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VIRTUAL ELEMENT APPROXIMATIONS FOR
NON-STATIONARY NAVIER-STOKES

EQUATIONS ON POLYGONAL MESHES
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Abstract This article deals with the development of virtual element methods
for the approximation of non-stationary Navier-Stokes equation. The proposed
lowest order virtual element spaces for velocity and pressure are constructed
in such a way that the inf-sup conditions holds, and easy to implement in
comparison with other pair of spaces which satisfy the inf-sup condition. For
time discretization, the backward Euler scheme is employed, and both semi
and fully discrete schemes are discussed and analyzed. With the help of certain
projection operators, error estimates are established in suitable norms for both
semi and fully discretized schemes. Moreover, several numerical experiments
are conducted to verify the theoretical rate of convergence and to observe the
computational efficiency of the proposed schemes.
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1. Introduction
Transient Navier-Stokes equations have remarkable applications in fluid mechanics
such as weather prediction, current flow through the air, designing the aircraft,
fluid flow through pipes, wastewater management, underground oil extraction and
so on. In the past years, several numerical techniques such as finite element meth-
ods [4, 16, 23, 42], finite volume methods [26, 32, 37], nonconforming finite element
methods [36, 48], discontinuous Galerkin methods [19] and references therein, were
proposed for seeking a numerical  approximation of the Navier-Stokes problems.
The major difficulty lies in choosing the appropriate stable pair of discrete space
based on spatial discretization, for instance, these spaces must obey the inf-sup con-
dition [23]–a necessary condition for showing the well-posedness of the scheme as
well as establishing the optimal convergence results. In order to circumvent or en-
forcing the inf-sup condition, we need to add a suitable stabilizer term for existence
of a unique solution. In past years, several stabilized or penalty methods with vari-
ous unstable finite element spaces have also been explored in [15,25,30,33,39]. We
stress that the addition of an extra stabilizer term possibly would increase the com-
putational as well as theoretical complexity of the numerical scheme. Therefore, it is
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desirable to look for suitable discrete spaces that satisfy the inf-sup condition with-
out introducing any stabilizer. In this article, we analyze the lowest order virtual
element spaces for velocity and pressure that obey the inf-sup condition (without
adding any stabilization term) which is used for showing the well-posedness of the
discrete formulation and in establishing the optimal error estimates for velocity and
pressure.

The recently proposed virtual element method (VEM), initially introduced in [8],
is proven to be very impressive and attracted the scientific community as far numer-
ical approximation of fluid and solid mechanics on polygonal meshes is concerned.
VEMs are inspired by the mimetic finite difference method, that also aim to gen-
eralize finite element methods over the very general type of polygonal meshes. In
contrast with classical finite element (FE) schemes, VEM do not require explicit
construction of the discrete basis functions and one needs to define suitable degrees
of freedom to put the discrete formulation in the matrix form. Other fundamen-
tal properties of VEM include: making use of non-polynomial basis functions over
arbitrary polygonal/polyhedral meshes [40], capability of handling the complicated
geometries generally used in solid-mechanics and fluid dynamics through general
meshes and usage of approximation spaces containing the higher-order polynomial
with ease. In view of their computational efficiency, VEMs have been developed
for various problems within a decade, and few of the basic works are on general
elliptic [3, 9], parabolic [43] and semi-linear [6, 7] problems. In literature, there
are few contributions that dealt with virtual approximations for Stokes [5, 10, 21],
Navier-Stokes [11,12,22,34], Darcy and Brinkmann [44] and poroelasticity [18,20,41]
equations. However, in these articles, a restriction on choosing the approximation
order, or the degree of involved polynomials (denoted generally by k) is strictly
imposed for virtual element spaces associated with velocity and pressure in order
to satisfy the required inf-sup condition by the discrete spaces. In other words, it is
mandatory to choose k ≥ 2 in order to obtain stable spaces, and k = 1 can not be
taken due to unavailability of the inf-sup condition for the discrete spaces of order
k = 1 until a suitable stabilizer is added [10, 29]. We would like to remark that
even the usage of a higher-order approximations is expected to be computation-
ally expensive in general. Considering these points, here we aim to approach the
discrete spaces that has approximation of order one, and also satisfy the required
inf-sup condition [47]. Therefore, the proposed scheme is considered computation-
ally less expensive compared to the existing higher order schemes in the context of
virtual element approximations for fluid flow problems due to reduced local degrees
of freedom in the case of [47].

As far the virtual element approximations of transient Navier-Stokes is con-
cerned, VEM is not yet very well developed in the literature, and there is only
one article dealing with VEM for the unsteady fluid flow problem, see [29]. How-
ever, in that article, only numerical experiments were reported, and theoretical
convergence/error estimates were not analyzed. In this paper, we aim to develop
the virtual element approximations for non-stationary Navier-Stokes problem with
emphasize on both theoretical and computational aspects. Here, we intended to pro-
pose the semi-discrete scheme (based on spatial discretization with virtual element
method) and fully discrete scheme (employing the Euler-Backward scheme for time
discretization), and also discussed their well-posedness. Here we have employed an
extended version of the lowest order virtual element spaces introduced first in [5]
in the context of Stokes equations. We remark that these lowest order spaces sat-
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isfy the inf-sup, as well as divergence-free conditions and, are also used in [47] for
unsteady Stokes problem under minimal regularity assumptions. Moreover, by fol-
lowing [23,47] and with the help of certain projection operator (to be introduced in
Section 4), a priori error estimates (both semi and fully discrete) for velocity and
pressure in appropriate norms are established. To the best of our knowledge, there
is no article available in the literature that addresses both convergence analysis
and numerical results of VEM for non-stationary Navier-Stokes equations. Hence,
this article can be considered as the first contribution in this direction. We believe
that the proposed analysis can be extended to more application-oriented problems
consisting of time-dependent Navier-Stokes problems on polygonal meshes.

Throughout this article, we use the standard notations of Sobolev spaces and
their associated norms and semi-norms. We denote the L2 inner product and norm
in domain Ω by (·, ·)0,Ω and ∥ · ∥0,Ω, respectively. The space Hs(Ω) denote the
Sobolev space of real-valued functions with weak  derivatives of order up to s > 0
in L2(Ω) on domain Ω ⊂ R2, and endowed with the standard norm denoted as
∥ · ∥s,Ω and semi-norm in space Hs(Ω) denoted as | · |s,Ω. Here H1

0 (Ω) denote the
space of functions that belongs to H1(Ω) and vanishes on the boundary ∂Ω. The
vector valued functions will be denoted by bold letter, for instance, v stands for the
velocity vector. The norm and semi-norm in the vector space [Hs(Ω)]2 are equipped
with product norm and denoted same as scalar notations to keep the clarity. The
square-integrable space with zero mean value is given by L2

0(Ω) := {q ∈ L2(Ω) :∫
Ω
q dx = 0}. Moreover, the constant C denote any generic constant which vary

from place to place.
The content of this paper is arranged in the following manner. We have in-

troduced the governing equation and discuss its weak/variational formulation in
Section 2. Next, we deal with virtual element formulation and well-posedness of
both semi and fully discrete schemes in Section 3. With the help of Stokes and L2

projection operators in Section 4, an optimal a priori error estimates for velocity
and pressure in H1 and L2-norms are established. Lastly, we have reported our
numerical experiments in Section 5 to validate the theoretical convergence rates
obtained in previous Section 4.

2. Governing equations and its Variational formu-
lation

We consider the following incompressible fluid flow problem in a domain Ω ⊂ R2:
For all t ∈ (0, T ] and x ∈ Ω, find the flow velocity u(x, t) and the pore pressure
p(x, t) such that

∂tu− div
(
ν ∇u− pI

)
+ (∇u)u = f in Ω× (0, T ), (2.1a)

divu = 0 in Ω× (0, T ), (2.1b)
u = 0 on ∂Ω× (0, T ), (2.1c)
u(·, 0) = u0 on Ω× {0}, (2.1d)

where ν is the viscosity of the fluid, u0(x) is the initial velocity and f(x, t) is the
given body force.

Let V := [H1
0 (Ω)]

2 and Q := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
q dx = 0} be the

admissible spaces for velocity and pressure, respectively. We also assume that the
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load function f ∈ [L2(Ω)]2 and initial condition u0 ∈ V. Multiplying the adequate
test functions v ∈ V and q ∈ Q to the equations (2.1a) and (2.1b) respectively,
with initial-boundary conditions (2.1c)-(2.1d), the weak formulation states: Find
u : [0, T ] → V, p : [0, T ] → Q such that

m(∂tu,v) + a(u,v) + c̃(u;u,v) + b(v, p) = F(v) ∀v ∈ V,

b(u, q) = 0 ∀q ∈ Q,
(2.2)

where the bilinear forms are defined as

m(u,v) :=

∫
Ω

u · v dx, a(u,v) := ν

∫
Ω

∇u : ∇v dx, F(v) :=

∫
Ω

f · v dx,

c̃(w;u,v) :=

∫
Ω

(∇uw) · v dx =

2∑
i,j=1

(
∂ui

∂xj
wj

)
vi, b(v, q) := −

∫
Ω

div v q dx.

Note that the above bilinear forms are satisfying the following properties.

• m(·, ·) is a positive definite form:

m(v,v) = ∥v∥20,Ω ∀v ∈ V.

• a(·, ·) is coercive:

a(v,v) = ν|v|21,Ω ≥ C ν∥v∥21,Ω ∀v ∈ V. (Poincaré inequality)

• b(·, ·) satisfies the inf-sup condition: there exists β > 0 such that [16,23]

sup
v∈V\{0}

b(v, q)

∥v∥1,Ω
≥ β∥q∥0,Ω ∀q ∈ Q.

• a(·, ·) is continuous:

a(u,v) ≤ C∥u∥1,Ω∥v∥1,Ω ∀u,v ∈ V. (Cauchy Schwarz inequality)

• F(·) is continuous:

F(v) ≤ C∥f∥0,Ω∥v∥0,Ω ≤ CP ∥f∥0,Ω∥∇v∥0,Ω ∀v ∈ V.

• Using Cauchy Schwarz and Hölder’s inequalities together with H1(Ω)⊂L4(Ω)),
it is easy to see that c̃(·; ·, ·) is continuous, i.e., there exists a constant C such
that

c̃(w;u,v) ≤ C∥u∥1,Ω∥w∥1,Ω∥v∥1,Ω ∀u,v,w ∈ V.

• Let X := {v ∈ V : b(v, q) = 0 ∀q ∈ Q} = {v ∈ V : div v = 0}. An application
of Green’s Theorem yields that c̃(u; ·, ·) is skew-symmetric bilinear form on
the kernel space X, i,e., for all u ∈ X, v,w ∈ V, we have

c̃(u;v,w) = −c̃(u;w,v)

Next, we introduce a new skew-symmetric trilinear form c(·; ·, ·) by modifying
the natural trilinear form c̃(·; ·, ·) as follows.

c(u;v,w) :=
1

2
(c̃(u;v,w)− c̃(u;w,v)) ∀u,v,w ∈ V.
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It is clear from the definition that c(u;v,w) = 0 for all w = v ∈ V, and also trilin-
ear form c(·; ·, ·) is continuous. Thus, the weak formulation (2.2) can be rewritten
as: Find u(t) ∈ V and p(t) ∈ Q such that

m(∂tu,v) + a(u,v) + c(u;u,v) + b(v, p) = F(v) ∀v ∈ V, (2.3a)
b(u, q) = 0 ∀q ∈ Q. (2.3b)

The well-posedness of the problem (2.3) follows from the coercivity and continuity of
the bilinear form a(·, ·), inf-sup condition of bilinear form b(·, ·) along with the skew-
symmetricity of the bilinear form c(u; ·, ·) (for more details, see [23]). In addition,
the solution u ∈ V of problem (2.3) satisfies

∥u(t)∥20,Ω + ν

∫ t

0

|u(s)|21,Ω ds ≲ ∥u(0)∥20,Ω +
1

ν

∫ t

0

∥f(s)∥20,Ω ds. (2.4)

Thus, we obtain the bound (2.4) by the usage of Young’s inequality.

3.Virtual element formulation and its well-posedness
In this section, by introducing the stable pair of local and global discrete spaces
associated with velocity and pressure, we propose the virtual element formulation
corresponding to weak formulation (2.3) of the problem (2.1). Here, we present
both semi and fully discrete schemes, and address the existence of a unique virtual
element solution.

3.1. Discrete spaces and their degrees of freedom
Let the domain Ω be discretized into the family of the polygonal meshes Th with
element K and mesh size h := maxK∈Th

hK where hK denotes the diameter of
element K, and edges in the polygonal mesh are denoted by e. For any natural
number k, let Pk(S) represent the space of polynomials of degree less than or equal
to k for any S ⊂ R2. Moreover, we denote G(K) ⊆ [P1(K)]2 as ∇P2(K), and G⊥(K)
as the orthogonal complement of the space G(K). We note that the orthogonal space
G⊥(K) is one dimensional and generated by vector function g⊥ := [ȳ,−x̄], where
x̄, ȳ are scaled functions in polygon K as described in [8]. We signify the classical
definition for the inner product on space Hs(K) as (·, ·)s,K and norm as ∥ · ∥s,K for
each K ∈ Th. The vertices of any element K are denoted as Vi with NK

v number of
vertices. The unit normal and tangent on edge e in element K are symbolized by
ne

K and teK , respectively.
We will suppose that the polygonal mesh satisfy the following assumptions (see

[11]):

• Each K is open and simply connected set whose boundary ∂K is a non-
intersecting poly-line consisting of a finite number of straight line segments;

• There exists CT > 0 such that, for every h and K ∈ Th, the ratio between the
length of the shortest edge and hK is larger than CT ;

• and each K ∈ Th is star-shaped with respect to every point within a ball of
radius CT hK .
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We initiate the process of introducing the local virtual element spaces by deter-
mining two important operators: energy projection operator Π∇

K and L2 projection
operator Π0

K .
The energy operator Π∇

K : [H1(K)]2 → [P1(K)]2 is defined as: ∀ p1 ∈ [P1(K)]2,
v ∈ [H1(K)]2,

(∇(Π∇
Kv − v),∇p1)0,K = 0, P 0

K(Π∇
Kv − v) = 0,

where P 0
Kv := 1

NK
v

∑NK
v

i=1 v(Vi). Here P 0
K avails the projection onto constants since

p1 as a constant gives no condition to help in calculation of projection Π∇
K .

We determine the local L2-projection operator Π0
K : [L2(K)]2 → [P1(K)]2 as,

(Π0
Kv − v,p1)0,K = 0, ∀p1 ∈ [P1(K)]2.

We stress that these operators will not only help us in the computation of the
discrete bilinear forms, but also in deriving the optimal error estimates.

We recall the local virtual element space for the velocity introduced in [5],

Wh(K) := {v ∈ [H1(K)]2 ∩ B(∂K) :

{
(−∆v +∇s)|K = 0,

div v|K = cd ∈ P0(K)
for s ∈ L2(K)},

where cd := 1
|K|
∑

e∈∂K

∫
e
v|e ·ne

K , and the local boundary space B(∂K) defined as

B(∂K) := {v ∈ [C0(∂K)]2 : v|e · ne
K ∈ P2(e),v|e · teK ∈ P1(e) ∀e ∈ ∂K}.

The dimension of space Wh(K) is same as dimension of boundary space B(∂K),
that is 3Nv

K .
For any v ∈ Wh(K), the degrees of freedom for the space Wh(K) (see [5, 47])

are

(Lv1) the value of v at the vertices of element K;
(Lv2) the edge moments of v along the unit outward normal of K, that is,∫

e

v · ne
K ∀e ∈ ∂K.

As seen in [47], we have non-computable term (v,p1)0,K ∀v ∈ Wh(K), and define
the extended supplementary space Ṽh locally as, for α ∈ R,

Ṽh(K) := {v ∈ [H1(K)]2 ∩ B(∂K) :

{
(−∆v +∇s)|K = αg⊥,

div v|K ∈ P0(K),
for s ∈ L2(K)}.

The degrees of freedom for the local discrete space Ṽh(K) are: (Lv1)-(Lv2), and

(Lv3) the moment
∫
K
v · g⊥ dx with g⊥ ∈ G⊥(K).

Now we define the local virtual element spaces Vh(K) and Qh(K) associated with
the velocity u and pressure p, respectively on each element K as follows (refer [47]),

Vh(K) := {vh|K ∈ Ṽh(K) : (Π∇
Kvh − vh, g

⊥)0,K = 0 with g⊥ ∈ G⊥(K)},
and Qh(K) := P0(K).
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From definition, we have the dimension of Vh(K) is equal to the dimension of
Ṽh(K) − 1 = 3Nv

K . The degrees of freedom for space Vh(K) are same as the
degrees of freedom for Wh(K), and for space Qh(K), the values of function qh at
any point in K.

Based on the local spaces, we define the global finite-dimensional virtual element
spaces as follows.

Vh := {vh ∈ V : vh|K ∈ Vh(K) ∀K ∈ Th},
Qh := {qh ∈ Q : qh|K ∈ Qh(K) ∀K ∈ Th}.

In view of the definition of Vh, it is immediate to see that following are the degrees
of freedom for the global discrete space Vh,

• Values at all the interior vertices on each polygon K ∈ Th;
• and the interior edge moments along the unit outward normal of K on each

interior edge e in all polygons K ∈ Th.

The degrees of freedom for Qh are the values of function qh ∈ Qh at any point in
K for each K ∈ Th.

Remark 3.1. We stress that the proposed finite-dimensional spaces for velocity
and pressure are constructed in such a way that the discrete velocity is exactly
divergence-free, which is desirable as far as numerical approximations of Navier-
Stokes equations are concerned. On the other hand, discrete spaces used in mixed
finite element settings will lead to a discrete velocity solution that is divergence-free
only weakly.

Now, to define the computable discrete formulation, we define another local
tensor L2-projection Π0

K : [L2(K)]2×2 → [P0(K)]2×2 as,

(Π0
K∇v −∇v,p)0,K = 0 ∀p ∈ [P0(K)]2×2, v ∈ [H1(Ω)]2.

Let NV and NQ denotes the total degrees of freedom for Vh(K) and Qh(K), respec-
tively. For any uh,vh,wh ∈ Vh(K) and qh ∈ Qh(K), we define the local discrete
forms on each element K as follows.

mK
h (u,v) := mK(Π0

Ku,Π0
Kv) + S0

K((u−Π0
Ku), (v −Π0

Kv)),

aKh (uh,vh) := aK(Π∇
Kuh,Π

∇
Kvh) + ν S∇

K((I −Π∇
K)uh, (I −Π∇

K)vh),

c̃Kh (wh;uh,vh) := ((Π0
K∇uh) Π

0
Kwh,Π

0
Kvh)0,K ,

FK
h (vh) := (Π0

Kf ,vh)0,K , bK(v, q) := −(div v, q)0,K

where the local bilinear forms are the restrictions of the continuous forms on each
element K, that is

mK(u,v) := m(u,v)|K , aK(u,v) := a(u,v)|K ,

and the stabilisation terms S0
K(·, ·) and S∇

K(·, ·) are defined as, see [3]

S0
K(uh,vh) := area(K)

NV∑
i,j=1

dofi(uh)dofj(vh), ∀uh,vh ∈ Vh,
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S∇
K(uh,vh) :=

NV∑
i,j=1

dofi(uh)dofj(vh), ∀uh,vh ∈ Vh,

We note that the classical stabilizer terms S0
K(·, ·) and S∇

K(·, ·) satisfy the fol-
lowing stability with respect to the continuous bilinear forms [10],

ζ∗m
K(uh,vh) ≤ S0

K(uh,vh) ≤ ζ∗mK(uh,vh) ∀uh,vh ∈ ker(Π0
K),

α∗a
K(uh,vh) ≤ S∇

K(uh,vh) ≤ α∗aK(uh,vh) ∀uh,vh ∈ ker(Π∇
K),

(3.1)

where ζ∗, ζ
∗, α∗, α

∗ > 0 are constants independent of diameter hK of polygon K.
Now considering the above defined local forms, we set the global discrete bilinear
and trilinear forms for all uh,vh ∈ Vh and qh ∈ Qh are simply set as sum over each
polygon K as simply the sum over each polygon K,

mh(uh,vh) :=
∑

K∈Th

mK
h (uh,vh), b(vh, qh) :=

∑
K∈Th

bK(vh, qh),

ah(uh,vh) :=
∑

K∈Th

aKh (uh,vh), ch(uh;uh,vh) :=
∑

K∈Th

cKh (uh;uh,vh)

and the load term as

Fh(vh) :=
∑

K∈Th

FK
h (vh).

Now we are in position to define our semi discrete virtual element formulation
corresponding to the weak form (2.3): For each t ∈ (0, T ], find uh(t) ∈ Vh and
ph(t) ∈ Qh such that

mh(∂tuh,vh)+ah(uh,vh)+ch(uh;uh,vh)+b(vh, ph)=Fh(vh) ∀vh∈Vh, (3.2a)
b(uh, qh) = 0 ∀qh ∈ Qh, (3.2b)

with given initial condition uh(0) considered as an approximation of u0 chosen
appropriately in derivation of the error analysis, and the discrete trilinear form
ch(·; ·, ·) is defined from c̃h(·; ·, ·) analogous to the continuous trilinear form c(·, ·, ·).
The stability properties of S0

K(·, ·) and S∇
K(·, ·) given in (3.1) yields

• mh(·, ·) is positive definite form: for all vh ∈ Vh,

mh(vh,vh) ≥ ν
∑

K∈Th

(
∥Π0

Kvh∥20,K + ζ∗∥(I −Π0
K)vh∥20,K

)
≥ Ĉ∗ ∥vh∥20,Ω,

where Ĉ∗ := min{1, ζ∗}.
• ah(·, ·) is coercive: for all vh ∈ Vh,

ah(vh,vh) ≥ ν
∑

K∈Th

(
∥Π∇

Kvh∥21,K + α∗∥(I −Π∇
K)vh∥21,K

)
≥ C∗ν ∥vh∥21,Ω,

where C∗ := min{1, α∗}.
• ah(·, ·) is continuous: for all uh,vh ∈ Vh (again by use of stability of S∇

K(·, ·)),

ah(uh,vh) ≤ C∗ ν ∥uh∥1,Ω∥vh∥1,Ω,

where C∗ := max{1, α∗}.
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• b(·, ·) satisfies inf-sup condition on Vh ×Qh: There exists a βh > 0 such that
(see [47])

sup
vh∈Vh

b(vh, qh)

∥vh∥1
≥ βh∥qh∥0, ∀qh ∈ Qh.

• Fh(·) is continuous: for all vh ∈ Vh,

Fh(vh) ≤
∑

K∈Th

∥Π0
Kf∥0,K∥vh∥0,K ≤ ∥f∥0,Ω∥vh∥0,Ω.

Now, we generate the following result to show the continuity of the trilinear
form ch(·; ·, ·).

Lemma 3.1. The projection operator Π0
K is bounded with respect to the Ls- norm

with s ≥ 2, that is,

∥Π0
Kv∥Ls(K) ≤ C∥v∥Ls(K) ∀v ∈ Ls(K) and K ∈ Th,

where C is independent of mesh size h.

Proof. The use of inverse estimates for polynomials (see [11,17]) yields

∥Π0
Kv∥Ls(K) ≤ Ch2( 1

s−
1
2 )∥Π0

Kv∥0,K .

In view of the definition of Π0
K , we have ∥Π0

Kv∥0,K ≤ ∥v∥0,K . Now, the Hölder’s
inequality together with mesh regularity assumptions yields

∥Π0
Kv∥Ls(K) ≤ Ch2( 1

s−
1
2 )|K|(

1
2−

1
s )∥v∥Ls(K) ≤ C∥v∥Ls(K).

• ch(·; ·, ·) is continuous: for all uh,vh,wh ∈ Vh (use of Lemma 3.1 and steps
from the continuity of trilinear form c(·; ·, ·), refer [11]),

ch(uh;vh,wh) =
∑

K∈Th

1

2

(
((Π0

K∇vh) Π
0
Kuh,Π

0
Kwh)0,K

− ((Π0
K∇wh) Π

0
Kuh,Π

0
Kvh)0,K

)
≤C∥uh∥1,Ω∥wh∥1,Ω∥vh∥1,Ω.

Now, we produce the result below on the existence of unique solution of problem
(3.2) and stability of the solution.

Lemma 3.2. The semi-discrete problem (3.2) has a unique solution uh(t) ∈ Vh

all t ∈ [0, T ] and given uh(0) and satisfies,

∥uh(t)∥20,Ω + ν

∫ t

0

|uh(s)|21,Ω ds ≤ C
(
∥uh(0)∥20,Ω +

∫ t

0

∥f(s)∥20,Ω ds
)
, (3.3)

where the constant C is independent of mesh size h.

Proof. The properties of the discrete bilinear forms ah(·, ·), mh(·, ·) and b(·, ·),
discrete trilinear form ch(·; ·, ·), and discrete linear functional Fh(·) with the well-
known wellposedness results from [42] implies that the semi-discrete problem (3.2)
has a unique solution, see also [27]. Taking vh = uh in (3.2a) gives

d

dt
∥uh∥20,Ω + ν|uh|21,Ω ≤ C∥f∥0,Ω∥uh∥0,Ω.
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Employing the Poincaré and Young’s inequality, then integrating from 0 to t leads
to (3.3).

3.2. Fully discrete scheme
The time interval [0, T ] is decomposed into subintervals In := [tn−1, tn], where
tn = n∆t for n = 1, . . . , N and ∆t = T

N . For the time discretization, we employ the
backward Euler scheme, i.e, the approximation of the time derivative at tn for any
generic function gh is defined as follows.

δtg
n
h :=

gnh − gn−1
h

∆t
.

For the consistency in the notations, the solution of semi-discrete scheme and fully
discrete scheme at time t = tn, will be denoted by uh(tn) and un

h, respectively. The
fully discrete virtual element scheme corresponding to the continuous formulation
(2.3) read as: Given initial conditions u0

h := uh(0), find un
h ∈ Vh, p

n
h ∈ Qh for each

n = 1, . . . , N such that

mh(δtu
n
h,vh)+ah(u

n
h,vh)+ch(u

n
h;u

n
h,vh)+b(vh, p

n
h)=Fn

h(vh) ∀vh∈Vh, (3.4a)
b(un

h, qh) = 0 ∀qh∈Qh. (3.4b)

The following lemma provide us the well-posedness of the above fully discrete
scheme.

Lemma 3.3. There exists a unique solution un
h ∈ Vh, pnh ∈ Qh of the problem

(3.4) and also satisfies the following bound,

max
1≤j≤n

∥uj
h∥

2
0,Ω + ν∆t

n∑
j=1

|uj
h|

2
1,Ω ≤ C

(
∥uh(0)∥20,Ω +∆t

n∑
j=1

∥f j∥20,Ω
)
, (3.5)

where C is a positive constant and independent of h, ∆t.

Proof. Taking vh = un
h, qh = pnh in (3.4) then the coercivity of ah(·; ·), skew-

symmetry of ch(uh; ·, ·) and continuity of Fn
h, and a use of Young’s inequality gives

1

2
(∥un

h∥20,Ω − ∥un−1
h ∥20,Ω) + ν∆t|un

h|21,Ω ≤ C∆t ∥fn∥0,Ω∥un
h∥0,Ω

≤ C∆t ∥fn∥20,Ω +
ν∆t

2
|un

h|21,Ω.

Summing the bound above over n leads to (3.5). Now, the existence and uniqueness
can be obtained from the stability result (3.5) and the well-posedness of the discrete
scheme corresponding to the steady Navier-Stokes equation, refer [10,31,34].

4. Convergence analysis
With the help of a projection named as Stokes projection (introduced in this section
by (4.8)), we establish convergence results for both semi discrete and fully discrete
schemes. We derive the optimal error estimates for velocity in the H1− norm, and
for pressure in the L2− norm under some regularity assumptions. We begin with
collecting the preliminary results for the subsequent analysis.
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Lemma 4.1. The trilinear form ch(·; ·, ·) satisfy the following bound:

ch(u;v,w) ≤ C∥u∥1/2L2(Ω)∥∇u∥1/2L2(Ω)∥∇v∥L2(Ω)∥∇w∥L2(Ω), (4.1)

where u,v,w ∈ V and C is independent of h.

Proof. Let p1 = 2, q1 = 3, r1 = 6 then repeated application of generalized version
of Hölder’s inequality with 1/p1 + 1/q1 + 1/r1 = 1 along with Lemma 3.1 implies
that

c̃h(u;v,w) ≤
2∑

i,j=1

∑
K∈Th

∥∥∥∥Π0
K

∂vi

∂xj

∥∥∥∥
L2(K)

∥∥Π0
Kuj

∥∥
L3(K)

∥∥Π0
Kwi

∥∥
L6(K)

≤
2∑

i,j=1

( ∑
K∈Th

∥∥∥∥Π0
K

∂vi

∂xj

∥∥∥∥2
L2(K)

) 1
2
( ∑

K∈Th

∥∥Π0
Kuj

∥∥3
L3(K)

) 1
3

×

( ∑
K∈Th

∥∥Π0
Kwi

∥∥6
L6(K)

) 1
6

≤ C

2∑
i,j=1

∥∥∥∥∂vi

∂xj

∥∥∥∥
L2(Ω)

∥uj∥L3(Ω) ∥wi∥L6(Ω) .

Employing the Sobolev embedding Wm,p(Ω) ⊂ Lq(Ω), for 1 ≤ q ≤ 2p
2−mp , mp < 2

(see [2]) with p = 2, q = 3, m = 1/2, and for mp = 2, we have Wm,p(Ω) ⊂
Lq(Ω), q ∈ [1,∞) with p = 2, m = 1, we arrive at

c̃h(u;v,w) ≤ C

2∑
i,j=1

∥∥∥∥∂vi

∂xj

∥∥∥∥
L2(Ω)

∥uj∥
W

1
2
,2(Ω)

∥wi∥H1(Ω) . (4.2)

The interpolation estimates (see [2, Theorem 4.17] on page 79), for all v ∈ Wm,p(Ω),
1 ≤ j ≤ m, gives

∥v∥W j,p(Ω) ≤ C∥v∥j/mWm,p(Ω)∥v∥
(m−j)/m
Lp(Ω) . (4.3)

The choice of j = 1/2, m = 1, p = 2 in (4.3) and using Poincaré inequality, we get

∥v∥W 1/2,2(Ω) ≤ C∥v∥1/2W 1,2(Ω)∥v∥
1/2
L2(Ω) ≤ CP ∥∇v∥1/20,Ω∥v∥

1/2
0,Ω.

Thus, the use of above bound in (4.2) leads to

c̃h(u;v,w) ≤ C ∥∇v∥L2(Ω) ∥∇u∥1/2L2(Ω)∥u∥
1/2
L2(Ω)∥∇w∥L2(Ω).

Proceeding in the similar fashion, we can derive the same bounds for the term
c̃h(u;w,v) and then we conclude the bound (4.1) using the definition of ch(u;v,w).

Lemma 4.2. Let uπ ∈ [P1(K)]2 be the polynomial approximation of u on each
K ∈ Th. Under the regularity assumption on the polygonal mesh Th (mentioned in
Section 3), there exists a positive constant C independent of h such that (see [8,17])∑

K∈Th

(∥u− uπ∥0,K + h |u− uπ|1,K) ≤ Ch2|u|2,Ω. (4.4)
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Lemma 4.3. For each u ∈ V ∩ Hr+1(Ω) with 0 ≤ r ≤ 1 and under the regu-
larity assumption on the polygonal mesh (mentioned in Section 3), there exist an
interpolant uI ∈ Vh satisfying (see [47])

∥u− uI∥0,Ω + hK |u− uI |1,Ω ≤ Chr+1|u|r+1,Ω. (4.5)

Lemma 4.4. The bilinear form b(·, ·) satisfies the discrete inf-sup condition on
Vh ×Qh, that is, there exists a βh > 0 such that (see [47])

sup
vh( ̸=0)∈Vh

b(vh, qh)

∥vh∥1,Ω
≥ βh∥qh∥0,Ω ∀qh ∈ Qh. (4.6)

For the proof of Lemma 4.3 and 4.4, we refer to [10,11,47].
Defining the discrete kernel space Xh with use of the fact that divVh ⊂ Qh, as

Xh := {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh} = {vh ∈ Vh : div vh = 0}.

For a given v ∈ X, we have the following approximation property for the discrete
space Xh as a consequence of the discrete inf-sup condition from Lemma 4.4 (see
in [16] and also [11]):

inf
zh∈Xh,zh ̸=0

∥v − zh∥1 ≤ C inf
vh∈Vh,vh ̸=0

∥v − vh∥1. (4.7)

Next, we define the classical Stokes projection Sh(u, p) := (Su
hu, S

p
hp) ∈ Vh×Qh

as a solution of the following equation (see also [16] and [23]).

ah(S
u
hu,vh) + b(vh, S

p
hp) = a(u,vh) + b(vh, p) ∀vh ∈ Vh, (4.8a)

b(u− Su
hu, qh) = 0 ∀qh ∈ Qh. (4.8b)

Use of the inf-sup condition (4.6), and continuity of the bilinear forms a(·, ·) and
b(·, ·) in equation (4.8) for vh ̸= 0 gives

ah(S
u
hu,vh)

∥vh∥1
+ ∥Sp

hp∥0,Ω ≤ C(∥∇u∥0,Ω + ∥p∥0,Ω).

Choosing vh = Su
hu in (4.8) then the following bounds are easily available by

employing coercivity of the discrete bilinear form ah(·, ·).

∥∇Su
hu∥0,Ω + ∥Sp

hp∥0,Ω ≤ C(∥∇u∥0,Ω + ∥p∥0,Ω). (4.9)

By definition of Su
h in (4.8b) and use of (2.3b) implies b(Su

hu, qh) = 0 for all qh ∈ Qh

and thus Su
hu ∈ Xh. Then the following error estimates of the operator Su

h can be
easily derived by using the properties of the bilinear forms ah(·, ·), b(·, ·), Lemma
4.2 and Lemma 4.3, and appealing to the duality arguments (refer [47]).

Lemma 4.5. Let (u, p) ∈ V × Q be the solution of the continuous problem (2.3)
and (Su

hu, S
p
hp) ∈ Vh × Qh satisfies the equation (4.8) then there exists a positive

constant C, independent of h, such that

∥u− Su
hu∥0,Ω + h(|u− Su

hu|1,Ω + ∥p− Sp
hp∥0,Ω) ≤ Ch2(|u|2,Ω + |p|1,Ω). (4.10)

In the following lemma, we estimate the error between the trilinear forms c(·; ·, ·)
and ch(·; ·, ·). The main ideas in following lemma are borrowed from [11].
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Lemma 4.6. For all u ∈ H2(Ω) ∩V and vh ∈ Vh, the following holds.

|c(u;u,vh)− ch(u;u,vh)| ≤ Ch|u|2,Ω∥∇u∥0,Ω∥∇vh∥0,Ω, (4.11)

where C is independent of h.

Proof. We begin with splitting the skew-symmetric terms into simpler trilinear
forms c̃(·; ·, ·) and c̃h(·; ·, ·) in the following manner.

c(u;u,vh)− ch(u;u,vh) =
1

2

((
c̃(u;u,vh)− c̃h(u;u,vh)

)
+
(
c̃(u;vh,u)− c̃h(u;vh,u)

))
:=

1

2

2∑
i=1

Ci(vh).

We proceed to estimate Ci, i = 1, 2. An application of generalised Hölder’s inequal-
ity, Lemma 3.1, Sobolev embedding W r,4(Ω) ⊂ Hr+1(Ω), r ≥ 0 and estimates of
projections Π0

K , Π0,0
K gives

C1(vh) =
∑
K

2∑
i,j=1

∫
K

(∂ui

∂xj
uj (vh,i −Π0

Kvh,i) +
∂ui

∂xj
(uj −Π0

Kuj) Π
0
Kvh,i

−
(
(I −Π0,0

K )
∂ui

∂xj

)
Π0

Kuj Π0
Kvh,i

)
≤
∑
K

2∑
i,j=1

(∥∥∥∥∂ui

∂xj

∥∥∥∥
L4(K)

∥uj∥L4(K)∥vh,i −Π0
Kvh,i∥L2(K)

+

∥∥∥∥∂ui

∂xj

∥∥∥∥
L4(K)

∥(I −Π0
K)uj∥L2(K)∥Π0

Kvh,i∥L4(K)

+ ∥uj∥L4(K)

∥∥∥∥(I −Π0,0
K )

∂ui

∂xj

∥∥∥∥
L4(K)

∥Π0
Kvh,i∥L2(K)

)
≤ Ch |u|2,Ω∥∇u∥0,Ω∥∇vh∥0,Ω.

Proceeding in the similar fashion, we can easily obtain the following bounds for
C2(vh).

C2(vh) ≤ Ch|u|2,Ω∥∇u∥0,Ω∥∇vh∥0,Ω.

Collecting all the bounds of Ci(vh), i = 1, 2, we finally obtain the bound (4.11).

4.1. Estimates for semi-discrete scheme
We collect all the derived/recalled results to state the estimates below.

Theorem 4.1. Let (u, p) ∈ V × Q and (uh, ph) ∈ Vh × Qh be the solutions of
the continuous problem (2.3) and discrete problem (3.2) respectively. Assuming the
additional regularity u ∈ H2(Ω)∩V and p ∈ H1(Ω)∩Q, then there exists a positive
constant C independent of h such that

∥u− uh∥2L∞(0,t;[L2(Ω)]2) + ν∥u− uh∥2L2(0,t;[H1(Ω)]2)

+ ∥p− ph∥2L2(0,t;L2(Ω)) ≤ C h2. (4.12)
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Proof. Split the error as (u−uh)(t) := eI(t)+eA(t), where eI(t) := (u−Su
hu)(t)

and eA(t) := (Su
hu − uh)(t). Now since the estimates for eI(t) are known from

Lemma 4.5, we proceed to establish the estimates for term eA(t).
The error equation with the help of Stokes projection (4.8), weak form (2.3b)

and semi-discrete form (3.2b) in terms of eA is given as

mh(∂teA,vh) + ah(eA,vh) = (F− Fh)(vh) + b(vh, ph − Sp
hp)

−
(
m(∂tu,vh)−mh(∂tS

u
hu,vh)

)
−
(
c(u;u,vh)− ch(uh;uh,vh)

)
. (4.13)

From equations (4.8), (2.3b) and (3.2b), we have for all qh ∈ Qh,

b(eA, qh) = b(u− uh, qh) = 0. (4.14)

Using (4.8) and taking vh = eA in (4.13) together with (4.14) implies

mh(∂teA, eA) + ah(eA, eA) = (F− Fh)(eA)︸ ︷︷ ︸
:=T1

−
(
m(∂tu, eA)−mh(∂tS

u
hu, eA)

)︸ ︷︷ ︸
:=T2

−
(
c(u;u, eA)− ch(uh;uh, eA)

)︸ ︷︷ ︸
:=T3

. (4.15)

The Cauchy Schwarz inequality, estimates of the projection Π0
K and Poincaré in-

equality infer that

|T1| ≤ ∥f − fh∥0,Ω∥eA∥0,Ω ≤ Ch|f |1,Ω∥∇eA∥0,Ω.

The consistency of mh(·, ·), Cauchy Schwarz inequality, triangle’s inequality, re-
peated application of estimates of Π0

K and (4.10) together with Poincaré inequality
enable us

T2 =
∑

K∈Th

mK(∂t(I −Π0
K)u, eA)−mK

h (∂t(S
u
hu−Π0

Ku), eA)

≤
( ∑

K∈Th

(∥∂t(I −Π0
K)u∥0,K + ∥∂t(Su

hu−Π0
Ku)∥0,K)

)
∥eA∥0,Ω

≤ C h|∂tu|1,Ω∥∇eA∥0,Ω.

The estimates for the term T3 is quite involved and we proceed by separating the
terms as

T3 = (c(u;u, eA)− ch(u;u, eA)) + (ch(u;u, eA)− ch(uh;uh, eA)) :=

2∑
i=1

T3,i.

The consequence of Lemma 4.6 gives

T3,1 ≤ C h|u|2,Ω∥∇u∥0,Ω∥∇eA∥0,Ω.

For T3,2, we employ Lemma 4.1, estimate of Stokes projection (4.10), stability bound
of Stokes projection (4.9), continuity of trilinear form ch(·, ·, ·), Poincaré inequality
and bound (2.4) to obtain

T3,2 = ch(u;u− uh, eA) + ch(u− uh;uh, eA)
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= ch(u; eI , eA) + ch(u; eA, eA) + ch(eI ;uh, eA) + ch(eA;uh, eA)

= ch(u; eI , eA) + ch(eI ;u, eA)− ch(eI ; eI , eA) + ch(eA;u, eA)

+ ch(eA; eA, eA)− ch(eA; eI , eA)

≤ Ch∥∇u∥0,Ω(|u|2,Ω + |p|1,Ω)∥∇eA∥0,Ω + h2(|u|2,Ω + |p|1,Ω)2∥∇eA∥0,Ω

+
(
∥∇u∥0,Ω + ∥p∥0,Ω

)
∥eA∥

1
2

0,Ω∥∇eA∥
3
2

0,Ω.

Collecting the bounds of T3,i, i = 1, 2 and use of Young’s inequality, we finally
obtain the following bound for T3.

T3 ≤ Ch
(
(|u|2,Ω + |p|1,Ω)(∥∇u∥0,Ω + h|u|2,Ω + h|p|1,Ω)

)
∥∇eA∥0,Ω

+
(
∥∇u∥0,Ω + ∥p∥0,Ω

)
∥eA∥

1
2

0,Ω∥∇eA∥
3
2

0,Ω

≤ C
(
∥∇u∥0,Ω + ∥p∥0,Ω

)2
∥∇eA∥0,Ω∥eA∥0,Ω +

ν

4
∥∇eA∥20,Ω

≤ C
(
∥∇u∥0,Ω + ∥p∥0,Ω

)4
∥eA∥20,Ω +

ν

2
∥∇eA∥20,Ω. (4.16)

On substituting the bounds of T1, T2 and T3 in (4.15) and applying the Young’s
inequality, we arrive at

1

2

d

dt
∥eA∥20,Ω +

ν

2
∥∇eA∥20,Ω ≤ C

(
h2 +

(
∥∇u∥0,Ω + ∥p∥0,Ω

)4
∥eA∥20,Ω

)
.

Now integrating over time from 0 to t then taking uh(0) := uI(0), we get

∥eA(t)∥20,Ω + ν

∫ t

0

∥∇eA(s)∥20,Ω ds

≤∥eA(0)∥20,Ω + C
(
h2 +

∫ t

0

(
∥∇u(s)∥0,Ω + ∥p(s)∥0,Ω

)4
∥eA(s)∥20,Ω ds

)
.

An application of Gronwall’s lemma together with the additional regularities of u
and p yields

∥eA(t)∥20,Ω + ν

∫ t

0

∥∇eA(s)∥20,Ω ds ≤ Ch2. (4.17)

For pressure estimates, we split again the error as: (p − ph)(t) = (p − Sp
hp)(t) +

(Sp
hp− ph)(t) := eS(t) + eQ(t), and then proceed to derive estimate for eQ(t).
Now, an application of discrete inf-sup condition from Lemma 4.4 implies

βh∥eQ∥0,Ω ≤ sup
(0 ̸=)vh∈Vh

b(vh, eQ)

∥vh∥1,Ω
. (4.18)

From equations (2.3), (3.2) and (4.8), we get

b(vh, eQ) = ah(eA,vh) + (f − fh,vh) +
(
mh(∂tuh,vh)−m(∂tu,vh)

)
+
(
ch(uh;uh,vh)− c(u;u,vh)

)
.

The inequality (4.18) and integration from 0 to t implies∫ t

0

∥eQ(s)∥20,Ω ds ≤ C

∫ t

0

(
∥eA(s)∥21,Ω + ∥(f − fh)(s)∥20,Ω
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+ ∥∂t(u− uh)(s)∥20,Ω + ∥∂t(u−Π0
Ku)(s)∥20,Ω

+
1

∥vh∥21,Ω

(
ch(uh;uh,vh)− c(u;u,vh)

)2)ds. (4.19)

The following bound for ∂teA is achieved by differentiating the error equation (4.13)
with respect to time, choosing vh = ∂teA and then imitating the proof of (4.17)
analogously to obtain,

∥∂teA∥20,Ω + ν

∫ t

0

∥∇(∂teA)(s)∥20,Ω ds ≤ Ch2. (4.20)

In view of triangle’s inequality, bound of T3 (4.16), estimates (4.20) and bound
(4.19) with estimates from Lemma 4.5, the desired result follows.

4.2. Estimates for fully-discrete scheme
Following analogously to the semi-discrete scheme in this section, we provide a
sketch of the proof estimating the total error occurred through time discretization
(by employing the backward Euler scheme) and space discretization. We introduce
the following discrete l2-norm for any bounded function v(t) ∈ Hm(Ω) on interval
[0, T ] as

∥v∥2l2(0,T ;Hm(Ω)) :=

N∑
i=1

(∆t)∥v(ti)∥2Hm(Ω), ti = i ∆t.

Theorem 4.2. Let (un, pn) ∈ V × Q and (un
h, p

n
h) ∈ Vh × Qh be the solutions

of the continuous problem (2.3) and fully discrete problem (3.4), respectively for
each n = 1, . . . , N . Assuming the additional regularity that u ∈ H2(Ω) ∩ V and
p ∈ H1(Ω) ∩Q then,

∥u− uh∥2l∞(0,tn;[L2(Ω)]2) + ν∥u− uh∥2l2(0,tn;[H1(Ω)]2)

+ ∥p− ph∥2l2(0,tn;L2(Ω)) ≤ C(h2 +∆t2), (4.21)

for constant C independent of h.

Proof. Decompose the error as: un − un
h = En

I + En
A, where

En
I := un − Su

hu
n and En

A := Su
hu

n − un
h.

Using the estimates of Stokes projection in Lemma 4.5 at each time tn, one obtains

∥En
I ∥0,Ω + h∥∇En

I ∥1,Ω ≤ Ch2(|un|2,Ω + |pn|1,Ω).

We proceed to obtain the estimates En
A. The following error equation in terms of

En
A can be easily written with the help of Stokes projection (4.8), weak form (2.3)

and fully discrete form (3.4).

mh(δtE
n
A,vh) + ah(E

n
A,vh) = (Fn − Fn

h)(vh) + b(vh, p
n
h − Sp

hp
n)

+
(
ah(S

u
hu

n,vh)− a(un,vh)
)

+ (mh(δt(S
u
hu

n),vh)−m(∂tu
n,vh))

+ (c(un;un,vh)− ch(u
n
h;u

n
h,vh)). (4.22)
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Choosing vh = En
A and using coercivity of mh(·, ·) and ah(·, ·), we infer that
1

2∆t

(
∥En

A∥20,Ω − ∥En−1
A ∥20,Ω

)
+ ν∥∇En

A∥20,Ω
≲ (mh(δt(S

u
hu

n), En
A)−m(∂tu

n, En
A)) + (Fn − Fn

h)(E
n
A)

+
(
ah(S

u
hu

n, En
A)− a(un, En

A)
)

+ (c(un;un, En
A)− ch(u

n
h;u

n
h, E

n
A)).

Multiplying the above inequality with ∆t and then summing over n gives

1

2

(
∥En

A∥20,Ω − ∥E0
A∥20,Ω

)
+ ν∆t

n∑
j=1

∥∇Ej
A∥

2
0,Ω

≲
n∑

j=1

(
mh

(
Su
hu

j − Su
hu

j−1, Ej
A

)
− (∆t)m(∂tu

j , Ej
A)
)

+ (∆t)

n∑
j=1

(Fj − Fj
h)(E

j
A) + (∆t)

n∑
j=1

(
ah(S

u
hu

j , Ej
A)− a(uj , Ej

A)
)

+ (∆t)

n∑
j=1

(c(uj ;uj , Ej
A)− ch(u

j
h;u

j
h, E

j
A)) :=

4∑
i=1

Gi. (4.23)

Use of the polynomial approximation Π0
Ku, Cauchy-Schwarz inequality and Taylor’s

expansion for any continuous function f(t) is

f j − f j−1 = (∆t)∂tf
j +

∫ tj

tj−1

(s− tj−1)∂ttf(s)ds,

and thus implies

G1 =

n∑
j=1

( ∑
K∈Th

mK
h ((Su

hu
j − Su

hu
j−1)−Π0

K(uj − uj−1), Ej
A)

+mK(Π0
K(uj − uj−1)− (∆t)∂tu(tj), E

j
A)
)

≤ C

n∑
j=1

(
h|uj − uj−1|1,Ω +

∥∥(uj − uj−1)− (∆t)∂tu
j
∥∥
0,Ω

)
∥Ej

A∥0,Ω

≤ C

n∑
j=1

(
h

(
(∆t)

∫ tj

tj−1

|∂tu(s)|21,Ω ds
)1/2

+∆t

(
(∆t)

∫ tj

tj−1

∥∂ttu(s)∥20,Ω ds
)1/2)(

(∆t) ∥Ej
A∥

2
0,Ω

)1/2

≤ C(∆t)1/2
(
h∥∂tu∥L2(0,tn;H1(Ω)) + (∆t)∥∂ttu∥L2(0,tn;L2(Ω))

)
∥EA∥l2(0,tn;L2(Ω)).

The bounds for the other terms, i.e., Gi, i = 2, 3, 4 can be easily obtain as we have
estimated the terms Ti, 1 ≤ 3 in the proof of Theorem 4.1. Now collecting all the
bounds of Gi in (4.23), we conclude that

4∑
i=2

Gi ≲ (h+∆t)∥EA∥l2(0,tn;H1(Ω))
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+

(
(∆t)

n∑
j=1

(
h(|uj |2,Ω + h|pj |1,Ω) + ∥∇u(tj)∥0,Ω

)
× ∥Ej

A∥
1
2

0,Ω∥∇Ej
A∥

1
2

0,Ω

)
∥EA∥l2(0,tn;H1(Ω)).

Choosing u0
h := u0

I and employing the Young’s inequality, we finally arrive at

1

2
∥En

A∥20,Ω +
ν

2
∥EA∥2l2(0,tn;H1(Ω))

≲h2 +∆t2 +∆t

n∑
j=1

(
h(|uj |2,Ω + h|pj |1,Ω) + ∥∇uj∥0,Ω

)4
∥Ej

A∥
2
0,Ω.

Now an application of the triangle’s inequality and discrete Gronwall’s lemma [28]
concludes (4.21).

Proceeding analogously to the semi-discrete case, the estimates for pressure
can be easily obtain by writing the error equations in terms of En

Q := Sp
hp

n − pnh
and employing the inf-sup condition together with the properties of discrete forms
ah(·, ·), bh(·, ·) and ch(·; ·, ·) (also refer to [1, 24,31]).

5. Numerical tests
In this section, we illustrate the numerical verification of the theoretical rate of con-
vergence of the proposed method. In order to see the computational efficiency of
the virtual element methods used for space discretizations, we have considered here
three different meshes: distorted square, distorted hexagonal and non-convex mesh
(see Fig. 1). After employing the backward Euler method (for time discretization)
and the proposed virtual element methods, the resultant non-linear system of equa-
tions is solved by Newton’s method. We compute the error for velocity and pressure
in the following norms.

E1(u) :=
( ∑

K∈Th

∥∇(u−Π∇
Kuh)∥20,K

) 1
2

, E0(u) :=
( ∑

K∈Th

∥u−Π0
Kuh∥20,K

) 1
2

and E0(p) :=
( ∑

K∈Th

∥p− ph∥20,K
) 1

2

.

For assessing the experimental convergence of the proposed scheme applied to
(2.1) defined over square domain Ω = [0, 1] × [0, 1], we consider the exact velocity
of the fluid flow and pressure as follows.

p = t
(
x3y3 − 1

16

)
,

u = t2

 x2(1− x)4y2(1− y)(3− 5y)

−2x(1− x)3(1− 3x)y3(1− y)2

 .

Then the load function f is enforced from the equation (2.1). Moreover, we have
taken viscosity ν = 1, time step ∆t = 0.01 and final time T = 1. The Table 1
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(a) (b) (c)

Figure 1. Samples of (a) Distorted square, (b) Distorted hexagonal, and (c) Non-convex meshes
employed for the numerical tests in this section.

Table 1. Errors and convergence rates r for fluid velocity and pressure.

Ndof h−1 E1(u) r E0(u) r E0(p) r

222 4 0.0108080 - 0.0024850 - 0.0295061 -
842 8 0.0060613 0.83 0.0010103 1.30 0.0174711 0.76
3282 16 0.0031157 0.96 0.0003372 1.58 0.0092992 0.91
12962 32 0.0015168 1.04 0.0000972 1.79 0.0047183 0.98
51522 64 0.0007375 1.04 0.0000260 1.90 0.0023658 1.00

displays the computed order of convergence (r) for velocity and pressure in the
estimated errors E1(u), E0(u) and E0(p).

The computed order of convergence for all three meshes are reported in Fig. 2.
From Table 1 and Fig. 2, we observe that the computed rate of convergence and
theoretical rate of convergence are in good agreement irrespective of the mesh type.

6. Conclusions

In this article, we have extended the analysis of [47] that deals with lowest order vir-
tual element approximations for Stokes problems. Establishment of optimal a priori
error estimates and the well-posedness for both semi and fully discrete schemes can
be considered as novelty and major contributions of this work. We have also verified
the theoretical rate of convergence with the help of numerical tests. The proposed
analysis can also be extended to more realistic problems with discontinuous viscos-
ity of fluid [13, 35, 38] such as interface Stokes and Navier-Stokes equations, and
we will study these problems in near future. Even more broad sections, includ-
ing the coupled fluid flow problems such as coupled Stokes-Darcy problem, and
coupled poroelastic-Advection-Diffusion-Reaction problems [45, 46], can be studied
using the lowest virtual element approximation, which is proposed here. Future
directions also includes the development of  stabilized virtual element methods by
following [14,29,30,39,49] for the non-stationary Navier-Stokes problem for general
order k.
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(a) (b)

(c)

Figure 2. Convergence in space for three different meshes: (a) Distorted square, (b) Distorted Hexag-
onal, and (c) Non-convex mesh.
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