
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 13, Number 3, June 2023, 1178–1189 DOI:10.11948/20210387

DISCRETE LEFT-DEFINITE HAMILTONIAN
SYSTEMS
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Abstract In this paper we consider an even-dimensional discrete Hamilto-
nian system on the set of nonnegative integers in the left-definite form. Using
the inertia indices of the hermitian form related with the solutions of the
equation we construct some maximal subspaces of the solution space. Af-
ter constructing some ellipsoids preserving nesting properties we introduce a
lower bound for the number of Dirichlet-summable solutions of the equation.
Moreover we introduce a limit-point criterion.
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1. Introduction
This paper aims to introduce a way to handle and a lower bound for the number of
linearly independent summable-square solutions of the following 2m−dimensional
discrete left-definite Hamiltonian system

J(n+ 1)y(n+ 1)− J(n)y(n) = λA(n)ỹ(n) +B(n)ỹ(n), n ∈ N, (1.1)

where N = {0, 1, 2, ...} , y(n) is a 2m× 1 vector-function such that y(n) =

y1(n)
y2(n)


with m × 1 vector-functions y1 and y2, ỹ(n) =

y1(n+ 1)

y2(n)

 , J, A,B are 2m × 2m

matrix-functions such that

J(n) =

 0 −E∗(n)

E(n) 0

 , A(n) =

P (n) 0

0 0

 , B(n) =

−K(n) L(n)

M(n) N(n)

 .

Here E,P,K,L,M,N are m ×m matrix-functions, and the basic assumptions are
as follows:

(i) E(n) is nonsingular on N, and P ∗(n) = P (n), n ∈ N,
(ii) E(n+ 1)−M(n) is invertible for each n ∈ N,
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(iii) K∗(n) = K(n) ≥ 0, N∗(n) = N(n) ≥ 0, n ∈ N, but not both zero at any
n ∈ N,

(iv) E(n+ 1)− E(n) = M(n)− L∗(n), n ∈ N.
(ii) and (iv) also imply that E(n)− L∗(n) is invertible on N.

If J(n) is chosen as a constant matrix for each n ∈ N then (1.1) takes the form

Jy(n+ 1)− Jy(n) = λA(n)ỹ(n) +B(n)ỹ(n), n ∈ N, (1.2)

and (iv) requires that M(n) = L∗(n), n ∈ N. Eq. (1.2) with

J =

 0 −Im

Im 0

 , A(n) =

P (n) 0

0 Q(n)

 ≥ 0, B∗(n) = B(n) =

K(n) L∗(n)

L(n) N(n)


such that Im is the m×m identity matrix and Im−L(n) is invertible for each n ∈ N
has been studied by Shi [26] (also see [16, 24, 25, 28, 31]). (1.2) is a right-definite
Hamiltonian system because the weight matrix A(x) is a nonnegative matrix. Us-
ing the nested-circles approach introduced by Hinton and Shaw [10, 11, 15] for the
following continuous Hamiltonian system

Jy′ = λA(x)y +B(x)y, x ∈ [a, b), (1.3)

where J is a 2m × 2m constant matrix with J∗ = −J, A(x), B(x) are 2m × 2m
locally integrable functions on [a, b) with A∗(x) = A(x) ≥ 0, B∗(x) = B(x) and y
is a 2m × 1 locally absolutely continuous vector-function, Shi introduced a lower
bound for the number of linearly independent summable-square solutions of (1.2).

At this stage we shall note that Hinton and Shaws’ approach is very similar
with the approach of Weyl [33] who introduced a lower bound for the number of
linearly independent integrable-square solutions of the following scalar right-definite
second-order equation

−(py′)′ + qy = λwy, x ∈ [0,∞),

where p, q, w (w > 0) are real-valued locally integrable functions. In the paper [34]
Weyl also shared an idea for the Dirichlet-integrable functions on [0,∞) as∫ ∞

0

p |y′|2 + q |y|2 .

If p and q are chosen as nonnegative functions on [0,∞) then one obtains a left-
definite equation and now the weight function w may have positive and negative
signs on the subintervals of [0,∞). Weyl’s results have been generalized by Kodaira
[14], Kimura and Takahasi [13], Everitt [6, 7], Pleijel [20, 21], and the others to
the right and left-definite higher-order formally symmetric differential equations.
However, it should be noted that some of the ways introduced in these papers differ
from the others.

We shall note that Eq. (1.2) contains the following right-definite Hamiltonian
system introduced by Clark and Gesztasy [4] 0 ρ(k)S+

ρ−(k)S− 0

 y(k) = λA(k)y(k) +B(k)y(k), k ∈ N ∪ {−N} ,
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where y(k) is a 2m× r matrix, 1 ≤ r ≤ 2m, S±y(k) = y(k± 1), ρ−S− is the formal
adjoint of ρS+, ρ is a m×m nonsingular hermitian matrix, A(k) ≥ 0, B∗(k) = B(k),
such that

A(k) =

A11(k) A12(k)

A21(k) A22(k)

 , B(k) =

B11(k) B12(k)

B∗
12(k) B22(k)

 = B∗(k),

λA12(k) +B12(k) is invertible for k ∈ N ∪ {−N} .
Although there are many results on right-definite equations (the readers may

also see the papers [1–3, 5, 8, 9, 22, 23, 27, 30, 32]) there are only a few papers on
left-definite discrete (scalar) equations. Indeed, Shi and Yan [29] considered the
following scalar left-definite equation

−p(n)y(n+ 1) + (p(n− 1) + p(n) + q(n))y(n)− p(n− 1)y(n− 1) = λw(n)y(n),

on a finite discrete set together with some boundary conditions, where p(n−1) ≥ 0,
p(n− 1) + q(n) > 0 on this set. This approach has been followed by Ma, Gao and
their colleagues [17–19].

It seems that there is not any work on left-definite discrete Hamiltonian system
even in the case that J is a constant matrix in (1.1). In this paper we will introduce
a lower bound for the number of linearly independent summable-square solutions
in the Dirichlet sense of (1.1). For this purpose we will use the hermitian forms and
inertia indices of that forms that will help us to construct some maximal subspaces
of the solution space and then we will be able to introduce a theorem on the number
of summable-square solutions of the Eq. (1.1). We shall note that this way has been
introduced by Pleijel [20,21] for scalar continuous formally symmetric right and left-
definite differential equations. Finally we will introduce a limit-point criterion.

2. Hermitian forms
In this section we will introduce some basic results on the left-definite equation and
hermitian form together with its inertia indices.

Eq. (1.1) can be handled as

−E∗(n+1)y2(n+1)+E∗(n)y2(n)+K(n)y1(n+1)−L(n)y2(n)=λP (n)y1(n+1),

E(n+ 1)y1(n+ 1)− E(n)y1(n)−M(n)y1(n+ 1)−N(n)y2(n) = 0.

(2.1)
Existence and uniqueness of the solutions of (1.1) follow from the assumptions
(i)− (iv) and (2.1). Indeed, (2.1) can be handled as

y(n+ 1, λ) = S(n, λ)y(n, λ),

where

S(n, λ) =

S11(n, λ) S12(n, λ)

S21(n, λ) S22(n, λ)

 ,

S11(n, λ) = (E(n + 1) − M(n))−1E(n), S12(n, λ) = (E(n + 1) − M(n))−1N(n),
S21(n, λ) = −E∗−1(n + 1)(λP (n) − K(n))(E(n + 1) − M(n))−1E(n), S22(n, λ) =
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−E∗−1(n+1)(λP (n)−K(n))(E(n+1)−M(n))−1N(n)−E∗−1(n+1)(L(n)−E∗(n)).
Using (i)− (iv) one gets easily the equation

S∗(n, λ)J(n+ 1)S(n, λ) = J(n).

Let y = y(n, λ) and z = z(n, µ) be the solutions of (1.1) corresponding to the
parameters λ and µ, respectively. Using (2.1) and the assumptions (i) − (iv) one
gets that

r∑
n=s

µz̃∗(n)A(n)ỹ(n)

=

r∑
n=s

{−z∗2(n+ 1)E(n+ 1)y1(n+ 1)

+z∗2(n) (E(n)− L∗(n)) y1(n+ 1) + z∗1(n+ 1)K(n)y1(n+ 1)}

=

r∑
n=s

{−z∗2(n+ 1)E(n+ 1)y1(n+ 1) + z∗2(n) (E(n+ 1)−M(n)) y1(n+ 1)

+z∗1(n+ 1)K(n)y1(n+ 1)} =

r∑
n=s

{−z∗2(n+ 1)E(n+ 1)y1(n+ 1)

+z∗2(n) (E(n) +N(n)) y1(n) + z∗1(n+ 1)K(n)y1(n+ 1)}

=

r∑
n=s

{−z∗2(n+ 1)E(n+ 1)y1(n+ 1) + z∗2(n)E(n)y1(n) + z∗2(n)N(n)y2(n)

+z∗1(n+ 1)K(n)y1(n+ 1)} ,

(2.2)

and, similarly
r∑

n=s

λz̃∗(n)A(n)ỹ(n)

=

r∑
n=s

{−z∗1(n+ 1)E∗(n+ 1)y2(n+ 1)

+z∗1(n+ 1) (E∗(n)− L(n)) y2(n) + z∗1(n+ 1)K(n)y1(n+ 1)}

=

r∑
n=s

{−z∗1(n+ 1)E∗(n+ 1)y2(n+ 1) + z∗1(n+ 1) (E∗(n+ 1)−M∗(n)) y2(n)

+z∗1(n+ 1)K(n)y1(n+ 1)} =

r∑
n=s

{−z∗1(n+ 1)E∗(n+ 1)y2(n+ 1)

+z∗1(n)E
∗(n)y2(n) + z∗2(n)N(n)y2(n) + z∗1(n+ 1)K(n)y1(n+ 1)} .

(2.3)
From (2.2) and (2.3) we obtain that

λ

r∑
n=s

z̃∗(n)A(n)ỹ(n)

= −z∗1(r + 1)E∗(r + 1)y2(r + 1) + z∗1(s)E
∗(s)y2(s)

+

r∑
n=s

[
z∗1(n+ 1) z∗2(n)

]K(n)

N(n)

 y1(n+ 1)

y2(n)


(2.4)
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and

µ

r∑
n=s

z̃∗(n)A(n)ỹ(n)

= −z∗2(r + 1)E(r + 1)y1(r + 1) + z∗2(s)E(s)y1(s)

+

r∑
n=s

[
z∗1(n+ 1) z∗2(n)

]K(n)

N(n)

 y1(n+ 1)

y2(n)

 .

(2.5)

For f = f(n) =

f1(n)
f2(n)

 , g = g(n) =

g1(n)
g2(n)

 we shall adopt the notation

⟨f, g⟩ |rn=s=

r∑
n=s

[
g∗1(n+ 1) g∗2(n)

]K(n)

N(n)

 f1(n+ 1)

f2(n)

 .

(2.4) and (2.5) imply that

λ− µ

i
⟨y, z⟩ |rn=s= [yλ, zµ] |r+1

s , (2.6)

where [yλ, zµ] |r+1
s := [yλ, zµ](r + 1)− [yλ, zµ](s) and

[yλ, zµ](k) :=
[
µz∗1(k) z

∗
2(k)

]
(J(k)/i)

λy1(k)
y2(k)

 . (2.7)

Let D be a set of all functions y = y(n, λ) satisfying (1.1). It is clear that
(2.7) represents a hermitian form. Hermitian forms can be used to construct some
maximal subspaces of D. However, before constructing these subspaces we shall
write the following form with the aid of (2.7)

2[yλ, yλ](n) = (λy1(n) + iE∗(n)y2(n))
∗(λy1(n) + iE∗(n)y2(n))

−(λy1(n)− iE∗(n)y2(n))
∗(λy1(n)− iE∗(n)y2(n)).

(2.8)

(2.8) implies that the hermitian form [., .](n) := [h, h](n) at a point n ∈ N can
be introduced as a sum of i+(n) squares of absolute values minus i−(n) squares of
absolute values from i+(n) + i−(n) linearly independent linear forms, where

i+(n) ≤ m, i−(n) ≤ m. (2.9)

Indeed, the inequalities in (2.9) come from Sylvester’s positive and negative inertia
indices of a hermitian form and they, in general, depent on the point n ∈ N. However,
following lemma shows that these indices are independent from n ∈ N.

Lemma 2.1. Let i+(n) and i−(n) be the positive and negative inertia indices,
respectively, of the hermitian form [., .](n) defined on D at n ∈ N. Then
i+(n) = i−(n) = m.
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Proof. From (2.6) we have

2 Imλ ⟨y, y⟩ |rn=s= [yλ, yλ](r + 1)− [yλ, yλ](s). (2.10)

Let the positive and negative inertia indices of [yλ, yλ](r + 1) and [yλ, yλ](s) be
(i+(r + 1), i−(r + 1)) and (i+(s), i−(s)), respectively. Then the right-hand side of
(2.10) is the subtraction of i+(s)+ i−(r+1) squares from i+(r+1)+ i−(s) squares.
Clearly

i+(s) + i−(r + 1) ≤ 2m and i+(r + 1) + i−(s) ≤ 2m. (2.11)

In the case, for instance, i+(r+1)+ i−(s) < 2m that we may assume that there is a
positive dimensional subspace on which i+(r + 1) + i−(s) squares equals zero. But
then the left-hand side of (2.10) is nonzero for Imλ ̸= 0 while the right-hand side
of (2.10) is zero. Hence y ≡ 0. Consequently, (2.9) and (2.11) completes the proof.

3. Maximal subspaces
In this section we will construct some subspaces of D on which the sign of the
hermitian form [., .](n) will be fixed for each n ∈ N.

Since the inertia indices i+ and i− of the hermitian form [., .](n) on D are equal
at any point n ∈ N there should exist an m−dimensional subspace D0 of D at
n = 0 such that [yλ, zλ](0) = 0 for every y = y(n, λ), z = z(n, λ) belonging to this
subspace. This subspace is maximal with respect to the hermitian form [., .](0) at
n = 0. Hence

[fλ, fλ](0) = 0, f ∈ D0.

Now we shall consider m−dimensional subspaces D−
r and D+

r of D on which
the hermitian form [., .] satisfies, respectively, [., .](r+ 1) ≤ 0 and [., .](r+ 1) ≥ 0 at
n = r + 1.

Let y(n, λ) ∈ D0 ∩D−
r . Using (2.6) one gets for Imλ > 0 that y = 0. Hence

D = D0 ⊕D−
r , Imλ > 0. (3.1)

Similarly, for y(n, λ) ∈ D0 ∩D+
r we find for Imλ < 0 that y = 0 and the following

representation holds
D = D0 ⊕D+

r , Imλ < 0. (3.2)

Let η1, ..., ηm be a base of D0. Hence a function η of D0 has the representation

η =

m∑
k=1

c̃kηk, c̃k constant. (3.3)

Now consider a function y(n, λ) ∈ D for Imλ > 0. Then according to (3.1) y has
the representation

y = η + δ,

where η ∈ D0, δ ∈ D−
r . Using (2.6) we get the following inequality

[y − η, y − η](0) + 2 Imλ ⟨y − η, y − η⟩ |r0≤ 0, (3.4)
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or with the aid of (3.3) we get that[
y −

m∑
k=1

c̃kηk, y −
m∑

k=1

c̃kηk

]
(0)+2 Imλ

〈
y −

m∑
k=1

c̃kηk, y −
m∑

k=1

c̃kηk

〉
|r0≤ 0. (3.5)

Let us denote by E(r) the set of all m−tuples c̃ = (c̃1, ..., c̃m) ∈ Cm satisfying
(3.5) and it is not empty by (3.3) and (3.4).

Lemma 3.1. The sets E(r) are nested as r grows.

Proof. The proof follows from (3.4) or (3.5) by considering two positive integers
r and r1 with r < r1.

Corollary 3.1. E(∞) :=limr→∞ E(r) contains at least an m−tuple c=(c1, ..., cm)∈
Cm.

Now using this c = (c1, ..., cm) ∈ Cm we obtain from (3.4) and (3.5) that

[y − η, y − η](0) + 2 Imλ ⟨y − η, y − η⟩ |∞0 ≤ 0, Imλ > 0. (3.6)

For Imλ < 0 using (3.2) and similar steps given above we can introduce the
following.

Theorem 3.1. Let y = y(n, λ) be a solution of (1.1) for Imλ ̸= 0. Then one may
find a solution η = η(n, λ) of (1.1) belonging to D0 such that the inequality

⟨y − η, y − η⟩ |∞0 < ∞

holds.

Let y1, ..., ym be a completion of η1, ..., ηm ∈ D0 to a base of D. Then each
yk − ηk, 1 ≤ k ≤ m, should be summable-square and hence we obtain the following.

Theorem 3.2. Eq. (1.1) has at least m−linearly independent solutions f = f(n, λ)
for Imλ ̸= 0 satisfying

⟨f, f⟩ |∞0 < 0. (3.7)
Hinton and Shaw [12] characterized the limit

lim
x→∞

y∗1(x, λ)Jy2(x, λ) = 0

as the limit-point case for (1.3), where y1(x, λ) and y2(x, λ) are the solutions of
(1.3) corresponding to λ and λ, respectively.

For the discrete Hamiltonian system (1.1) we shall define the case

lim
n→∞

[yλ, zµ](n) = 0 (3.8)

as the limit-point case, where y = y(n, λ), z = z(n, µ) ∈ D[N], where Imλ ̸= 0,
Imµ ̸= 0, D[N] is a subset of D consisting of all functions f satisfying (3.7). Then
we may introduce the following.

Theorem 3.3. Suppose that J(n) is bounded on N andK(n)

N(n)

 ≥ γI2m, n ∈ N, (3.9)
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where I2m is the identity matrix of dimension 2m and γ > 0. Then (3.8) holds for
y(n, λ), z(n, µ) ∈ D[N].

Proof. Since y, z ∈ D[N], [yλ, zµ](∞) := limn→∞[yλ, zµ](n) is finite by (2.6).
We shall assume that

[yλ, zµ](∞) ̸= 0. (3.10)
Using (3.9) we obtain that

∞∑
n=0

ỹ∗(n)

K(n)

N(n)

 ỹ(n) ≥ γ

∞∑
n=0

(
|y1(n+ 1)|2 + |y2(n)|2

)
. (3.11)

Moreover we have∣∣∣∣∣∣
∞∑

n=0

[
µz∗1(n) z

∗
2(n)

]
J(n)

λy1(n)
y2(n)

∣∣∣∣∣∣
≤ const.

2∑
t=1

( ∞∑
n=0

|zt(n)|2
)1/2( ∞∑

n=0

|y3−t(n)|2
)1/2

.

(3.12)

(3.11) implies that (3.12) is finite. However, this contradicts to (3.10) and this
completes the proof.

4. Titchmarsh-Weyl function
We shall consider the following 2m×2m matrix function whose columns are linearly
independent solutions of (1.1)

Y =
[
U V

]
=

U1 V1

U2 V2

 (4.1)

satisfying Y(0) = I2m, where U =

U1

U2

 , V =

V1

V2

 are 2m × m matrices,

U1, U2, V1, V2 are m×m matrices and

U =
[
u1 · · · um

]
, V =

[
v1 · · · vm

]
.

Here u1, ..., um, v1, ..., vm are 2m× 1 vector-functions.
A direct calculation shows that

[Vλ, Vλ](0) = O,

where O is the m×m zero matrix. This implies that v1, ..., vm belong to D0. Hence
from Theorem 3.1 we get that

∞∑
n=0

Ψ̃∗(n)

K(n)

N(n)

 Ψ̃(n) < ∞, Imλ ̸= 0,
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where Ψ(n) = U(n)− V (n)H, H is a m×m matrix as

H =


c11 · · · cm1

...
...

c1m · · · cmm

 ,

Ψ(n) =

Ψ1(n)

Ψ2(n)

 and Ψ̃(n) =

Ψ1(n+ 1)

Ψ2(n)

 .

We shall note that H is the Titchmarsh-Weyl matrix.
For Imλ ̸= 0 we shall define the following

Y∗

Λ∗

Im

 (J/i)

Λ
Im

Y = ε

A B∗

B C

 , (4.2)

where Λ is the m × m matrix defined by Λ = diag {λ, ..., λ} , A,B,C are m × m
matrices, ε = 1 when Imλ > 0 and ε = −1 when Imλ < 0.

Theorem 4.1. For sufficiently large r , C(r) > 0.

Proof. Using (4.1) and (4.2) one may see that

C(n) = V ∗(n)

Λ∗

Im

 (J(n)/i)

Λ
Im

V (n). (4.3)

On the other side we have

V ∗(r)

Λ∗

Im

 (J(r)/i)

Λ
Im

V (r) =

 2 Imλ ⟨V, V ⟩ |r−1
0 , Imλ > 0,

−2 Imλ ⟨V, V ⟩ |r−1
0 , Imλ < 0.

(4.4)

Now (4.3) and (4.4) complete the proof.

Corollary 4.1. As r increases C(r) nondecreases.

Theorem 4.2. Let there exist s−linearly independent solutions of (1.1), m ≤ s ≤
2m, satisfying (3.7) and let µ1(r) ≤ ... ≤ µm(r) be the eigenvalues of C(r). Then
as r → ∞, µ1(∞) ≤ ... ≤ µ(s−m)(∞) remain finite and the others go to infinity,
where µk(∞) := limr→∞ µk(r).

Proof. Let er be an unit eigenvector of C(r) and we shall set Ψ(n) = V (n)er.
Then one gets that

2 Imλ ⟨Ψ,Ψ⟩ |r−1
0 = e∗rV

∗(r)

Λ∗

Im

 (J(r)/i)

Λ
Im

V (r)er

=

 µ(r), Imλ > 0,

−µ(r), Imλ < 0,
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where µ(r) < ∞. Hence we obtain that

⟨Ψ,Ψ⟩ |r−1
0 ≤ µ(r)

|2 Imλ|
< ∞.

Since m−linearly independent summable-square solutions come from Ψ(n) = U(n)−
V (n)H we complete the proof.

Using (3.6) we may also introduce the following.

Theorem 4.3. Following inequality holds

2 Imλ ⟨Ψ(n),Ψ(n)⟩ |∞0 ≤ iλH∗E(0)− iλE∗(0)H.

5. Conclusion and remarks
In this paper we have introduced an approach to handle an even-dimensional discrete
Hamiltonian system (1.1) and using Pleijel’s idea [20], [21] we have shared a lower
bound for the number of Dirichlet-summable solutions of (1.1). For this purpose
we have constructed a nullspace D0. We should note that we could also use some
non-nullspaces. Indeed, let us denote by D−

0 and D+
0 m−dimensional subspaces of

D on which the hermitian form [., .] has a certain sign as [., .](0) ≤ 0 and [., .](0) ≥ 0,
respectively. For y(n, λ) ∈ D+

0 ∩D−
r with Imλ > 0 one gets that y = 0 and hence

D = D+
0 ⊕D−

r , Imλ > 0. (5.1)

Similarly one obtains the representation

D = D−
0 ⊕D+

r , Imλ < 0. (5.2)

Using similar steps introduced in section 3 we can construct nested-ellipsoids and
hence a lower bound for the number of Dirichlet-summable solutions of (1.1) with
the aid of the functions belonging to (5.1) and (5.2).
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