕ

ϱ+1

(
cos

(ϱ+ 1)π

2
+ i sin

(ϱ+ 1)π

2

)
+ d2ϕ

ϱ
(
cos

ϱπ

2
+ i sin

ϱπ

2

)
+ d3

]
(cosϕϑ− i sinϕϑ) = 0, (3.10)

which leads to A1 cosϕϑ+A2 sinϕϑ = B1,

A2 cosϕϑ−A1 sinϕϑ = B2,
(3.11)

where 

A1 = d1ϕ
ϱ+1 cos

(ϱ+ 1)π

2
+ d2ϕ

ϱ cos
ϱπ

2
+ d3,

A2 = d1ϕ
ϱ+1 sin

(ϱ+ 1)π

2
+ d2ϕ

ϱ sin
ϱπ

2
,

B1 = −ϕ2ϱ+1 cos
(2ϱ+ 1)π

2
− c1ϕ

2ϱ cos ϱπ − c2ϕ
ϱ cos

ϱπ

2
,

B2 = −ϕ2ϱ+1 sin
(2ϱ+ 1)π

2
− c1ϕ

2ϱ sin ϱπ − c2ϕ
ϱ sin

ϱπ

2
.

(3.12)

By (3.11), we derive
A2

1 +A2
2 = B2

1 + B2
2 (3.13)

Let 

f1 = d1 cos
(ϱ+ 1)π

2
, f2 = d2 cos

ϱπ

2
, f3 = d3,

f4 = d1 sin
(ϱ+ 1)π

2
, f5 = d2 sin

ϱπ

2
, f6 = − cos

(2ϱ+ 1)π

2
,

f7 = −c1 cos ϱπ, f8 = −c2 cos
ϱπ

2
, f9 = − sin

(2ϱ+ 1)π

2
,

f10 = −c1 sin ϱπ, f11 = −c2 sin
ϱπ

2
,

(3.14)
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then (3.12) takes the following form:

A1 = f1ϕ
ϱ+1 + f2ϕ

ϱ + f3,

A2 = f4ϕ
ϱ+1 + f5ϕ

ϱ,

B1 = f6ϕ
2ϱ+1 + f7ϕ

2ϱ + f8ϕ
ϱ,

B2 = f9ϕ
2ϱ+1 + f10ϕ

2ϱ + f11ϕ
ϱ.

(3.15)

Applying (3.13) and (3.15), one gets

σ1ϕ
4ϱ+2 + σ2ϕ

4ϱ+1 + σ3ϕ
4ϱ + σ4ϕ

3ϱ+1 + σ5ϕ
3ϱ + σ6ϕ

2ϱ+2

+σ7ϕ
2ϱ+1 + σ8ϕ

2ϱ + σ9ϕ
ϱ+1 + σ10ϕ

ϱ + σ11 = 0, (3.16)

where 

σ1 = f26 + f29 ,

σ2 = 2(f6f7 + f9f10),

σ3 = f27 + f210,

σ4 = 2(f6f8 + f9f11),

σ5 = 2(f7f8 + f10f11),

σ6 = −f21 − f24 ,

σ7 = −2(f1f2 + f4f5),

σ8 = f28 + f211 − f22 − f25 ,

σ9 = −f1f3,

σ10 = −2f2f3,

σ11 = −f23 .

(3.17)

Let

C(v) = σ1v
4ϱ+2 + σ2v

4ϱ+1 + σ3v
4ϱ + σ4v

3ϱ+1 + σ5v
3ϱ + σ6v

2ϱ+2

+ σ7v
2ϱ+1 + σ8v

2ϱ + σ9v
ϱ+1 + σ10v

ϱ + σ11. (3.18)

Lemma 3.2. Eq. (3.8) owns at least a pair of purely imaginary roots.

Proof. Apparently, C(0) = σ11 = −f23 < 0 and limv→∞ C(v) = +∞. Then we
know that Eq. (3.16) owns at least one positive root. Then Eq. (3.8) owns at least
a pair of purely imaginary roots.
We find that it is not easy to obtain the roots of Eq. (3.16) because the powers of
Eq. (3.16) are not integer number, now we may change Eq.(3.16) as an equivalent
form involving integer power by means of variable substitution. Let y = ϕ

1
b , then

ϕ = yb. Thus Eq.(3.16) takes the form:

σ1y
4a+2b + σ2y

4a+b + σ3y
4a + σ4y

3a+b + σ5y
3a + σ6y

2a+2b

+σ7y
2a+b + σ8y

2a + σ9y
a+b + σ10y

a + σ11 = 0, (3.19)
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By means of computer, one can derive the roots of Eq. (3.19). Now we suppose
that Eq. (3.19) owns the positive root which is denoted by yk, then Eq. (3.16)
possess the positive root ϕk = ybk. Suppose that Eq. (3.19) owns j positive roots
yk, k = 1, 2, · · · , j. Based on (3.11), one gets

ϑlk =
1

ϕl

[
arccos

A1B1 +A2B2

A2
1 +A2

2

+ 2lπ

]
, k = 1, 2, · · · , j; l = 0, 1, 2, · · · . (3.20)

Denote
ϑ0 = ϑ

(0
k0 min

k=1,2,··· ,j
{ϑ0k}, ϕ0 = ϕ|ϑ=ϑ0 . (3.21)

In the sequel, the following assumption is needed.
(M2) W11W21 +W12W22 > 0, where

W11 = (2ϱ+ 1)ϕ2ϱ0 cos ϱπ + 2c1ϱϕ
2ϱ−1
0 cos

(2ϱ− 1)π

2
+ c2ϱϕ

ϱ−1
0 cos

(ϱ− 1)π

2

+

[
(ϱ+ 1)d1ϕ

ϱ
0 cos

ϱπ

2
+ ϱd2ϕ

ϱ−1
0 cos

(ϱ− 1)π

2

]
cosϕ0ϑ0

+

[
(ϱ+ 1)d1ϕ

ϱ
0 sin

ϱπ

2
+ ϱd2ϕ

ϱ−1
0 sin

(ϱ− 1)π

2

]
sinϕ0ϑ0,

W12 = (2ϱ+ 1)ϕ2ϱ0 sin ϱπ + 2c1ϱϕ
2ϱ−1
0 sin

(2ϱ− 1)π

2
+ c2ϱϕ

ϱ−1
0 sin

(ϱ− 1)π

2

+

[
(ϱ+ 1)d1ϕ

ϱ
0 cos

ϱπ

2
+ ϱd2ϕ

ϱ−1
0 cos

(ϱ− 1)π

2

]
sinϕ0ϑ0

−
[
(ϱ+ 1)d1ϕ

ϱ
0 sin

ϱπ

2
+ ϱd2ϕ

ϱ−1
0 sin

(ϱ− 1)π

2

]
cosϕ0ϑ0,

W21 =

[
d1ϕ

ϱ+1
0 cos

(ϱ+ 1)π

2
+ d2ϕ

ϱ
0 cos

ϱπ

2
+ d3

]
ϕ0 sinϕ0ϑ0

−
[
d1ϕ

ϱ+1
0 sin

(ϱ+ 1)π

2
+ d2ϕ

ϱ
0 sin

ϱπ

2

]
ϕ0 cosϕ0ϑ0,

W22 =

[
d1ϕ

ϱ+1
0 cos

(ϱ+ 1)π

2
+ d2ϕ

ϱ
0 cos

ϱπ

2
+ d3

]
ϕ0 cosϕ0ϑ0

+

[
d1ϕ

ϱ+1
0 sin

(ϱ+ 1)π

2
+ d2ϕ

ϱ
0 sin

ϱπ

2

]
ϕ0 sinϕ0ϑ0.

(3.22)
Lemma 3.3. Suppose that s(ϑ) = η1(ϑ) + iη2(ϑ) is the root of Eq. (3.8) at ϑ = ϑ0

which satisfies η1(ϑ0) = 0, η2(ϑ0) = ϕ0, then we derive Re
[
ds
dϑ

] ∣∣∣
ϑ=ϑ0,ϕ=ϕ0

> 0.

Proof. By means of Eq. (3.8), we get[
(2ϱ+ 1)s2ϱ + 2c1ϱs

2ϱ−1 + ϱc2s
ϱ−1

] ds
dϑ

+
[
(ϱ+ 1)d1s

ϱ + ϱd2s
ϱ−1

]
e−sϑ ds

dϑ

−e−sϑ

(
ds

dϑ
ϑ+ s

)(
d1s

ϱ+1 + d2s
ϱ + d3

)
= 0, (3.23)

which leads to[
(2ϱ+ 1)s2ϱ + 2c1ϱs

2ϱ−1 + ϱc2s
ϱ−1 +

(
(ϱ+ 1)d1s

ϱ + ϱd2s
ϱ−1

)
e−sϑ
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−
(
d1s

ϱ+1 + d2s
ϱ + d3

)
e−sϑϑ

] ds
dϑ

= e−sϑs
(
d1s

ϱ+1 + d2s
ϱ + d3

)
. (3.24)

Then[
ds

dϑ

]−1

=
(2ϱ+ 1)s2ϱ+2c1ϱs

2ϱ−1+ϱc2s
ϱ−1+

(
(ϱ+ 1)d1s

ϱ+ϱd2s
ϱ−1

)
e−sϑ

e−sϑs (d1sϱ+1 + d2sϱ + d3)
− ϑ

s
.

(3.25)
So

Re
[
ds

dϑ

]−1

ϑ=ϑ0,ϕ=ϕ0

=Re
[
(2ϱ+1)s2ϱ+2c1ϱs

2ϱ−1+ϱc2s
ϱ−1+

(
(ϱ+1)d1s

ϱ+ϱd2s
ϱ−1

)
e−sϑ

e−sϑs (d1sϱ+1+d2sϱ + d3)

]
ϑ=ϑ0,ϕ=ϕ0

=
W11W21 +W12W22

W2
21 +W2

22

. (3.26)

By (M2), one derives

Re
[
ds

dϑ

]−1

ϑ=ϑ0,ϕ=ϕ0

> 0,

which ends the proof.
According to the analysis above, one can easily obtain the following assertion:
Theorem 3.1. Under the conditions of Lemma 3.1. If (M1) and (M2) are
fulfilled, then the positive equilibrium point (v10, v20, v30) of system (3.2) is locally
asymptotically stable provided that ϑ falls into the range of [0, ϑ0) and a Hopf
bifurcation will take place around the positive equilibrium point (v10, v20, v30) when
ϑ = ϑ0.

Remark 3.1. In this paper, we establish a new fractional-order predator-prey
model with distributed delays. In order to explore the stability and Hopf bifur-
cation issue conveniently, we introduce a variable substitution and then obtain
an equivalent form including two fractional-order equations and one integer-order
equation.
Remark 3.2. In this paper, we deal with the bifurcation anti-control of a fractional-
order stable finance model by virtue of a suitable washout filter controller involving
time delay. We can also deal with the bifurcation anti-control of a fractional-order
stable finance model by virtue of time delay feedback controller. We will focus on
this aspect in near future.
Remark 3.3. although the assumption (M2) is very complex, we can easily check
it by computer.
Remark 3.4. We obtain the characteristic equation of integer-order differential
equation via matrix theory and integer-order differential equation theory. However
we obtain the characteristic equation of fractional-order differential equation via
matrix theory, Laplace transform and fractional-order differential equation theory.
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4. Computer simulations

Consider the following predator-prey system:



dvϱ1(t)

dtϱ
= v1(t) [1− 1v3(t)− 0.6v2(t− ϑ)] ,

dvϱ2(t)

dtϱ
= v2(t) [−1 + 2v3(t)− 0.5v2(t− ϑ)] ,

dv3(t)

dt
= 2(v1(t)− v3(t)).

(4.1)

One can easily obtain that system (4.1) owns the positive equilibrium point (v10, v20,
v30) = (0.65, 0.59, 0.65). Select ϱ = 0.92. By means of Matlab software, one derives
that φ0 = 0.9174 and ϑ0 = 0.805, the conditions of Lemma 3.1 hold and the
conditions (M1) and (M2) of Theorem 3.1 are fulfilled. So one can know that
(v10, v20, v30) = (0.65, 0.59, 0.65) of system (4.1) keeps locally asymptotically stable
state when ϑ falls into the range of [0, 0.805). Choosing ϑ = 0.78 < ϑ0 = 0.805,
one derives the simulation results that are given in Figure 1. Apparently, Figure
1 confirms that when the time delay ϑ falls into the range of [0, 0.805), then the
three state variables will tend to 0.65, 0.59, 0.65, respectively. From the viewpoint
of biology, when the hunting time falls into the range of [0, 0.805), the densities
of prey population and predator population will be close to 0.65, 0.59, respectively.
When the time delay ϑ passes through ϑ0 = 0.805, the three state variables will
lose their stability and a Hopf bifurcation appears at once. Choosing ϑ = 0.92 >
ϑ0 = 0.805, one gets the simulation diagram Figure 2 which shows that the three
state variables will keep periodic oscillation near (v10, v20, v30) = (0.65, 0.59, 0.65).
From the viewpoint of biology, when the hunting time exceeds the value 0.805,
the densities of prey population and predator population keep periodic oscillation
around 0.65 and 0.59, respectively. In addition, the relation between ϱ and ϑ0 is
given in Table 1 and the bifurcation figures are presented in Figures 3-5.

Table 1. The relation between ϱ and ϑ0 of predator-prey system (4.1).

ϱ ϑ0

0.26 0.342

0.39 0.453

0.48 0.543

0.57 0.611

0.69 0.681

0.74 0.704

0.86 0.792

0.92 0.805
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Figure 1. Simulation results of predator-prey system (4.1) when ϑ = 0.78 < ϑ0 = 0.805.



Exploring bifurcation in a fractional-order. . . 1131

0 100 200 300 400 500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

t

 v
1
(t

) 

0 100 200 300 400 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t

 v
2
(t

) 

0 100 200 300 400 500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

t

 v
3
(t

) 

0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

v
1
(t)

 v
2
(t

) 

0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

v
1
(t)

 v
3
(t

) 

0.2 0.4 0.6 0.8 1 1.2
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

v
2
(t)

 v
3
(t

) 

0
100

200
300

400
500

0.4

0.6

0.8

1
0.2

0.4

0.6

0.8

1

1.2

t v
1
(t) 

 v
2
(t

) 

0
100

200
300

400
500

0.4

0.6

0.8

1
0.4

0.5

0.6

0.7

0.8

0.9

t v
1
(t) 

 v
3
(t

) 

0
100

200
300

400
500

0

0.5

1

1.5
0.4

0.5

0.6

0.7

0.8

0.9

t v
2
(t) 

 v
3
(t

) 

0.4
0.5

0.6
0.7

0.8
0.9

0

0.5

1

1.5
0.4

0.5

0.6

0.7

0.8

0.9

v
1
(t) v

2
(t) 

 v
3
(t

) 

Figure 2. Simulation results of predator-prey system (4.1) when ϑ = 0.78 < ϑ0 = 0.805.
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Figure 3. Simulation results of predator-prey system (4.1) when ϑ = 0.92 > ϑ0 = 0.805.
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Figure 6. The bifurcation plot of system (4.1): t-v3.

5. Conclusions
Nowadays the study on fractional-order predator-prey models has attracted great
attention from many scholars in mathematics and biology due to the potential value
in maintaining the ecological balance. In this present research, on the basis of the
previous work of [21], we set up a new fractional-order predator-prey model with
distributed delay and discrete delay. By using a suitable substitution of variable,
we obtain an equivalent system which includes two fractional-order equations and
one integer-order equations. Applying the time delay as bifurcation parameter, we
derive a delay-independent stability and bifurcation criterion to guarantee the sta-
bility and the emergence of Hopf bifurcation of the involved predator-prey model.
The study shows that time delay is a significant role that affects the Hopf bifur-
cation of the considered fractional-order predator-prey model. In 2012, Xu and
Shao [21] discussed the bifurcation problem of integer-order predator-prey model
by selecting the time delay as bifurcation parameter. They did not analyze the
fractional-order form of this predator-prey model. In the present article, we estab-
lish a new fractional-order predator-prey system (1.3) and focus on the stability
behavior and bifurcation phenomenon of predator-prey system (1.3) including weak
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kernel. From this viewpoint, we think that this work supplements the study of
Xu and Shao [21]. Although the works of [5, 10, 20, 26, 37] have studied the Hopf
bifurcation of fractional-order dynamical models, every equation of all systems is
fractional-order cases. However, by a suitable variable substitution, we obtain the
equivalent predator-prey system (3.2) which includes two fractional-order differen-
tial equations and a integer-order differential equation. So, the investigation on the
corresponding characteristic equation of predator-prey system (3.2) becomes more
difficult. So far, only a few works involve this aspect. Based on this point, we think
that the present investigation improves the earlier publications(e.g., [5,10,20,26,37]).
Also, the derived fruits enrich the bifurcation theory of fractional-order dynamical
system to some degree. In addition, in many biological systems, there are different
delays. We will try to deal with the Hopf bifurcation of fractional-order predator-
prey model with different delays in near future.
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