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1. Introduction
Our main aim is to study the weakly coupled system of semilinear wave equations
with two types of damping terms

utt −∆u+ ut −∆ut = f1(v, vt), x ∈ Ωc, t > 0,

vtt −∆v + vt −∆vt = f2(u, ut), x ∈ Ωc, t > 0,

(u, ut, v, vt)(x, 0) = (u0, u1, v0, v1)(x), x ∈ Ωc,

u|∂Ωc = 0, v|∂Ωc = 0, t > 0

(1.1)

and single equation
utt −∆u+ ut −∆ut = |u|p, x ∈ Ωc, t > 0,

(u, ut)(x, 0) = (u0, u1)(x), x ∈ Ωc,

u|∂Ωc = 0, t > 0,

(1.2)

where ut and vt, ∆ut and ∆vt are frictional and viscoelastic damping terms. The
nonlinear terms f1(v, vt), f2(u, ut) are presented in the forms of power type nonlin-
earities f1(v, vt)= |v|p, f2(u, ut)= |u|q, combined nonlinearities f1(v, vt)= |vt|p1+
|v|q1 , f2(u, ut)= |ut|p2+|u|q2 , where the indexes satisfy 1 < p, p1, p2, q, q1, q2 <∞.
Let Ω = B1(0) = {x ∈ Rn

∣∣ |x| ≤ 1} and Ωc = Rn\B1(0). We assume BR(0) =

{x ∈ Rn
∣∣ |x| ≤ R}, where R > 2. The initial values u0, u1, v0, v1 are non-negative

functions which satisfy supp (u0, u1, v0, v1) ⊂ Ωc ∩BR(0).
Let us recall some contributions related to the Cauchy problem for semilinear

wave equation utt −∆u = f(u, ut), (x, t) ∈ Rn × (0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ Rn.
(1.3)

Problem (1.3) with f(u, ut) = |u|p asserts the Strauss critical exponent pS(n),
which is the positive root of quadratic equation

r(n, p) = −(n− 1)p2 + (n+ 1)p+ 2 = 0.

The critical exponent pS(n) is the threshold between blow-up of solution even for
small initial values and global existence of weak solution. We refer the interested
readers to [11,26,29,42,45,46] and references therein. Problem (1.3) with f(u, ut) =
|ut|p admits the Glassey critical exponent pG(n) = n+1

n−1 . The solution blows up in
finite time when p ≤ pG(n) and exists globally (in time) when p > pG(n) for small
initial values (see [14, 44]). Problem (1.3) with combined nonlinearities f(u, ut) =
|ut|p + |u|q is discussed in [13, 15]. Upper bound lifespan estimate of solution is
documented by exploiting the Kato lemma and test function approach. Ikeda et al.
[17] establish blow-up results and lifespan estimates of solutions to semilinear wave
equation and related weakly coupled system, where a framework of test function
method is applied.

The Cauchy problem of semilinear wave equation with structural damping{
utt −∆u+ c(x, t)(−∆)θut = f(u, ut), x ∈ Rn, t > 0,

(u, ut)(x, 0) = (u0, u1)(x), x ∈ Rn
(1.4)
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has been widely studied by many mathematicians (see detailed illustrations in previ-
ous works [2,6,8–10,18,23,27,28,31–34,36–38,43]), where c(x, t)(−∆)θut (θ ∈ [0, 1])
is the structural damping term. Fino [10] investigates blow-up of solution to problem
(1.4) with c(x, t) = 1, θ = 1 and f(u, ut) = |u|p in the sub-critical and critical cases
on exterior domain by utilizing the test function method. Lifespan estimate of solu-
tion to the Cauchy problem of semilinear wave equation with scale invariant damp-
ing (c(x, t) = 2

1+t , θ = 0) in two dimensions is established in [23]. Non-existence
of global solution to problem (1.4) with c(x, t) = 1 and f(u, ut) = |u|p, |ut|p are
deduced in [8,9], where the test function method is performed. Problem (1.4) with
c(x, t) = 1, θ = 1 and f(u, ut) = |ut|p, |ut|p + |u|q on exterior domain is discussed
(see [2]). Local existence of mild solution is investigated by exploiting the Banach
fixed point theorem. Blow-up result of solution is obtained by applying the test func-
tion method. Taking advantage of the rescaled test function approach and iteration
method, Ming et al. [34] illustrate lifespan estimate of solution to variable coefficient
semilinear wave equation with scattering damping term (c(x, t) = µ

(1+t)β
, θ = 0) and

divergence form nonlinearities in the sub-critical and critical cases.
Let us turn to the Cauchy problem of semilinear wave equation with double

damping terms{
utt −∆u+ ut + (−∆)θut = f(u), x ∈ Rn, t > 0,

(u, ut)(x, 0) = (u0, u1)(x), x ∈ Rn.
(1.5)

Ikehata et al. [22] prove non-existence of global solution to problem (1.5) with
θ = 1 and f(u) = |u|p in the sub-critical and critical cases, where the initial values
satisfy

∫
Rn uidx > 0 for i = 0, 1. Blow-up of solution to problem (1.5) with θ = 1

and f(u) = |u|p on exterior domain in n (n ≥ 2) dimensions is documented by
employing the test function technique (see [5]). Ikehata et al. [21] consider problem
(1.5) with θ = 1, f(u) = 0. The asymptotic behavior of solution satisfies u(x, t) ∼
(P0 + P1)G(x, t) as t → ∞ in the L2(Rn) sense, where Pj =

∫
Rn uj(x)dx (j = 0, 1)

and G(x, t) = 1
(
√
4πt)n

e−
|x|2
4t is the Gauss kernel. Optimal decay rates of the total

energy for problem (1.5) with θ > 1 and f(u) = 0 is discussed in [20]. D’Abbicco et
al. [4] investigate linear estimates of global solutions to problem (1.5) with θ = 1 and
three types of nonlinearities |u|p, |ut|p and |∇u|p, where small initial values in the
energy space possess L1(Rn) regularity. Large time behavior of solution to problem
(1.5) with θ = 1 and nonlinear term V (x)|u|p +W (x, t) (V (x) > 0, W (x, t) ≥ 0) is
analyzed (see [24]). We refer readers to the works in [19,25,30,39] for more details
and references therein.

Recently, the weakly coupled system of semilinear wave equation
utt −∆u+ b1(t)(−∆)θ1ut = f1(v, vt), x ∈ Rn, t > 0,

vtt −∆v + b2(t)(−∆)θ2vt = f2(u, ut), x ∈ Rn, t > 0,

(u, ut, v, vt)(x, 0) = ε(u0, u1, v0, v1)(x), x ∈ Rn

(1.6)

attracts extensive attention (see [1, 3, 7, 12, 16, 35, 40, 41]). Chen et al. [1] establish
upper bound lifespan estimates of solutions to problem (1.6) with b1(t) = b2(t) =
1, θ1 = θ2 = 0 and f1(v, vt) = |v|p, f2(u, ut) = |u|q in the critical case by employing
the test function method connected with nonlinear differential inequalities. Non-
existence of global solutions to problem (1.6) with b1(t) = b2(t) = 1, θ1, θ2 ∈ [0, 12 ]
and f1(v, vt) = |v|p, f2(u, ut) = |u|q for general initial values are considered in [7],
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where the test function approach is performed. Blow-up dynamics and lifespan
estimates of solutions to problem (1.6) with scattering damping terms (b1(t) =
b2(t) = µ

(1+t)β
(β > 1), θ1 = θ2 = 0) and f1(v, vt) = |vt|p1 + |v|q1 , f2(u, ut) =

|ut|p2+|u|q2 are obtained (see [35]). The proof is based on the test function technique
and iteration method. Making use of an iteration method for unbounded multipliers
with a slicing procedure, Chen et al. [3] verify blow-up of solutions to the weakly
coupled system of the Nakao’s problem with small initial values.

Enlightened by the works in [1, 2, 5, 7, 10, 22], our interest is to establish local
existence and uniqueness of solutions to problem (1.1) with f1(v, vt) = |vt|p1 + |v|q1 ,
f2(u, ut) = |ut|p2 + |u|q2 , blow-up dynamics of solutions to problem (1.1) with
f1(v, vt) = |v|p, f2(u, ut) = |u|q and problem (1.2) with power nonlinearity |u|p on
exterior domain in n (n ≥ 1) dimensions. It is worth to mention that existence of
local solutions to semilinear wave equations with strong damping terms ∆ut and
different types of nonlinear terms |u|p, |ut|p, |ut|p+|u|q are investigated by applying
the Banach fixed theorem (see [2, 10]). Blow-up results of solutions are derived by
making use of the test function technique. We study local existence and uniqueness
of solutions to problem (1.1) with combined nonlinearities f1(v, vt) = |vt|p1 + |v|q1 ,
f2(u, ut) = |ut|p2 + |u|q2 by employing the Banach fixed theorem (see Theorem
1.1). Existence and non-existence of global solutions to the weakly coupled system
of semilinear wave equations with structural dampings are obtained by utilizing
the modified test function technique (see [7]). We present blow-up of solutions
to problem (1.1) with f1(v, vt) = |v|p, f2(u, ut) = |u|q on exterior domain by
employing the test function method, which is different from the test functions in
[2, 7, 10]. Moreover, Ikehata et al. [22] prove non-existence of global solution to
problem (1.2) in the whole space Rn (n ≥ 1) by making use of the test function
method. Blow-up of solution to problem (1.2) on exterior domain (n ≥ 2) is derived
by exploiting the test function technique (see [5]). Nevertheless, there is no related
result on exterior domain for n = 1. From this observation, taking advantage of
the test function method (ψ = φ0(x)ϕ

l
T (x)η

k
T (t)) which is different from the test

functions in [5, 22], we conclude non-existence of global solution to problem (1.2)
on exterior domain in n (n ≥ 1) dimensions. To the best knowledge of authors, the
results in Theorems 1.2-1.3 are new.

Definitions of mild solutions, weak solutions and the main results in this paper
are presented as follows.

Definition 1.1. Let ((u0, u1), (v0, v1)) ∈
(
H1

0 (Ω
c)×H1(Ωc)

)2 and

(u, v) ∈
(
C([0, T ),H1

0 (Ω
c)) ∩ C1([0, T ),H1(Ωc))

)2
satisfy the integral equations

u(x, t) = R(t)(u0, u1)(x) +

∫ t

0

S(t− s)f1(v, vt)(x, s)ds, (1.7)

v(x, t) = R(t)(v0, v1)(x) +

∫ t

0

S(t− s)f2(u, ut)(x, s)ds, (1.8)

where S(t)g(x) = R(t)(0, g)(x) for all g ∈ L2(Ωc). Then, (u, v) are called mild
solutions to problem (1.1) with f1(v, vt) = |vt|p1 + |v|q1 , f2(u, ut) = |ut|p2 + |u|q2 .

Definition 1.2. Let (u, v) ∈
(
C([0, T ],H1(Ωc)) ∩ C1([0, T ], L2(Ωc))

)2. It holds
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that ∫ T

0

∫
Ωc

f1(v, vt)ψ(x, s)dxds+

∫
Ωc

(u0(x) + u1(x)−∆u0(x))ψ(x, 0)dx

−
∫
Ωc

u0(x)ψt(x, 0)dx

=

∫ T

0

∫
Ωc

u(x, s)(ψtt(x, s) + ∆ψt(x, s)−∆ψ(x, s)− ψt(x, s))dxds (1.9)

and ∫ T

0

∫
Ωc

f2(u, ut)ψ(x, s)dxds+

∫
Ωc

(v0(x) + v1(x)−∆v0(x))ψ(x, 0)dx

−
∫
Ωc

v0(x)ψt(x, 0)dx

=

∫ T

0

∫
Ωc

v(x, s)(ψtt(x, s) + ∆ψt(x, s)−∆ψ(x, s)− ψt(x, s))dxds, (1.10)

where ψ ∈ C∞
0 ([0, T )×Ωc). Then, (u, v) are called global (in time) weak solutions

to problem (1.1) with f1(v, vt) = |v|p, f2(u, ut) = |u|q.

Definition 1.3. Let u ∈ C([0, T ],H1(Ωc)) ∩ C1([0, T ], L2(Ωc)) and it satisfies∫ T

0

∫
Ωc

|u(x, s)|pψ(x, s)dxds+
∫
Ωc

(u0(x) + u1(x)−∆u0(x))ψ(x, 0)dx

−
∫
Ωc

u0(x)ψt(x, 0)dx

=

∫ T

0

∫
Ωc

u(x, s)(ψtt(x, s) + ∆ψt(x, s)−∆ψ(x, s)− ψt(x, s))dxds, (1.11)

where ψ ∈ C∞
0 ([0, T )× Ωc). Then, u is called a weak solution to problem (1.2).

Theorem 1.1. Let 1 < p1, q1, p2, q2 <∞, n = 1, 2,

1 < p1, q1, p2, q2 ≤ n

n− 2
, n ≥ 3.

(1.12)

The initial values satisfy u0, v0 ∈ H1
0 (Ω

c), u1, v1 ∈ H1(Ωc). Then, problem (1.1)
with f1(v, vt) = |vt|p1+|v|q1 , f2(u, ut) = |ut|p2+|u|q2 admits uniquely mild solutions

(u, v) ∈
(
C([0, Tmax),H

1
0 (Ω

c)) ∩ C1([0, Tmax),H
1(Ωc))

)2
,

where Tmax is a positive constant (0 < Tmax ≤ ∞). It holds that

Tmax = ∞ or ∥u(t)∥H1 + ∥ut(t)∥H1 → ∞ as t→ Tmax <∞ (1.13)
or ∥v(t)∥H1 + ∥vt(t)∥H1 → ∞ as t→ Tmax <∞. (1.14)
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Theorem 1.2. Let p, q satisfy

n

2
≤ max {p, q}+ 1

pq − 1
, n ≥ 3,

1 <
max {p, q}+ 1

pq − 1
, 1 < p, q < 2, n = 2,

2

α
≤ max {p, q}+ 1

pq − 1
, 1 < p, q ≤ 1 +

α

2
, n = 1,

(1.15)

where α is the positive root of α2 − 2 = 0. Assume that ((u0, u1), (v0, v1)) ∈(
(W 2,1 ∩W 2,∞)× (L1 ∩ L∞)

)2. It holds that∫
Ωc

(u0(x) + u1(x)−∆u0(x))φ0(x)dx > C, (1.16)

∫
Ωc

(v0(x) + v1(x)−∆v0(x))φ0(x)dx > C, (1.17)

where C > 1 is a constant. Then, the solutions (u, v) to problem (1.1) with
f1(v, vt) = |v|p, f2(u, ut) = |u|q blow up in finite time.

Theorem 1.3. Let p satisfies
1 < p ≤ 1 +

2

n
, n ≥ 3,

1 < p < 2, n = 2,

1 < p ≤ 1 +
α

2
, n = 1,

(1.18)

where α is the positive root of α2− 2 = 0. Assume that (u0, u1) ∈ (W 2,1 ∩W 2,∞)×
(L1 ∩ L∞). It holds that ∫

Ωc

(u0(x) + u1(x))φ0(x)dx > 0. (1.19)

Then, a solution u to problem (1.2) blows up in finite time.

Remark 1.1. It is worth pointing out that we obtain blow-up of solutions to
problem (1.1) with f1(v, vt) = |v|p, f2(u, ut) = |u|q on exterior domain in n (n ≥ 1)
dimensions by utilizing the test function method, which is different from the test
functions in [2, 7, 10].
Remark 1.2. We recognize that non-existence of global solution to problem (1.2)
on exterior domain is obtained in [5]. But there is no related result for the case n =
1. We supplement blow-up of solution to problem (1.2) on exterior domain in n (n ≥
1) dimensions by making use of the test function method (ψ = φ0(x)ϕ

l
T (x)η

k
T (t)),

which is different from the test function in [5].
Remark 1.3. Concerning the Cauchy problem for weakly coupled system of semi-
linear wave equations (1.1) with f1(v, vt) = |v|p, f2(u, ut) = |u|q in whole space
Rn, we suppose that p, q satisfy

n

2
≤ max {p, q}+ 1

pq − 1
.
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The initial values ui, vi ∈ C∞
0 (Rn) (i = 0, 1) satisfy∫

Rn

(u0(x) + u1(x)−∆u0(x))dx > C, (1.20)∫
Rn

(v0(x) + v1(x)−∆v0(x))dx > C, (1.21)

where C > 1 is a constant. We deduce non-existence of global solutions by applying
test function function method.

2. Proof of Theorem 1.1
We state several lemmas related to the local existence and uniqueness of mild solu-
tions to problem (1.1) with f1(v, vt) = |vt|p1 + |v|q1 , f2(u, ut) = |ut|p2 + |u|q2 .

Lemma 2.1 ( [2]). Let ((u0, u1), (v0, v1)) ∈
(
H2(Ωc)×H1

0 (Ω
c)
)2 and

f1(v, vt), f2(u, ut) ∈ C([0,∞),H2(Ωc) ∩H1
0 (Ω

c)) ∩ C1([0,∞), L2(Ωc)).

Then, there exist unique mild solutions (u, v) to problem (1.1) with f1(v, vt) =
|vt|p1 + |v|q1 , f2(u, ut) = |ut|p2 + |u|q2 . Moreover, the solutions (u, v) satisfy

∥(ut,∇u)(t)∥L2×L2 ≤ C∥(u1,∇u0)∥L2×L2 + C

∫ t

0

∥f1(s)∥L2ds, (2.1)

∥u(t)∥L2 ≤ ∥u0∥L2 + C

∫ t

0

(
∥(u1,∇u0)∥L2×L2 +

∫ s

0

∥f1(τ)∥L2dτ
)
ds, (2.2)

∥∇ut(t)∥2L2 ≤ C∥(∇u0, u1)∥2L2×H1 + C

∫ t

0

∥f1(s)∥2L2ds+ C∥∇u(t)∥2L2

+ C

∫ t

0

∥f1(s)∥L2∥us(s)∥L2ds (2.3)

and

∥(vt,∇v)(t)∥L2×L2 ≤ C∥(v1,∇v0)∥L2×L2 + C

∫ t

0

∥f2(s)∥L2ds, (2.4)

∥v(t)∥L2 ≤ ∥v0∥L2 + C

∫ t

0

(
∥(v1,∇v0)∥L2×L2 +

∫ s

0

∥f2(τ)∥L2dτ
)
ds, (2.5)

∥∇vt(t)∥2L2 ≤ C∥(∇v0, v1)∥2L2×H1 + C

∫ t

0

∥f2(s)∥2L2ds+ C∥∇v(t)∥2L2

+ C

∫ t

0

∥f2(s)∥L2∥vs(s)∥L2ds. (2.6)

Proof. Making use of the Gagliardo-Nirenberg inequality and (1.12), we derive

∥f1(v, vt)∥L2 ≤ ∥vt∥p1

L2p1
+ ∥v∥q1

L2q1

≤ C∥∇vt∥σ1p1

L2 ∥vt∥(1−σ1)p1

L2 + C∥∇v∥σ2q1
L2 ∥v∥(1−σ2)q1

L2

≤ C∥v∥p1

C1([0,T ],H1(Ωc)) + C∥v∥q1
C([0,T ],H1

0 (Ω
c))
, (2.7)

∥f2(u, ut)∥L2 ≤ ∥ut∥p2

L2p2
+ ∥u∥q2

L2q2
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≤ C∥∇ut∥σ3p2

L2 ∥ut∥(1−σ3)p2

L2 + C∥∇u∥σ4q2
L2 ∥u∥(1−σ4)q2

L2

≤ C∥u∥p2

C1([0,T ],H1(Ωc)) + C∥u∥q2
C([0,T ],H1

0 (Ω
c))
, (2.8)

where σ1 = n(p1−1)
2p1

∈ (0, 1], σ2 = n(q1−1)
2q1

∈ (0, 1], σ3 = n(p2−1)
2p2

∈ (0, 1], σ4 =
n(q2−1)

2q2
∈ (0, 1]. Therefore, we obtain f1(v, vt), f2(u, ut) ∈ C([0, T ], L2(Ωc)).

Let X(T ) = C([0, T ],H1
0 (Ω

c)) ∩ C1([0, T ],H1(Ωc)), T > 0 and R1 > 0. We
define the functional space

YR(T ) = {Uα ∈ X(T )
∣∣ ∥Uα∥X(T ) ≤ 2R1},

where

∥Uα∥X(T ) = ∥uα∥X(T ) + ∥vα∥X(T )

= sup
t∈[0,T ]

(∥∂tuα(t)∥H1 + ∥uα(t)∥H1)

+ sup
t∈[0,T ]

(∥∂tvα(t)∥H1 + ∥vα(t)∥H1).

Employing (2.7)-(2.8) and the Gagliardo-Nirenberg inequality yields

vα ∈ YR(T ) → f1(vα, ∂tvα) = |∂tvα|p1 + |vα|q1 ∈ C([0, T ], L2(Ωc)),

uα ∈ YR(T ) → f2(uα, ∂tuα) = |∂tuα|p2 + |uα|q2 ∈ C([0, T ], L2(Ωc)).

Thus, we define a mapping Φ: YR(T ) × YR(T ) → X(T ). Let U = (u, v) =
Φ(Uα) = Φ(uα, vα)(x, t) be solutions to problem (1.1) with combined nonlinearities
f1(vα, ∂tvα), f2(uα, ∂tuα).

Firstly, we verify Φ: YR(T ) × YR(T ) → YR(T ) × YR(T ). From (2.7)-(2.8), we
achieve

∥f1(vα, ∂tvα)(s)∥L2 + ∥f2(uα, ∂tuα)(s)∥L2

≤ C∥vα∥p1

X(T ) + C∥vα∥q1X(T ) + C∥uα∥p2

X(T ) + C∥uα∥q2X(T )

≤ C(2R1)
p1 + C(2R1)

q1 + C(2R1)
p2 + C(2R1)

q2 . (2.9)

Replacing f1(v, vt), f2(u, ut) in (2.1)-(2.6) by f1(vα, ∂tvα), f2(uα, ∂tuα) and ap-
plying (2.9) give rise to

∥(ut,∇u)(t)∥L2×L2 + ∥(vt,∇v)(t)∥L2×L2

≤ C(I0 + J0) + C(2R1)
p1T + C(2R1)

q1T

+C(2R1)
p2T + C(2R1)

q2T, (2.10)
∥u(t)∥L2 + ∥v(t)∥L2

≤ C(I0 + J0) + C(2R1)
p1T + C(2R1)

q1T

+C(2R1)
p2T + C(2R1)

q2T, (2.11)
∥∇ut(t)∥2L2 + ∥∇vt(t)∥2L2

≤ C(I20 + J2
0 ) + C(2R1)

2p1T + C(2R1)
2q1T + C(2R1)

2p2T + C(2R1)
2q2T

+C(I0 + (2R1)
p1T + (2R1)

q1T )((2R1)
p1 + (2R1)

q1)T

+C(J0 + (2R1)
p2T + (2R1)

q2T )((2R1)
p2 + (2R1)

q2)T, (2.12)

where I0 = ∥(u0, u1)∥H1×H1 , J0 = ∥(v0, v1)∥H1×H1 and T ≪ 1. Thus, we choose
sufficiently small positive constant T such that ∥U∥X(T ) ≤ 2R1 for some positive



1198 X. Fan, S. Ming, W. Han & Y. Su

constant R1. This indicates that Φ is a mapping from YR(T )× YR(T ) to YR(T )×
YR(T ).

Secondly, let us prove that Φ is a contraction mapping.
Let Uα, Uβ ∈ YR(T ), U = Φ(Uα), U1 = Φ(Uβ) and W = U − U1. Therefore, we

obtain

∥f1(vα, ∂tvα)− f1(vβ , ∂tvβ)∥L2 + ∥f2(uα, ∂tuα)− f2(uβ , ∂tuβ)∥L2

≤ ∥∂tvα − ∂tvβ∥L2p1

∥∥|∂tvα|p1−1 + |∂tvβ |p1−1
∥∥
L

2p1
p1−1

+∥vα − vβ∥L2q1

∥∥|vα|q1−1 + |vβ |q1−1
∥∥
L

2q1
q1−1

+∥∂tuα − ∂tuβ∥L2p2

∥∥|∂tuα|p2−1 + |∂tuβ |p2−1
∥∥
L

2p2
p2−1

+∥uα − uβ∥L2q2

∥∥|uα|q2−1 + |uβ |q2−1
∥∥
L

2q2
q2−1

≤ C∥vα − vβ∥X(T )

(
∥vα∥p1−1

X(T ) + ∥vβ∥p1−1
X(T ) + ∥vα∥q1−1

X(T ) + ∥vβ∥q1−1
X(T )

)
+C∥uα − uβ∥X(T )

(
∥uα∥p2−1

X(T ) + ∥uβ∥p2−1
X(T ) + ∥uα∥q2−1

X(T ) + ∥uβ∥q2−1
X(T )

)
≤ C(2p1Rp1−1

1 + 2q1Rq1−1
1 )∥vα − vβ∥X(T )

+C(2p2Rp2−1
1 + 2q2Rq2−1

1 )∥uα − uβ∥X(T ),

where we have applied the Holder inequality, the Sobolev embedding property
H1(Ωc) ↪→ L2r(Ωc)(r > 1) and the inequality

||x|r − |y|r| ≤ C(r)|x− y|(|x|r−1 + |y|r−1) for x, y ∈ R, r > 1.

Similar to the derivation in (2.10)-(2.12), choosing sufficiently small constant T ,
we acquire

∥W∥X(T ) ≤
1

2
(∥vα − vβ∥X(T ) + ∥uα − uβ∥X(T )), (2.13)

which implies that Φ is a contraction mapping. Taking into account the Banach
fixed point theorem, we conclude that there exists a unique mild solutions U ∈ X(T )
to problem (1.1) with f1(v, vt) = |vt|p1 + |v|q1 , f2(u, ut) = |ut|p2 + |u|q2 .

Moreover, we deduce that there exists a interval [0, Tmax), where

Tmax = sup {T > 0
∣∣U ∈ X(T )} ≤ ∞.

It follows that lim
t→Tmax

(∥v∥H1
0
+ ∥vt∥H1 + ∥u∥H1

0
+ ∥ut∥H1) = ∞ when the lifespan

Tmax is finite. There exists a time sequence {tm}m≥0 tending to Tmax as m → ∞
such that

sup
m∈N

(∥v(tm)∥H1
0
+ ∥vt(tm)∥H1 + ∥u(tm)∥H1

0
+ ∥ut(tm)∥H1) ≤M + 1

when lim
t→Tmax

(∥v(t)∥H1
0
+ ∥vt(t)∥H1 + ∥u(t)∥H1

0
+ ∥ut(t)∥H1) = M < ∞. This con-

tradicts to the definition of Tmax. We finishes the proof of Theorem 1.1.

3. Proof of Theorem 1.2
In this section, we collect a related lemma which will be applied in the proof of blow-
up results for solutions to problem (1.1) with f1(v, vt) = |v|p, f2(u, ut) = |u|q.
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Lemma 3.1 ( [2]). Let φ0(x) ∈ C2(Ωc) ∩ C(Ωc) satisfy{
∆φ0(x) = 0, x ∈ Ωc,

φ0(x) = 0, x ∈ ∂Ωc,

φ0(x) → 1 as |x| → ∞ and 0 < φ0(x) < 1 for all x ∈ Ωc when n ≥ 3. φ0(x) → ∞
as |x| → ∞ and 0 < φ0(x) ≤ C ln(|x|) for all x ∈ Ωc when n = 2. φ0(x) → ∞ as
|x| → ∞ and C1x ≤ φ0(x) ≤ C2x for all x > 0 when n = 1, where C1 and C2 are
positive constants. Moreover, it holds that |∇φ0(x)| ≤ C|x|1−n.

3.1. Proof of Theorem 1.2 for n ≥ 3

Proof. We denote the functions ηR(t) = η( t
R2 ) and ϕR(x) = Φ( |x|R ) with

η(t) =


1, 0 ≤ t ≤ 1

2
,

decreasing, 1

2
≤ t ≤ 1,

0, t ≥ 1,

Φ(r) =

{
1, 0 ≤ r ≤ 1,

0, r ≥ 2.

It follows that 0 ≤ η(t) ≤ 1, |η′(t)| ≤ C. For t ∈ [ 12 , 1], we obtain

η−
q′
q (t)(|η′(t)|q

′
+ |η′′(t)|q

′
) ≤ C, (3.1)

where q′ = q
q−1 . Direct computation shows 0 ≤ Φ(r) ≤ 1, |Φ′(r)| ≤ C

r and |Φ′′(r)| ≤
C
r2 , where C is a positive constant.

We introduce the test function φ = φ0(x)ϕ
l
R(x)η

k
R(t).

We define

IR =

∫ T

0

∫
Ωc

1

|v(x, s)|pφ(x, s)dxds =
∫ R2

0

∫
Ωc

1

|v(x, s)|pφ(x, s)dxds,

JR =

∫ T

0

∫
Ωc

1

|u(x, s)|qφ(x, s)dxds =
∫ R2

0

∫
Ωc

1

|u(x, s)|qφ(x, s)dxds

and

IR,t =

∫ R2

R2

2

∫
Ωc

1

|v(x, s)|pφ(x, s)dxds, JR,t =

∫ R2

R2

2

∫
Ωc

1

|u(x, s)|qφ(x, s)dxds,

where Ωc
1 = {x ∈ Ωc

∣∣ |x| ≤ 2R}.
Replacing ψ in (1.9) by φ0(x)ϕl

R(x)η
k
R(t), we deduce∫ R2

0

∫
Ωc

1

|v(x, s)|pφ(x, s)dxds+
∫
Ωc

1

(u0(x) + u1(x)−∆u0(x))φ0(x)ϕ
l
R(x)dx

=

∫ R2

0

∫
Ωc

1

u(x, s)φ0(x)ϕ
l
R(x)∂

2
t (η

k
R(s))dxds

+

∫ R2

0

∫
Ωc

1

u(x, s)∆(φ0(x)ϕ
l
R(x))∂t(η

k
R(s))dxds
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−
∫ R2

0

∫
Ωc

1

u(x, s)∆(φ0(x)ϕ
l
R(x))η

k
R(s)dxds

−
∫ R2

0

∫
Ωc

1

u(x, s)φ0(x)ϕ
l
R(x)∂t(η

k
R(s))dxds

= J1 + J2 − J3 − J4. (3.2)

Applying the Holder inequality, Lemma 3.1, (3.1) and (3.2) gives rise to

|J1| ≲ J
1
q

R,tR
−4+n+2

q′ , |J2| ≲ J
1
q

R,tR
−4+n+2

q′ . (3.3)

Here, A ≲ B means that there exists a positive constant C such that A ≤ CB.
In a similar way, we acquire

|J3| ≲ J
1
q

RR
−2+n+2

q′ , |J4| ≲ J
1
q

R,tR
−2+n+2

q′ . (3.4)

Combining (1.16) and (3.2)-(3.4), we derive

0 <

∫
Ωc

1

(u0(x) + u1(x)−∆u0(x))φ0(x)ϕ
l
R(x)dx

≲ J
1
q

R,t(R
−2+n+2

q′ +R
−4+n+2

q′ ) + J
1
q

RR
−2+n+2

q′ − IR

≲ J
1
q

RR
−2+n+2

q′ − IR. (3.5)

Similarly, we have

0 <

∫
Ωc

1

(v0(x) + v1(x)−∆v0(x))φ0(x)ϕ
l
R(x)dx ≲ I

1
p

RR
−2+n+2

p′ − JR. (3.6)

It is deduced from (3.5) and (3.6) that

IR ≲ J
1
q

RR
−2+n+2

q′ , JR ≲ I
1
p

RR
−2+n+2

p′ . (3.7)

As a consequence, we conclude

I
pq−1
pq

R ≲ R
−2+n+2

q′ +(−2+n+2
p′ ) 1

q = Rγ1 , (3.8)

J
pq−1
pq

R ≲ R
−2+n+2

p′ +(−2+n+2
q′ ) 1

p = Rγ2 . (3.9)

It is worth noticing that n
2 ≤ max {p, q}+1

pq−1 is equivalent to γ2 ≤ 0 when p < q. Thus,
we shall divide our analysis into two cases.

In the sub-critical case γ2 < 0, letting R→ ∞ in (3.9) yields

JR =

∫ R2

0

∫
Ωc

1

|u(x, s)|qφ(x, s)dxds = 0, (3.10)

which results in u ≡ 0. We arrive at a contradiction to (1.16).
In the critical case γ2 = 0, taking into account (3.5) and (3.6), we achieve

JR + C(v0, v1) ≤ J
1
pq

R , (3.11)
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where C(v0, v1) =
∫
Ωc

1
(v0(x) + v1(x)−∆v0(x))φ0(x)ϕ

l
R(x)dx > 0.

That is

JR ≤ J
1
pq

R , C(v0, v1) ≤ J
1
pq

R . (3.12)

Plugging (3.12) into (3.11) and employing iteration argument for all j ∈ N∗ give
rise to

JR ≥ (C(v0, v1))
(pq)j . (3.13)

Sending j → ∞ in (3.13) yields that JR → ∞, which contradicts to JR ≤ J
1
pq

R in
(3.12).

3.2. Proof of Theorem 1.2 for n = 2

Proof. Similar to the derivation in (3.3)-(3.4), utilizing Lemma 3.1 and (3.2), we
obtain

|J1| ≲ J
1
q

R,t(R
−4+ 4

q′ (lnR)
1
q′ ), |J2| ≲ J

1
q

R,t(
1

3
R

−4+ 4
q′ +

2

3
R

−4+ 4
q′ (lnR)

1
q′ ), (3.14)

|J3| ≲ J
1
q

R (
1

3
R

−2+ 4
q′ +

2

3
R

−2+ 4
q′ (lnR)

1
q′ ), |J4| ≲ J

1
q

R,t(R
−2+ 4

q′ (lnR)
1
q′ ). (3.15)

Taking advantage of (1.16), (3.2) and (3.14)-(3.15) leads to

0 <

∫
Ωc

1

(u0(x) + u1(x)−∆u0(x))φ0(x)ϕ
l
R(x)dx ≲ J

1
q

RR
−1+ 2

q′ − IR, (3.16)

where we have exploited the fact lnR ≤ CRq′−2 and q < 2.
In a similar way, we derive

0 <

∫
Ωc

1

(v0(x) + v1(x)−∆v0(x))φ0(x)ϕ
l
R(x)dx ≲ I

1
p

RR
−1+ 2

p′ − JR. (3.17)

From (3.16) and (3.17), we acquire

I
pq−1
pq

R ≲ R
−1+ 2

q′ +(−1+ 2
p′ )

1
q = Rγ1 , J

pq−1
pq

R ≲ R
−1+ 2

p′ +(−1+ 2
q′ )

1
p = Rγ2 . (3.18)

Similar to the derivation in the Subsection 3.1, we have blow-up results of solu-
tions when 1 < max {p, q}+1

pq−1 and p, q < 2.

3.3. Proof of Theorem 1.2 for n = 1

Proof. Similar to the derivation in (3.3)-(3.4), we achieve

|J1| ≲ J
1
q

R,t(R
−4+ 2α+2

q′ ), |J2| ≲ J
1
q

R,t(
1

3
R

−2−α+α+2
q′ +

2

3
R

−2−2α+ 2α+2
q′ ) (3.19)

and

|J3| ≲ J
1
q

R,t(
1

3
R

−α+α+2
q′ +

2

3
R

−2α+ 2α+2
q′ ), |J4| ≲ J

1
q

R,t(R
−2+ 2α+2

q′ ). (3.20)
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If q < 1+ α
2 <

α
2(α−1) , we have −2q′+2α+2 < −αq′+α+2. Utilizing (1.16), (3.2)

and (3.19)-(3.20) gives rise to

0 <

∫
Ωc

1

(u0(x) + u1(x)−∆u0(x))φ0(x)ϕ
l
R(x)dx ≲ J

1
q

RR
−α+α+2

q′ − IR. (3.21)

In an analogous way, we obtain

0 <

∫
Ωc

1

(v0(x) + v1(x)−∆v0(x))φ0(x)ϕ
l
R(x)dx ≲ I

1
p

RR
−α+α+2

p′ − JR. (3.22)

Similar to the derivation in the Subsection 3.1, we conclude that the solutions
blow up in finite time when 2

α ≤ max {p, q}+1
pq−1 and p, q ≤ 1 + α

2 . This ends the proof
of Theorem 1.2.

4. Proof of Theorem 1.3
4.1. Proof of Theorem 1.3 for n ≥ 3

Proof. Choosing the test function ψ = φ = φ0(x)ϕ
l
T (x)η

k
T (t) with ηT (t) = η( t

T 2 ),
ϕT (x) = Φ( |x|T ) in (1.11) leads to∫ T 2

0

∫
Ωc

1

|u(x, s)|pφ(x, s)dxds+
∫
Ωc

1

(u0(x) + u1(x)−∆u0(x))φ0(x)ϕ
l
T (x)dx

=

∫ T 2

0

∫
Ωc

1

u(x, s)φ0(x)ϕ
l
T (x)∂

2
t (η

k
T (s))dxds

+

∫ T 2

0

∫
Ωc

1

u(x, s)∆(φ0(x)ϕ
l
T (x))∂t(η

k
T (s))dxds

−
∫ T 2

0

∫
Ωc

1

u(x, s)∆(φ0(x)ϕ
l
T (x))η

k
T (s)dxds

−
∫ T 2

0

∫
Ωc

1

u(x, s)φ0(x)ϕ
l
T (x)∂t(η

k
T (s))dxds

= I1 + I2 − I3 − I4, (4.1)

where Ωc
1 = {x ∈ Ωc

∣∣ |x| ≤ 2T}.
It follows from Lemma 3.1 and (4.1) that

I1 ≤ 1

8

∫ T 2

0

∫
Ωc

1

|u|pφdxds

+C

∫ T 2

0

∫
Ωc

1

φ0(x)ϕ
l
T (x)ηT (s)

(k−2)p′
|∂tηT (s)|2p

′
dxds

+C

∫ T 2

0

∫
Ωc

1

φ0(x)ϕ
l
T (x)ηT (s)

(k−1)p′
|∂2t ηT (s)|p

′
dxds

≤ 1

8

∫ T 2

0

∫
Ωc

1

|u|pφdxds+ CT−4p′+n+2. (4.2)
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Making use of the fact |∇φ0(x)| ≤ C
|x|n−1 ≤ CT−1 and (4.1) gives rise to

I2 ≤ 1

8

∫ T 2

0

∫
Ωc∗

1

|u|pφdxds

+C

∫ T 2

0

∫
Ωc∗

1

ϕl−p′

T (x)ηk−p′

T (s)|∇φ0(x)|p
′
|∇ϕT (x)|p

′
|∂tηT (s)|p

′
dxds

+C

∫ T 2

0

∫
Ωc∗

1

ϕl−2p′

T (x)ηk−p′

T (s)φ0(x)|∇ϕT (x)|2p
′
|∂tηT (s)|p

′
dxds

+C

∫ T 2

0

∫
Ωc∗

1

ϕl−p′

T (x)ηk−p′

T (s)φ0(x)|∆ϕT (x)|p
′
|∂tηT (s)|p

′
dxds

≤ 1

8

∫ T 2

0

∫
Ωc∗

1

|u|pφdxds+ CT−4p′+n+2, (4.3)

where Ωc∗
1 = {x ∈ Ωc

∣∣T ≤ |x| ≤ 2T}.
In a similar way, we obtain

I3 ≤ 1

8

∫ T 2

0

∫
Ωc∗

1

|u|pφdxds+ CT−2p′+n+2 (4.4)

and

I4 ≤ 1

8

∫ T 2

0

∫
Ωc

1

|u|pφdxds+ CT−2p′+n+2. (4.5)

According to (4.1)-(4.5), we acquire∫
Ωc

1

(u0(x) + u1(x)−∆u0(x))φ0(x)ϕ
l
T (x)dx

≤ C(T−4p′+n+2 + T−2p′+n+2)

≤ CT−2p′+n+2. (4.6)

It is worth to mention that p ∈ (1, 1 + 2
n ] is equivalent to −2p′ + n+ 2 ≤ 0. Thus,

we divide our consideration into the following two cases.
In the sub-critical case −2p′ + n+2 < 0, letting T → ∞ in (4.6), we arrive at a

contradiction to (1.19).
In the critical case −2p′ + n+ 2 = 0, from (4.1)-(4.5) and p = 1+ 2

n , we deduce
that there exists a positive constant C such that

∫ T 2

0

∫
Ωc

1
|u|pφdxds ≤ C, which

results in∫ T 2

T2

2

∫
Ωc

1

|u|pφdxds,
∫ T 2

0

∫
Ωc∗

1

|u|pφdxds,
∫ T 2

T2

2

∫
Ωc∗

1

|u|pφdxds→ 0 (4.7)

as T → ∞.
Utilizing the Holder inequality in I1 − I4 leads to

I1 ≤ CT
−4+n+2

p′ (

∫ T 2

T2

2

∫
Ωc

1

|u|pφdxds)
1
p ≤ C(

∫ T 2

T2

2

∫
Ωc

1

|u|pφdxds)
1
p . (4.8)
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Similarly, we get

I2 ≤ C(

∫ T 2

T2

2

∫
Ωc∗

1

|u|pφdxds)
1
p , I3 ≤ C(

∫ T 2

0

∫
Ωc∗

1

|u|pφdxds)
1
p (4.9)

and

I4 ≤ C(

∫ T 2

T2

2

∫
Ωc

1

|u|pφdxds)
1
p . (4.10)

Taking into account (4.1) and (4.8)-(4.10), we derive∫
Ωc

1

(u0(x) + u1(x)−∆u0(x))φ0(x)ϕ
l
T (x)dx

≤ C(

∫ T 2

T2

2

∫
Ωc

1

|u|pφdxds)
1
p + C(

∫ T 2

T2

2

∫
Ωc∗

1

|u|pφdxds)
1
p

+C(

∫ T 2

0

∫
Ωc∗

1

|u|pφdxds)
1
p . (4.11)

Therefore, letting T → ∞ in (4.11) and utilizing (4.7) yield a contradiction to
(1.19).

4.2. Proof of Theorem 1.3 for n = 2

Proof. An application of Lemma 3.1 and (4.1) shows

I1 ≤ 1

8

∫ T 2

0

∫
Ωc

1

|u|pφdxds+ CT−4p′+4 lnT, (4.12)

I2 ≤ 1

8

∫ T 2

0

∫
Ωc∗

1

|u|pφdxds+ CT−4p′+4 lnT + CT−4p′+4, (4.13)

I3 ≤ 1

8

∫ T 2

0

∫
Ωc∗

1

|u|pφdxds+ CT−2p′+4 lnT + CT−2p′+4 (4.14)

and

I4 ≤ 1

8

∫ T 2

0

∫
Ωc

1

|u|pφdxds+ CT−2p′+4 lnT. (4.15)

Exploiting (4.1) and (4.12)-(4.15) gives rise to∫
Ωc

1

(u0(x) + u1(x)−∆u0(x))φ0(x)ϕ
l
T (x)dx ≤ CT−p′+2, (4.16)

where we have employed the fact lnT ≤ CT p′−2 and p < 2. Letting T → ∞ in
(4.16) and applying p < 2, we conclude the desired contradiction to (1.19).
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4.3. Proof of Theorem 1.3 for n = 1

Proof. Making use of Lemma 3.1 and (4.1), we deduce

I1 ≤ 1

8

∫ T 2

0

∫
Ωc

1

|u|pφdxds+ CT−4p′+2α+2, (4.17)

I2 ≤ 1

8

∫ T 2

0

∫
Ωc∗

1

|u|pφdxds+ CT−αp′−2p′+α+2, (4.18)

I3 ≤ 1

8

∫ T 2

0

∫
Ωc∗

1

|u|pφdxds+ CT−αp′+α+2 (4.19)

and

I4 ≤ 1

8

∫ T 2

0

∫
Ωc

1

|u|pφdxds+ CT−2p′+2α+2, (4.20)

where we have used the change of variables y = T−αx and t = T−2s. It is worth
noticing that p < 1 + α

2 <
α

2(α−1) is equivalent to −2p′ + 2α+ 2 < −αp′ + α+ 2.
From (4.1) and (4.17)-(4.20), we deduce∫

Ωc
1

(u0(x) + u1(x)−∆u0(x))φ0(x)ϕ
l
T (x)dx ≤ CT−αp′+α+2, (4.21)

which yields a contradiction to (1.19) by sending T → ∞.
For the critical case p = 1+ α

2 , we conclude the contradiction by utilizing similar
computation as in the Subsection 4.1, where we have employed the supports of ∇ϕT ,
∆ϕT and ∂tηT . This finishes the proof of Theorem 1.3.
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