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DYNAMICAL BEHAVIORS OF A
STOCHASTIC PREDATOR-PREY MODEL

WITH ANTI-PREDATOR BEHAVIOR

Ming Kang, Fengjie Geng†and Ming Zhao

Abstract In this paper, a stochastic predator-prey model is proposed and
studied, where the model has anti-predator behavior. By constructing a suit-
able Lyapunov function, combined with the Itô’s formula and the stochastic
comparison theorem, the existence and uniqueness of the global positive solu-
tion of the system are proved. Then the stochastic boundedness of the system
is established, and we discussed the asymptotic behavior of the solution which
fluctuates around the equilibrium point of the deterministic model. More-
over, we provide sufficient conditions for the persistence and extinction of the
predator and prey. Finally, the results obtained in this paper are verified by
numerical simulation, and the anti-predator behavior and stochastic pertur-
bation are analyzed as well.

Keywords Stochastic predator-prey model, anti-predator behavior, bound-
edness, persistence, extinction.
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1. Introduction
The dynamic relationship between predator and prey has been one of the main
themes of ecology and mathematical ecology for a long time. In 1910, Lotka and
Volterra [13,20] first proposed and established the Lotka-Volterra model. After that,
many researchers have conducted intensive research on the predator-prey system [8–
12,14,15,22]. Although biologists often divide animals into predator and prey, some
prey often cause harm to predators. In fact, the role exchange between predator
and prey often occurs, that is, some prey have anti-predator behavior. In order to
simulate the anti-predator behavior, the predator-prey models [7, 17–19, 21] with
the influence of anti-predator behavior have been considered and studied. Ives and
Dobson [19] proposed a predator-prey model with anti-predator behavior:

dx = [rx(1− x
k )−

βxy

a+ x2
]dt,

dy = [
µβxy

a+ x2
− by − ηxy]dt,

(1.1)
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where x(t) and y(t) are the densities of the prey and the predator at time t, all the
parameters are positive constant, r is the inherent growth rate of the prey, k is the
carrying capacity of the environment, β is the capture rate of the predator, µ is the
conversion rate of the prey to the predator, b is the natural mortality rate of the
predator population, and η is the ratio of prey to the anti-predation behavior of the
predator population.

The authors [19] obtained these conclusions of system (1.1) as follows:

• System (1.1) always has a trivial equilibrium E0 = (0, 0) and a boundary
equilibrium Ek = (k, 0).

• If ηa − µβ < 0, f(xc) < 0 and x1 < k ≤ x2, then system (1.1) has only one
positive equilibrium E1.

• If ηa−µβ < 0, f(xc) < 0 and x2 < k, then there are two positive equilibria E1

and E2 of system (1.1).
• If ηa− µβ < 0, f(xc) = 0, and xc < k, then the positive equilibria E1 and E2

coincide into one positive equilibrium, which is denoted by Ec, with Ec =
(xc,

1
β r(1−

xc

k )(a+ x2c)).

Furthermore, environmental noise is an important part of the ecosystem [3, 4]
and always affects the real world. When the environment fluctuates, many param-
eters of the system will show more or less random fluctuations. Therefore, it is
interesting to study the impact of environmental noise on the model. Using the
same method as Imhof and Walcher [5] to add white noise to system (1.1) to obtain
a stochastic predator-prey model, we propose a stochastic predator-prey model with
anti-predator behavior.

dx = [rx(1− x
k )−

βxy

a+ x2
]dt+ σ1xdB1(t),

dy = [
µβxy

a+ x2
− by − ηxy]dt+ σ2ydB2(t),

(1.2)

where Bi(t) are mutually independent standard Brownian motions with Bi(0) = 0,
and σ2

i > 0 denoting the intensities of the white noise, i = 1, 2.
Throughout this paper, unless otherwise specified, let (Ω,F , {Ft}t⩾0,P) be a

complete probability space with a filtration {Ft}t⩾0 satisfying the usual conditions
(i.e., it is increasing and right continuous while {F0} contains all P -null sets).
Let Bi(t) be defined on the complete probability space, i = 1, 2. Define

Rd+ = {x = (x1, ..., xd) ∈ Rd : xi > 0, 1 ≤ i ≤ d},

Rd+ = {x = (x1, ..., xd) ∈ Rd : xi ≥ 0, 1 ≤ i ≤ d}.

Next, we consider the d-dimensional stochastic differential equation

dX(t) = f(X(t))dt+ g(X(t))dB(t), t ≥ t0, (1.3)

with the initial value X (0) = X0 ∈ Rd, where B(t) denotes a d-dimensional stan-
dard Brownian motion defined on the complete probability space. C2

(
Rd;R+

)
de-

notes the family of all real-valued nonnegative functions V (X), and V (X) defined
on Rd such that they are continuously twice differentiable in X and once in t. The
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definition of the differential operator L of Eq.(1.3) is as follows [16]:

L =

d∑
i=1

fi (X, t)
∂

∂Xi
+

1

2

[
gT (X, t) g (X, t)

]
ij

∂2

∂Xi∂Xj
.

If L acts on a function V ∈ C2
(
Rd;R+

)
, then we have

LV (X) = VX (X) f (X) +
1

2
trace

[
gT (X)VXX (X) g (X)

]
,

where VX =
(
∂V
∂X1

, · · · , ∂V∂Xd

)
, VXX =

(
∂2V

∂Xi∂Xj

)
d×d

. By applying Itô’s formula [16],
then,

dV (X(t)) = LV (X(t))dt+ VX (X(t)) g (X(t))dB(t), X(t) ∈ Rd.

The paper is arranged as follows: In section 2, we prove that system (1.2) has
a unique global positive solution for any initial value. In section 3, we show that
the positive solutions of system are bounded mean and stochastic final bounded.
Section 4 yields some results about the asymptotic behavior of the solution around
the boundary equilibrium point (k, 0) of system (1.1). We provide the conditions for
the extinction and persistence of predator and prey in section 5. Finally, numerical
simulations are provided to illustrate these conclusions in section 6.

2. Global positive solution
In this section, we establish the existence of global positive solution of system (1.2).

Theorem 2.1. For any given initial value (x (0) , y (0)) ∈ R2
+ , there is a unique

solution (x(t), y(t)) ∈ R2
+ of system (1.2) on t ≥ 0 , and the solution will remain

in R2
+ with probability one.

Proof. It is obviously, the coefficients of system (1.2) satisfy the local Lipschitz
condition, so for any initial value (x (0) , y (0)) ∈ R2

+, system (1.2) has a unique
local solution (x(t), y(t)) ∈ R2

+ on t ∈ [0, τe) a . s., where τe is the explosion time.
Next,we shall prove that this unique local solution is global, i.e. τe = ∞ a . s.. Let
nonnegative number n0 be sufficiently large such that x (0) , y (0) ∈

[
1
n0
, n0

]
. For

any integer n ≥ n0, we define the stopping time by

τn = inf

{
t ∈ [0, τe) : x(t) /∈

(
1

n
, n

)
or y(t) /∈

(
1

n
, n

)}
.

Throughout the paper, we set inf ∅ = ∞ (∅ denotes the empty set). Obviously, τn
is increasing as n → ∞. Denote τ∞ = lim

n→∞
τn, then τ∞ ≤ τe a . s. Therefore,

if τ∞ = ∞ a . s., then τe = ∞ and (x(t), y(t)) ∈ R2
+ a . s. for all t ≥ 0. To this end,

what we need to do is proving τ∞ = ∞ a . s. If the statement is not true, then there
exist a pair of constants T > 0 and ε ∈ (0, 1) such that

P {τ∞ ≤ T} ≥ ε.

Therefore, there exists an integer n1 ≥ n0 such that P {τn ≤ T} ≥ ε, for any n ≥
n1.
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Next, define a C2− function V : R2
+ → R+ by

V (x, y) =
1

β
(x− 1− lnx) +

1

µβ
(y − 1− ln y) , (2.1)

the nonnegativity of this function can be seen from u− 1− lnu ≥ 0,∀u > 0.
Applying Itô’s formula, one can derive:

dV (x, y) = LV (x, y)dt+ σ1 (x− 1)dB1(t) + σ2 (y − 1)dB2(t), (2.2)

where

LV =
1

β

(
1− 1

x

)[
rx

(
1− x

k

)
− βxy

a+ x2

]
+

1

µβ

(
1− 1

y

)(
µβxy

a+ x2
− by − ηxy

)
+

1

2
σ2
1 +

1

2
σ2
2

=
rx

β
− rx2

βk
− r

β
+
rx

βk
+

y

a+x2
− by

µβ
− ηxy

µβ
− x

a+x2
+

b

µβ
+
ηx

µβ
+
1

2
σ2
1+

1

2
σ2
2

≤− rx2

βk
+
µr + µkr + ηk

µβk
x+

y

a
+

b

µβ
+

1

2
σ2
1 +

1

2
σ2
2

≤ (µr + µkr + ηk)
2

4rβkµ2
+
y

a
+

b

µβ
+

1

2
σ2
1 +

1

2
σ2
2 .

Since y < 2(y − 1− ln y) + ln 4, thus

LV ≤ (µr + µkr + ηk)
2

4rβkµ2
+

ln 4

a
+

b

µβ
+

1

2
σ2
1 +

1

2
σ2
2 +

2

a
V (x, y)

≤c1 + c2V (x, y),

where c1 = (µr+µkr+ηk)2

4rβkµ2 + ln 4
a + b

µβ + 1
2σ

2
1 +

1
2σ

2
2 , c2 = 2

a . Then

dV (x, y) ≤ (c1 + c2V (x, y))dt+ σ1 (x− 1)dB1(t) + σ2 (y − 1)dB2(t), (2.3)

integrating both sides of the inequality (2.3) from 0 to τn ∧ T , then taking the
expectation, we can get

E [V (x (τn ∧ T ) , y (τn ∧ T ))]

≤V (x (0) , y (0)) + c1T + c2E
∫ τn∧T

0

V (x(t), y(t))dt

=V (x (0) , y (0)) + c1T + c2E
∫ T

0

I[0,τn](t)V (x(t), y(t))dt

≤V (x (0) , y (0)) + c1T + c2E
∫ T

0

V (x (τn ∧ T ) , y (τn ∧ T ))dt

=V (x (0) , y (0)) + c1T + c2

∫ T

0

E[V (x (τn ∧ T ) , y (τn ∧ T ))]dt,

where IA (·) denotes the indicator function of A. Due to the Gronwall inequality,
we deduce

E [V (x (τn ∧ T ) , y (τn ∧ T ))] ≤ (V (x (0) , y (0)) + c1T ) e
c2T . (2.4)
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Setting Ωn = {τn ≤ T} for n > n1, then for any ω ∈ Ωn, there is x (τn, ω) or y (τn, ω)
equals either 1

n or n. Therefore, we arrive at:

V (x (τn, ω) , y (τn, ω)) ≥ (n− 1− lnn) ∧
(
1

n
− 1 + lnn

)
.

Letting n→ ∞, it then follows that

∞ > (V (x (0) , y (0)) + c1T ) e
c2T ≥ ∞ ,

which leads to the contradiction, thus we must have τe = ∞ a .s.. This completes
the proof.

3. Stochastic boundedness
Since x(t), y(t) represent the population densities of prey and predator in sys-
tem (1.2) at time t, respectively, the solution of the system is required to be pos-
itive. In this section, we have shown that the positive solutions of the system are
bounded mean and the stochastic final bounded.

Now the following results is cited as a Lemma, considering the system as follows:dψ(t) = ψ(t)[α− βψ(t)]dt+ σψ(t)dB(t),

ψ(0) = ψ0,
(3.1)

where the parameters α, β > 0,B(t) are standard Brownian motion, with the fol-
lowing Lemma:

Lemma 3.1 ( [6]). Let ψ(t) be the solution of system (3.1) with any initial value ψ0,
then lim sup

t→∞
E[ψ(t)] ≤ α

β .

Lemma 3.2 ( [1]). Let ψ(t) be the solution of system (3.1) with any initial value ψ0.
Then for any p > 1, we have

lim sup
t→∞

E[ψp(t)] ≤
[
1

x0
e−(α+

p−1
2 σ2)t +

2β

2α+ (p− 1)σ2

(
1− e−(α+

p−1
2 σ2)t

)]−p
,

which implies lim sup
t→∞

E[ψp(t)] ≤ ςp :=
(

2α+(p−1)σ2

2β

)p
, for any p > 1.

Lemma 3.3 ( [6]). Let α > σ2

2 , ψ(t) be the solution of system (3.1) with any initial

value ψ0, then lim
t→∞

lnψ(t)
t = 0, a .s. and lim

t→∞
1
t

∫ t
0
ψ (s)ds =

α−σ2

2

β , a.s..

The following theorem is about boundedness of system (1.2).

Theorem 3.1. Let (x(t), y(t)) be the solution of system (1.2) with any initial
value (x (0) , y (0)) ∈ R2

+, then the solution (x(t), y(t)) of system (1.2) satisfies

lim sup
t→∞

E[x(t)] ≤ k, lim sup
t→∞

(E[x(t)] +
1

µ
E[y(t)]) ≤ k(r + b)2

4rb
. (3.2)
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Proof. First, from the equation of x(t) in system (1.2) we have

dx(t) ≤ x(t)(r − rx

k
)dt+ σ1x(t)dB1(t).

Now, considering the following system:dϕ(t) = ϕ(t)(r − rϕ
k )dt+ σ1ϕ(t)dB1(t),

ϕ(0) = x(0).
(3.3)

According to Lemma 3.1, the solution ϕ(t) of system (3.3) satisfies limsup
t→∞

E[ϕ(t)]≤ k,
so that lim sup

t→∞
E[x(t)] ≤ k is obtained from the stochastic comparison theorem.

Next, It is given below that y(t) is also bounded mean. Letting

G(t) = x(t) +
1

µ
y(t),

then

dG(t) =[rx(1− x

k
)− by

µ
− ηxy

µ
]dt+ σ1x(t)dB1(t) +

σ2
µ
y(t)dB2(t)

=[(r + b)x− r

k
x2 − bG(t)− ηxy

µ
]dt+ σ1x(t)dB1(t) +

σ2
µ
y(t)dB2(t).

Then integrating the equation from 0 to t, one obtains

G(t) =G(0) +

∫ t

0

[(r + b)x(s)− r

k
x2(s)− bG(s)− ηx(s)y(s)

µ
]ds

+ σ1

∫ t

0

x(s)dB1(s) + σ2

∫ t

0

1

µ
y(s)dB2(s).

So there is

E[G(t)] = G(0) +

∫ t

0

E[(r + b)x(s)− r

k
x2(s)− bG(s)− ηx(s)y(s)

µ
]ds,

and we have

dE[G(t)]

dt
=(r + b)E[x(t)]− r

k
E[x2(t)]− bE[G(t)]− η

µ
E[x(t)y(t)]

≤(r + b)E[x(t)]− r

k
(E[x(t)])2 − bE[G(t)]

≤k(r + b)2

4r
− bE[G(t)].

By the stochastic comparison theorem, we can get 0 ≤ lim sup
t→∞

E[G(t)] ≤ k(r+b)2

4rb ,
that is

lim sup
t→∞

(E[x(t)] +
1

µ
E[y(t)]) ≤ k(r + b)2

4rb
.

Now the Theorem is proved.
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Remark 3.1. Combining the positivity of the solution of system (1.2) and inequal-
ity (3.3), it is obvious that

lim sup
t→∞

E[y(t)] ≤ kµ(r + b)2

4rb
.

Theorem 3.2. For any p > 1, we have

lim sup
t→∞

E[xp(t)] ≤ (
2rk + k(p− 1)σ2

1

2r
)p;

for any 0 < p ≤ 1, we have

lim sup
t→∞

E[xp(t)] ≤ k(2r + σ2
1)

2r

p

.

Proof. First, for x(t), we can get

dx(t) ≤ x(t)(r − rx

k
)d(t) + σ1x(t)dB1(t),

thus when p > 1, combining Lemma 3.2 and the stochastic comparison theorem,
the following inequality can be derived

lim sup
t→∞

E[xp(t)] ≤ (
2rk + k(p− 1)σ2

1

2r
)p.

Also, when 0 < p ≤ 1, according to Hölder inequality, we can get

lim sup
t→∞

E[xp(t)] ≤ lim sup
t→∞

[E[x2(t)]]
p
2 ≤ k(2r + σ2

1)

2r

p

.

Theorem 3.3. If the condition 0 < σ2
2 < 2b − 1 holds, then for any initial

value (x(0), y(0)) ∈ R2
+, the solution of system (1.2) is stochastically finally bounded.

Proof. Now defining a C2 function V : R2
+ → R+ by: V (x, y) = (µx+ y)2.

Applying Itô’s formula to V (x, y) implies,

LV (x, y) =2(µx+ y)[rµx(1− x

k
)− by − ηxy] + µ2σ2

1x
2 + σ2

2y
2

=− 2rµ2x3

k
+ µ2σ2

1x
2 + 2rµ2x2 − 2bµxy − 2µηx2y

+ 2rµxy − 2rµx2y

k
− 2by2 − 2ηxy2 + σ2

2y
2

≤− 2rµ2x3

k
+ µ2σ2

1x
2 + 2rµ2x2 + 2rµxy − 2ηxy2 − (2b− σ2

2)y
2.

Define a function W = etV, then

LW =et(V + LV )

≤et[µ2x2 + 2µxy − 2rµ2x3

k
+ µ2σ2

1x
2 + 2rµ2x2 + 2rµxy
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− 2ηxy2 − (2b− σ2
2 − 1)y2],

therefore there is a positive constant H1 such that LW ≤ H1e
t, which yields

dW ≤ H1e
t + 2µet(µx+ y)σ1xdB1(t) + 2et(µx+ y)σ2ydB2(t), (3.4)

integrating the equation (3.4) from 0 to t and taking expectation yields

E(et(µx+ y)2) ≤W (0) +H1(e
t − 1).

Noting that µ < 1, one observes that

E|X(t)|2 =E[x2 + y2] ≤ 1

µ2
E[(µx+ y)2]

≤ 1

µ2
e−tW (0) +

1

µ2
H1(1− e−t)

≤ 1

µ2
W (0) ≜ H2.

An application of the Chebyshev inequality yields

P{|X(t)| > M} ≤ E|X(t)|2

M2
.

One can see that

lim sup
t→∞

P{|X(t)| > M} ≤ H2

M2
=
ε

2
< ε a .s.,

where ε ∈ (0, 1), M =
√
2H2√
ε
.

4. Asymptotic behavior of the solution
It is interesting for the stochastic system (1.2) to discuss the asymptotic behavior
of the solution around the boundary equilibrium point (k, 0) of system (1.1). Then
it yields the following results.

Theorem 4.1. Suppose b > max{ µβ
2
√
a
+
σ2
2

2 ,
kµβ
a }, and (x(t), y(t)) is the solution of

system (1.2) with any initial value (x(0), y(0)) ∈ R2
+. Then the following inequality

holds:
lim sup
t→∞

1

t
E[

∫ t

0

[(x(s)− k)2 + y2(s)]ds] ≤ kσ2
1

2m1
,

where m1 = min{ rk , b−
µβ
2
√
a
− σ2

2

2 }.

Proof. Define a function V : R2
+ → R+ by:

V (x, y) = x− k − ln
x

k
+

1

2
y2 +

1

µ
y. (4.1)

Applying Itô’s formula, we have:

LV (x, y) =(x− k)(r − rx

k
− βy

a+ x2
) +

kσ2
1

2
+ y2(

µβx

a+ x2
− b− ηx)
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+
σ2
2y

2

2
+

1

µ
(
µβxy

a+ x2
− by − ηxy)

=(x− k)(
r

k
k − rx

k
− βy

a+ x2
) +

kσ2
1

2
+ y2(

µβx

a+ x2
− b

+
σ2
2

2
) +

1

µ
(
µβxy

a+ x2
− by − ηxy)− ηxy2

≤− r

k
(x− k)2 +

kσ2
1

2
− (b− µβ

2
√
a
− σ2

2

2
)y2 + (

kβ

a
− b

µ
)y

≤−m1[(x− k)2 + y2] +
kσ2

1

2
,

where m1 = min{ rk , b−
µβ
2
√
a
− σ2

2

2 }. Then

dV (x, y) ≤ −m1[(x− k)2 + y2] +
kσ2

1

2
+ σ1(x− k)dB1(t) + σ2(y

2 +
y

µ
)dB2(t).

Integrating the equation from 0 to t,

V (x, y) ≤V (0, 0)−m1

∫ t

0

[(x(s)− k)2 + y2(s)]ds+
kσ2

1

2
t+ σ1

∫ t

0

(x(s)

− k)dB1(s) + σ2

∫ t

0

(y(s)2 +
y(s)

µ
)dB2(s),

next taking expectation on both sides,

0 ≤ E[V (x, y)] ≤ E[V (0, 0)]−m1E[

∫ t

0

[(x(s)− k)2 + y2(s)]ds] +
kσ2

1

2
t,

dividing both sides by t and taking the superior limit on both sides of the inequality,
the following conclusion is got,

lim sup
t→∞

1

t
E[

∫ t

0

[(x(s)− k)2 + y2(s)]ds] ≤ kσ2
1

2m1
. (4.2)

Remark 4.1. According to Theorem 4.2, although (k, 0) is no longer the equilib-
rium point of system (1.2), the solution of a stochastic system (1.2) oscillates up
and down around the equilibrium point (k, 0) of its deterministic system. When the
noise intensity σ1 is small, the solution of the stochastic system oscillates within a
small neighborhood at the equilibrium point (k, 0).

5. Extinction and persistence
Now, we will show the extinction and persistence of the stochastic system (1.2).
These properties can be used to estimate and calculate the extinctions of stochastic
systems of predator and prey populations. These conclusions will be useful in real-
world .

Theorem 5.1. Let (x(t), y(t)) be the solution of system (1.2) with any initial
value (x (0) , y (0)) ∈ R2

+, The following conclusions are established:
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(i). If r < σ2
1

2 , then the prey and predator populations will be extinct with probability
one, that is to say, lim

t→∞
x(t) = 0 a .s. and lim

t→∞
y(t) = 0 a .s.

(ii). If r >
σ2
1

2 , µβ
√
a

2a <
σ2
2

2 + b, then the predator populations will be extinct
with probability one while the prey persists, which is lim

t→∞
y(t) = 0 a .s.

and lim
t→∞

1
t

∫ t
0
x (s)ds =

k

(
r−σ2

1
2

)
r .

Proof.

(i). According to Itô’s formula, we have

d lnx =

[
r
(
1− x

k

)
− βy

a+ x2
− 1

2
σ2
1

]
dt+ σ1dB1(t).

Integrating the equation from 0 to t,

lnx(t)− lnx (0) =

(
r − 1

2
σ2
1

)
t− r

k

∫ t

0

x (s)ds−β
∫ t

0

y (s)

a+x2(s)
ds+σ1B1(t)

≤
(
r − 1

2
σ2
1

)
t+ σ1B1(t),

then dividing both sides by t, and taking the superior limit on both sides,
noting that lim

t→∞
B1(t)
t = 0 a .s., we have lim sup

t→∞

ln x(t)
t ≤ r − 1

2σ
2
1 < 0 a .s.,

which implies lim
t→∞

x(t) = 0 a .s. Thus for any ε ∈
(
0,

aσ2

2

2µβ

)
, there exists

a T = T (ε) > 0, so that when t > T , there is x(t) < ε. Then when t > T ,
for y(t), we have

dy =

[
µβxy

a+ x2
− by − ηxy

]
dt+ σ2ydB2(t)

≤µβεy
a

dt+ σ2ydB2(t).

Applying Itô’s formula to ln y, it then follows that

d ln y =

(
µβx

a+ x2
− b− ηx− 1

2
σ2
2

)
dt+ σ2dB2(t),

≤
(
µβε

a
−
σ2

2

2

)
dt+ σ2dB2(t),

integrating the above inequality from 0 to t, and then dividing both sides by t,
one may arrive at

ln y

t
≤ ln y (0)

t
+

(
µβε

a
−
σ2

2

2

)
+
σ2B2(t)

t
.

Now, taking the superior limit on both sides of the inequality and noting that
is lim
t→∞

B2(t)
t = 0, thus lim sup

t→∞

ln y(t)
t ≤ µβε

a − σ2

2

2 < 0 which means lim
t→∞

y(t) =

0 a .s..
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(ii). Applying Itô’s formula to ln y, it then follows that

d ln y =

(
µβxy

a+ x2
− b− ηx− 1

2
σ2
2

)
dt+ σ2dB2(t),

integrating the above equation from 0 to t, and then dividing both sides by t,
one may arrives at

ln y(t)− ln y (0)

t
=−

(
b+

1

2
σ2
2

)
+
µβ

∫ t
0

x(s)
a+x2(s)ds
t

−
η
∫ t
0
x (s)ds
t

+
σ2B2(t)

t

≤−
(
b+

1

2
σ2
2

)
+
µβ

∫ t
0

x(s)
a+x2(s)ds
t

+
σ2B2(t)

t

≤−
(
b+

1

2
σ2
2

)
+

√
aµβ

2a
+
σ2B2(t)

t
.

Now, taking the superior limit on both sides of the inequality and noting
that lim

t→∞
B2(t)
t = 0, thus lim

t→∞
sup ln y(t)

t ≤ −
(
b+ 1

2σ
2
2

)
+ µβ

√
a
a < 0 a .s. that

is lim
t→∞

y(t) = 0 a .s. Therefore, for any ε ∈
(
0, aβ

(
r − σ2

1

2

))
, there exists

a T = T (ε) > 0 such that when t > T , we have y(t) < ε. It then follows from
the first equation of x(t) in system (1.2) that when t > T ,

dx =

[
rx

(
1− x

k

)
− βxy

a+ x2

]
dt+ σ1xdB1(t)

≥
[
rx

(
1− x

k

)
− εβx

a

]
dt+ σ1xdB1(t)

=

[
x

(
r − εβ

a
− rx

k

)]
dt+ σ1xdB1(t).

It then follows from Lemma 3.3 and stochastic comparison theorem that

lim inf
t→∞

1

t

∫ t

0

x (s)ds ≥
k
(
r − βε

a − σ2
1

2

)
r

,

on the right-hand side of the above inequality, let ε→ 0, we have

lim inf
t→∞

1

t

∫ t

0

x (s)ds ≥
k
(
r − σ2

1

2

)
r

.

On the other hand, note that

dx =

[
rx

(
1− x

k

)
− βxy

a+ x2

]
dt+ σ1xdB1(t)

≤
[
rx

(
1− x

k

)]
dt+ σ1xdB1(t).

By Lemma 3.3, it follows that

lim sup
t→∞

1

t

∫ t

0

x (s)ds ≤
k
(
r − σ2

1

2

)
r

.
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Hence, we have

lim
t→∞

1

t

∫ t

0

x (s)ds =
k
(
r − σ2

1

2

)
r

.

6. Numerical simulations
In this section, we mainly illustrate the effects of noise intensity on the model
system (1.1). Applying the Milstein method [23] yields the discrete equation as
follows:

xk+1 = xk + [rxk(1−
xk
k
)− βxkyk

a+ x2k
]△t+ σ1xk

√
△tξ1,k +

σ2
1

2
xk(ξ

2
1,k − 1)△t,

yk+1 = yk + [
µβxkyk
a+ x2k

− byk − ηxkyk]△t+ σ2yk
√
△tξ2,k +

σ2
2

2
yk(ξ

2
2,k − 1)△t,

where time step △t > 0, ξi,k (i = 1, 2 and k = 1, 2, · · · , n) are two independent
Gaussian random variables, and obey the normal distribution with mean 0 and
variance 1.

Choosing initial value (x0, y0) = (0.45, 0.45), △t = 0.001, k = 0.8 [19], r =
0.05, β = 0.6, a = 0.8, µ = 0.8, b = 0.24, η = 0.01.

Assumed to be disturbed by a small amount of white noise. The solution of a
stochastic system (1.2) oscillates up and down around the equilibrium point of its
deterministic system, and is persistent by Figure 1. In Figure 2, we change the

Figure 1. the paths of the populations x(t) and y(t) with different values of σ1 = 0.01, σ2 = 0.01.

parameters σ1 = 0.9. This means the condition of r < σ2
1

2 in Theorem 5.1 are
satisfied, the curves of the population x(t) of the prey and y(t) of the predator
tend to zero.

Choose σ1 = 0.1, σ2 = 1.2, then Theorem 5.1 holds because of r > σ2
1

2 , µβ
√
a

2a <
σ2
2

2 + b. According to Theorem 5.1, the predator dies out while the prey persists.
This can be verified by Figure 3.

Now we choose σ1 = 0.8, σ2 = 1.1, the population of the prey and predator
become extinct by Theorem 5.1. This conclusion can be verified by the curves of
Figure 4. It is clear from these figures that changing the parameters σ1, σ2 leads
to a range of dynamical behaviors.
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Figure 2. the paths of the populations x(t) and y(t) with σ1 = 0.9, σ2 = 0.01.

Figure 3. the paths of the populations x(t) and y(t) with σ1 = 0.1, σ2 = 1.2.

Figure 4. the paths of the populations x(t) and y(t) with σ1 = 0.8, σ2 = 1.1.

As we known, the anti-predation behavior of the prey does not directly affect the
prey population, but only affects the growth of the predator population [2] which
can illustrated by Figure 5.

Next, we choose a lager value of η = 0.8, this results in the equilibrium point E1

of system (1.1) not being present. So, we discuss the point (k, 0). As the Fig-
ure 6 show, stable population size, stable regions in stable states and amplitude of
predator oscillations are affected to some extent.

Now, we choose lager value of σ1 = 0.1, σ2 = 0.3, the predator dies out while
the prey persists from Theorem 5.1. Figure 7 indicates that the solution of the
stochastic system vibrates up and down around the solution of its deterministic
system.
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Figure 5. the paths of the populations x(t) and y(t) with σ1 = 0.01, σ2 = 0.01, η = 0.01.

Figure 6. the paths of the populations x(t) and y(t) with η = 0.8, σ1 = 0.01, σ2 = 0.01.

Figure 7. the paths of the populations x(t) and y(t) with η = 0.8, σ1 = 0.1, σ2 = 0.3.
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