THE NUMBER OF LIMIT CYCLES FROM ELLIPTIC HAMILTONIAN VECTOR FIELDS BY HIGHER ORDER MELNIKOV FUNCTIONS

Xia Liu

Abstract In this paper, the perturbed Hamiltonian system $dH = \epsilon F_4 + \epsilon^2 F_3 + \epsilon^3 F_2 + \epsilon^4 F_1$, with F_i the vector valued homogeneous polynomials of degree *i*. The Hamiltonian function is $H = y^2/2 + U(X)$, where *U* is a univariate polynomial of degree four without symmetry. By computing higher order Melnikov functions, the upper bounds for the number of limit cycles that bifurcate from dH = 0 are deserved.

Keywords Melnikov functions, bifurcation, limit cycles, generators.

MSC(2010) 34C07, 34C23.

1. Introduction

On the number of limit cycles bifurcated from the double homoclinic loop there are many results, see [10, 11, 18, 20, 21] for example. Some new results on upper bound of the number of limit cycles bifurcated from the period annuluses and Hopf bifurcation and Poincare bifurcation are given, one can see [12, 16, 23].

By using the method of computing the higher order Melnikov functions of some perturbed systems developed in [4, 13], the number of limit cycles bifurcated from the period orbits is considered, see [1-3, 5-8, 15, 17, 19, 22]. In general, the system takes the form

$$\begin{cases} \dot{x} = H_y + \epsilon f(x, y, \epsilon), \\ \dot{y} = -H_x + \epsilon g(x, y, \epsilon) \end{cases}$$

Gavrilov and Iliev [7] studied the perturbed Hamiltonian planar vector field X_{ϵ} ,

$$X_{\epsilon} : \begin{cases} \dot{x} = H_y + \epsilon f(x, y), \\ \dot{y} = -H_x + \epsilon g(x, y), \end{cases}$$
(1.1)

with

$$H = \frac{1}{2}y^2 + U(x), \ U(x) = \frac{1}{2}x^2 - \frac{2}{3}x^3 + \frac{a}{4}x^4, \quad \left(a \neq 0, \frac{8}{9}\right)$$
(1.2)

is a univariate polynomial of degree four without symmetry and arbitrary cubic polynomial perturbations f and g.

Email: liuxiapost@163.com(X. Liu)

College of Science, Zhongyuan University of Technology, Zhengzhou, 450007,

China

Then, Asheghi and Babavi [1] considered the perturbed system

$$Y_{1\epsilon} : \begin{cases} \dot{x} = H_y + \sum_{i=1}^{3} \epsilon^i f_i(x, y), \\ \dot{y} = -H_x + \sum_{i=1}^{3} \epsilon^i g_i(x, y), \end{cases}$$
(1.3)

and

$$Y_{2\epsilon}:\begin{cases} \dot{x} = H_y + \sum_{i=1}^{3} \epsilon^i f_{4-i}(x, y), \\ \dot{y} = -H_x + \sum_{i=1}^{3} \epsilon^i g_{4-i}(x, y), \end{cases}$$
(1.4)

where H is the same as (1.2),

$$\begin{aligned} f_1 &= f_{10}x + f_{01}y, \quad g_1 &= g_{10}x + g_{01}y, \\ f_2 &= f_{20}x^2 + f_{11}xy + f_{02}y^2, \quad g_2 &= g_{20}x^2 + g_{11}xy + g_{02}y^2, \\ f_3 &= f_{30}x^3 + f_{21}x^2y + f_{12}xy^2 + f_{03}y^3, \quad g_3 &= g_{30}x^3 + g_{21}x^2y + g_{12}xy^2 + g_{03}y^3. \end{aligned}$$

Through computing higher order Melnikov functions until the presentation of reversible perturbations. The upper bounds for the number of limit cycles bifurcated from the periodic orbits of dH = 0 are found.

Motivated by the above references, we consider the following perturbed system

$$Z_{\epsilon}:\begin{cases} \dot{x} = H_{y} + \sum_{i=1}^{4} \epsilon^{i} f_{5-i}(x, y), \\ \dot{y} = -H_{x} + \sum_{i=1}^{4} \epsilon^{i} g_{5-i}(x, y), \end{cases}$$
(1.5)

where

$$f_4 = f_{40}x^4 + f_{31}x^3y + f_{22}x^2y^2 + f_{13}xy^3 + f_{04}y^4,$$

$$g_4 = g_{40}x^4 + g_{31}x^3y + g_{22}x^2y^2 + g_{13}xy^3 + g_{04}y^4$$

and f_i , $g_i(i = 1, 2, 3)$ are the same as that in system (1.3), H is the same as (1.2). Parametrizing the displacement map $d(h, \epsilon)$ by the energy level H = h and the small parameter ϵ , one can obtain

$$d(h,\epsilon) = \epsilon M_1(h) + \epsilon^2 M_2(h) + \dots + \epsilon^k M_k(h) + \dots, \qquad (1.6)$$

where $M_k(h)$ is called the k-th order Melnikov function.

The system Z_{ϵ} can be written as the Pffafian form

$$dH = \epsilon \omega_1 + \epsilon^2 \omega_2 + \epsilon^3 \omega_3 + \epsilon^4 \omega_4 + \cdots,$$

with

$$\omega_i = g_i(x, y) dx - f_i(x, y) dy, i = 1, 2, 3, 4, \omega_i = 0, i = 5, 6, 7, \cdots$$

We will use the algorithm of Iliev [14] to calculate higher order Melnikov functions.

Theorem 1.1 ([14]). For $k \geq 2$ and if $M_1(h) = M_2(h) = \cdots = M_{k-1}(h) = 0$, then there exist polynomials $q_1, q_2, \cdots, q_{k-1}$ and $Q_1, Q_2, \cdots, Q_{k-1}$ such that $\Omega_1 = dQ_1 + q_1 dH, \cdots, \Omega_{k-1} = dQ_{k-1} + q_{k-1} dH$ and

$$M_k(h) = \oint_{\delta(h)} \Omega_k, \qquad (1.7)$$

where $\Omega_1 = \omega_1, \ \Omega_l = \omega_l + \sum_{i+j=l} q_i \omega_j, \ 2 \le l \le k.$

Define

$$J_k(h) = \oint_{\delta(h)} x^k y dx, J_{k,j}(h) = \oint_{\delta(h)} x^k y^j dx, k \ge 0, j \ge 2.$$

Corollary 1.1 ([1]). Let $\alpha(h)$, $\beta(h)$ and $\gamma(h)$ be real or complex polynomials in h. The Abelian integral

$$J(h) = \alpha(h)J_0(h) + \beta(h)J_1(h) + \gamma(h)J_2(h),$$

is identically zero if and only if $\alpha(h)$, $\beta(h)$ and $\gamma(h)$ are identically zero.

Figure 1. (a) $\frac{8}{9} < a < 1$, eight-loop case, (b) a < 0, saddle-loop case.

Theorem 1.2 ([7]). Let the coefficients $\alpha_k(h)$, $\beta_k(h)$, $\gamma_k(h)$ in the expression of $M_k(h)$ be polynomials of degree n with real coefficients. Then $M_k(h)$ has in the respective interval \sum at most 3n + 2 zeros in the interior eight-loop case, at most 4n + 4 in the exterior eight-loop case and at most 4n + 3 zeros in the saddle-loop case, see Fig. 1.

The main results in [1] showed that $\alpha_k(h)$, $\beta_k(h)$, $\gamma_k(h)$ are polynomials in h of degree at most one. However, For system (1.5), we deduce that $\alpha_k(h)$, $\beta_k(h)$, $\gamma_k(h)$ are polynomials in h of degree at most three, and there are more limit cycles for this system.

The organization of the paper is as follows: In section 2, some useful results are given as preliminaries; In section 3, the higher order Melnikov functions are computed; In section 4, the main results are given; In section 5, a brief discussion is shown.

2. Preliminaries

Lemma 2.1 ([1]). By using the Hamiltonnian function, it is easy to obtain

$$\oint_{\delta(h)} P(x)y^{2k}dx = 0, k = 0, 1, 2, 3, \cdots,$$

$$\oint_{\delta(h)} P(x)y^{2k+1}dy = 0, k = 0, 1, 2, 3, \cdots,$$

$$\frac{k+6}{6}aJ_{k+3} = \frac{4k+18}{9}J_{k+2} - \frac{k+3}{3}J_{k+1} + \frac{2k}{3}hJ_{k-1}, k = 0, 1, 2, \cdots.$$
(2.1)

Define

$$\delta_{kj} = x^k y^j dy, \quad \omega_{kj} = x^k y^j dx.$$

Lemma 2.2. For j is even, $x^k y^j dx$ can be written as dQ + qdH, $x^k y^j dx$ as $dQ + qdx + \bar{q}dH$ for j is odd, where Q, q and \bar{q} are some polynomials of x and y. Concretely, we have the following formulas,

$$\begin{split} x^{k}y^{2}dx =& d\left(\frac{2Hx^{k+1}}{k+1} - \frac{x^{k+3}}{k+3} + \frac{4x^{k+4}}{3(k+4)} - \frac{ax^{k+5}}{2(k+5)}\right) - \frac{2x^{k+1}dH}{k+1}, \\ x^{k}y^{4}dx =& d\left(\frac{a^{2}x^{k+9}}{4(k+9)} - \frac{4ax^{k+8}}{3(k+8)} + \frac{x^{k+7}}{k+7}\left(a + \frac{16}{9}\right) - \frac{8x^{k+6}}{3(k+6)} + \frac{x^{k+5}}{k+5} \right. \\ & + \left(-\frac{2ax^{k+5}}{k+5} + \frac{16x^{k+4}}{3(k+4)} - \frac{4x^{k+3}}{k+3}\right)H + \frac{4x^{k+1}H^{2}}{k+1}\right) \\ & + \left(\frac{2ax^{k+5}}{k+5} - \frac{16x^{k+4}}{3(k+4)} + \frac{4x^{k+3}}{k+3} - \frac{8Hx^{k+1}}{k+1}\right)dH, \\ x^{k}y^{6}dx =& \left[-\frac{24H^{2}x^{k+1}}{k+1} + \frac{12aHx^{k+5}}{k+5} - \frac{32Hx^{k+4}}{k+4} + \frac{24Hx^{k+3}}{k+3} - \frac{3a^{2}x^{k+9}}{2(k+9)} \right. \\ & + \frac{8ax^{k+8}}{k+8} - \frac{x^{k+7}}{k+7}\left(6a + \frac{32}{3}\right) + 16\frac{x^{k+6}}{k+6} - 6\frac{x^{k+5}}{k+5}\right)dH + dQ_{k,6}(x,H), \\ x^{k}y^{8}dx =& \left[-64\frac{x^{k+1}H^{3}}{k+1} - 3\left(\frac{128x^{k+4}}{3(k+7)} - \frac{32x^{k+3}}{k+3} - \frac{16x^{k+5}a}{k+5}\right)H^{2} - 2\left(\frac{6a^{2}x^{k+9}}{k+9} - \frac{32ax^{k+8}}{k+8} + \frac{8(9a+16)x^{k+7}}{3(k+7)} - \frac{64x^{k+6}}{k+6} + \frac{24x^{k+5}}{k+5}\right)H - \frac{8x^{k+12}a^{2}}{k+12} \\ & + \frac{x^{k+13}a^{3}}{k+13} + \frac{2x^{k+11}a(9a+32)}{3(k+11)} - \frac{32x^{k+10}(27a+16)}{27k+270} + \frac{4x^{k+9}(9a+32)}{3(k+9)} \\ & - \frac{32x^{k+8}}{k+8} + \frac{8x^{k+7}}{k+7}\right]dH + dQ_{k,8}(x,H), \\ x^{k}y^{j}dy =& \left(\frac{y^{j+1}x^{k}}{j+1}\right) - \frac{k}{j+1}x^{k-1}y^{j+1}dx. \end{split}$$

For j odd and $k \geq 3$,

$$x^{k}y^{j}dx = \frac{1}{a} \left[\left(\frac{(k-3)y^{j+2}x^{k-4}}{j+2} + x^{k-2}y^{j}(2x-1) \right) dx + x^{k-3}y^{j}dH - d\left(\frac{x^{k-3}y^{j+2}}{j+2} \right) \right]$$

1242

$$\implies \omega_{k-4,j+2} = \frac{j+2}{k-3} \left[y^j \left(ax^k - 2x^{k-1} + x^{k-2} \right) dx - x^{k-3} y^j dH + d\left(\frac{x^{k-3} y^{j+2}}{j+2} \right) \right].$$

Moreover,

$$J_{i-4,j+2} = \frac{\left(aJ_{i,j} + J_{i-2,j} - 2J_{i-1,j}\right)\left(j+2\right)}{i-3}.$$
(2.2)

Proof. For j even, by substituting $y^2 = 2H - x^2 + \frac{4}{3}x^3 - \frac{1}{2}ax^4$ into $x^k y^j dx$, and using the integral by parts, we can compute the expressions of $x^k y^j dx$.

$$\begin{split} x^{k}y^{j}dy &= x^{k}d\left(\frac{y^{j+1}}{j+1}\right) = d\left(\frac{x^{k}y^{j+1}}{j+1}\right) - \frac{k}{j+1}x^{k-1}y^{j+1}dx, \\ x^{k}y^{j}dx \\ &= x^{k-3}y^{j}d\left(\frac{x^{4}}{4}\right) = \frac{1}{a}x^{k-3}y^{j}d\left(H - \frac{1}{2}y^{2} - \frac{1}{2}x^{2} + \frac{2}{3}x^{3}\right) \\ &= \frac{1}{a}x^{k-3}y^{j}\left(dH - ydy + x(2x-1)dx\right) \\ &= \frac{1}{a}\left[x^{k-3}y^{j}dH - x^{k-3}d\left(\frac{y^{j+2}}{j+2}\right) + x^{k-2}y^{j}(2x-1)dx\right] \\ &= \frac{1}{a}\left[x^{k-3}y^{j}dH - d\left(\frac{x^{k-3}y^{j+2}}{j+2}\right) + \frac{y^{j+2}}{j+2}(k-3)x^{k-4}dx + x^{k-2}y^{j}(2x-1)dx\right]. \end{split}$$

Solving $x^k y^j dx$ about $x^{k-4} y^{j+2} dx$, we can calculate the formula of $\omega_{k-4,j+2}$. By integrating it on the interval $\delta(h)$, (2.2) is obtained. The proof is completed.

Furthermore, by the third equation of (2.1) and (2.2), we have the following recursion formulas.

Lemma 2.3.

$$\begin{split} J_{3} &= \frac{2J_{2} - J_{1}}{a}, J_{4} = -\frac{(24a - 88)J_{2}}{21a^{2}} - \frac{44J_{1}}{21a^{2}} + \frac{4hJ_{0}}{7a}, \\ J_{5} &= \frac{26hJ_{0}}{21a^{2}} + \frac{(252ha^{2} + 315a - 1144)J_{1}}{252a^{3}} - \frac{(627a - 1144)J_{2}}{126a^{3}}, \\ J_{6} &= \left(\frac{4h}{3a} + \frac{32}{21a^{2}} - \frac{3146}{189a^{3}} + \frac{11440}{567a^{4}}\right)J_{2} + \left(\frac{20h}{9a^{2}} + \frac{39}{7a^{3}} - \frac{5720}{567a^{4}}\right)J_{1} \\ &+ \left(\frac{520}{189a^{3}} - \frac{16}{21a^{2}}\right)hJ_{0}, \\ J_{7} &= \left(\frac{56h}{9a^{2}} + \frac{1313}{126a^{3}} - \frac{28600}{567a^{4}} + \frac{77792}{1701a^{5}}\right)J_{2} + \left(\left(\frac{136}{27a^{3}} - \frac{3}{a^{2}}\right)h - \frac{7}{4a^{3}} + \frac{1196}{63a^{4}} \\ &- \frac{38896}{1701a^{5}}\right)J_{1} + \left(\frac{3536}{567a^{4}} - \frac{218}{63a^{3}}\right)hJ_{0}, \\ J_{8} &= \left(\left(\frac{45632}{2079a^{3}} - \frac{928}{231a^{2}}\right)h - \frac{512}{231a^{3}} + \frac{33410}{693a^{4}} - \frac{35360}{243a^{5}} + \frac{537472}{5103a^{6}}\right)J_{2} \\ &+ \left(\left(\frac{10336}{891a^{4}} - \frac{9668}{693a^{3}}\right)h - \frac{2803}{231a^{4}} + \frac{364208}{6237a^{5}} - \frac{268736}{5103a^{6}}\right)J_{1} \\ &+ \left(\frac{80h}{77a^{2}} + \frac{256}{231a^{3}} - \frac{8296}{693a^{4}} + \frac{268736}{18711a^{5}}\right)hJ_{0}, \end{split}$$

$$\begin{split} J_9 &= \left(\left(\frac{432680}{6237a^4} - \frac{19861}{693a^3} \right) h - \frac{57665}{2772a^4} + \frac{130390}{693a^5} - \frac{2082704}{5103a^6} + \frac{537472}{2187a^7} \right) J_2 \\ &+ \left(\frac{2h^2}{a^2} + \left(\frac{7}{a^3} - \frac{102260}{2079a^4} + \frac{72352}{2673a^5} \right) h + \frac{21}{8a^4} - \frac{39355}{693a^5} + \frac{3191240}{18711a^6} \\ &- \frac{268736}{2187a^7} \right) J_1 + \left(\frac{1132h}{21a^3} + \frac{5389}{693a^4} - \frac{25840}{693a^5} + \frac{268736}{8019a^6} \right) h J_0, \\ J_{10} &= \left(\frac{112h^2}{39a^2} + \left(\frac{9472}{1001a^3} - \frac{3708820}{27027a^4} + \frac{50377120}{243243a^5} \right) h + \frac{10240}{3003a^4} - \frac{3330895}{27027a^5} \right) \\ &+ \frac{12493640}{18711a^6} - \frac{2459968}{2187a^7} + \frac{3603648}{6561a^8} \right) J_2 + \left(\frac{1112h^2}{117a^3} \right) \\ &+ \left(\frac{450232}{9009a^4} - \frac{12616720}{81081a^5} + \frac{6656384}{104247a^6} \right) h + \frac{149311}{6006a^5} - \frac{18146140}{81081a^6} + \frac{1292000}{2673a^7} \right) \\ &- \frac{1901824}{6561a^8} \right) J_1 + \left(\left(\frac{472592}{27027a^4} - \frac{9728}{3003a^3} \right) h - \frac{5120}{3003a^4} + \frac{993548}{27027a^5} - \frac{3824320}{34749a^6} \right) \\ &+ \frac{1901824}{24057a^7} \right) h J_0, \\ J_{11} &= \left(\frac{2464h^2}{117a^3} + \left(\frac{823285}{9009a^4} - \frac{44678720}{81081a^5} + \frac{436117184}{729729a^6} \right) h + \frac{490195}{12012a^5} - \frac{47765240}{81081a^6} \right) \\ &+ \frac{5963872}{2673a^7} - \frac{140734976}{45927a^8} + \frac{190182400}{137781a^9} \right) J_2 + \left(\left(\frac{11984}{351a^4} - \frac{10}{a^3} \right) h^2 + \left(\frac{239916}{1001a^6} \right) \\ &- \frac{15}{a^4} - \frac{37726400}{81081a^6} + \frac{47545600}{312741a^7} \right) h - \frac{33}{3a^5} + \frac{148580}{1001a^6} - \frac{9276560}{11583a^7} + \frac{32331008}{34749a^7} \\ &+ \frac{95091200}{505197a^8} \right) h J_0, \\ J_{0,3} = 3(aJ_4 + J_2 - 2J_3), \quad J_{1,3} = \frac{3}{2}(aJ_5 + J_3 - 2J_4), \quad J_{2,3} = aJ_6 + J_4 - 2J_5, \\ J_{3,3} = \frac{3}{4}(aJ_7 + J_5 - 2J_6), \quad J_{4,3} = \frac{3}{5}(aJ_8 + J_6 - 2J_7), \quad J_{5,3} = \frac{1}{2}(aJ_9 + J_7 - 2J_8), \\ J_{0,5} = 5(aJ_{4,3} + J_{2,3} - 2J_{3,3}), \quad J_{1,5} = \frac{5}{2}(aJ_{5,3} + J_{3,3} - 2J_{4,3}), \\ J_{2,5} = \frac{5}{3}(aJ_{6,3} + J_{4,3} - 2J_{5,3}), \end{cases}$$

$$J_{3,5} = \frac{5}{4}(aJ_{7,3} + J_{5,3} - 2J_{6,3}), \quad J_{4,5} = aJ_{8,3} + J_{6,3} - 2J_{7,3}.$$

3. Calculation of the coefficients $M_k(h)$

3.1. Calculation of $M_1(h)$

Lemma 3.1. (i) The function $M_1(h)$ has the form

$$M_1(h) = \alpha_1 J_0 + \beta_1 J_1 + \gamma_1 J_2, \qquad (3.1)$$

where α_1 and β_1 are all polynomials of degree one of h, γ_1 is constant coefficient. (ii) If $M_1(h) = 0$, then there exists $\Omega_1 = q_1 dH + dQ_1$, where Q_1 and q_1 are polynomials.

Proof.

$$\Omega_1 = \omega_1 = g_1 dx - f_1 dy = \sum_{i+j=4} (g_{ij} x^i y^j dx - f_{ij} x^i y^j dy).$$

By using the formulas (2.1) and Lemma 2.2, we have

$$M_{1}(h) = \oint_{\delta(h)} \Omega_{1} = a \left(f_{22} + \frac{3}{2}g_{13} \right) J_{5} - (2f_{22} + 3g_{13}) J_{4} + \left(f_{22} + 4f_{40} + \frac{3}{2}g_{13} + g_{31} \right) J_{3}.$$

Together with Lemma 2.3, $M_1(h)$ has the form (3.1), with

$$\begin{aligned} \alpha_1 &= \frac{h\left(2f_{22} + 3g_{13}\right)}{21a}, \\ \beta_1 &= \frac{1}{2}\left(2f_{22} + 3g_{13}\right)h + \frac{\left(63a - 88\right)\left(2f_{22} + 3g_{13}\right)}{504a^2} - \frac{4f_{40} + g_{31}}{a}, \\ \gamma_1 &= \frac{2\left(4f_{40} + g_{31}\right)}{a} - \frac{\left(87a - 88\right)\left(2f_{22} + 3g_{13}\right)}{252a^2}. \end{aligned}$$

Then $M_1(h) \equiv 0 \iff$

$$g_{13} = -\frac{2}{3}f_{22}, g_{31} = -4f_{40}, \qquad (3.2)$$

at the same time, $\Omega_1 = q_1 dH + dQ_1$ with

$$\begin{split} q_1 &= -\frac{1}{30} x \left(f_{13} + 4g_{04} \right) \left(-3ax^4 + 10x^3 - 10x^2 + 60H \right) - \frac{1}{3} x^3 \left(2g_{22} + 3f_{31} \right), \\ dQ_1 &= x \left(f_{13} + 4g_{04} \right) H^2 + x^3 \left(\frac{1}{3} \left(2g_{22} + 3f_{31} \right) - \frac{1}{30} \left(f_{13} + 4g_{04} \right) \left(3ax^2 - 10x + 10 \right) \right) H \\ &+ \frac{x^8 a \left(f_{13} + 4g_{04} \right) \left(ax - 6 \right)}{144} + \left(\frac{\left(f_{13} + 4g_{04} \right) \left(9a + 16 \right)}{252} - \frac{1}{28} a \left(2g_{22} + 3f_{31} \right) \right) x^7 \\ &- \frac{1}{9} \left(f_{13} - 3f_{31} + 4g_{04} - 2g_{22} \right) x^6 + \frac{1}{20} \left(4g_{40} + f_{13} - 6f_{31} + 4g_{04} - 4g_{22} \right) x^5 \\ &- yx^4 f_{40} - \frac{1}{2} x^3 y^2 f_{31} - \frac{1}{3} x^2 y^3 f_{22} - \frac{1}{4} xy^4 f_{13} - \frac{1}{5} y^5 f_{04}. \end{split}$$

3.2. Calculation of $M_2(h)$

Lemma 3.2. (i) If $M_1(h) \equiv 0$, then the function $M_2(h)$ has the form

$$M_2(h) = \alpha_2 J_0 + \beta_2 J_1 + \gamma_2 J_2, \qquad (3.3)$$

where β_2 and γ_2 are all polynomials of degree two of h, α_2 is polynomials of degree three of h.

(ii) If $M_1(h) = M_2(h) = 0$, then there exists $\Omega_2 = q_2 dH + dQ_2$ under the **Case**(**a**) or **Case**(**b**), where Q_2 and q_2 are all polynomials forms.

Proof. By Theorem 1.1 and following the formulas (2.1) and Lemma 2.2,

$$\begin{split} M_2(h) &= \oint_{\delta(h)} \Omega_2 = \oint_{\delta(h)} (\omega_2 + q_1 \omega_1) \\ &= \frac{(f_{13} + 4g_{04})}{90} \left[(45aJ_8 - 180hJ_4 - 120J_7) f_{40} + (15aJ_{6,3} - 60hJ_{2,3} - 40J_{5,3}) f_{22} \right. \\ &+ \left(9aJ_{4,5} - 36hJ_{0,5} - 24J_{3,5} \right) f_{04} \right] + \left(g_{21} + 3f_{30} \right) J_2 + \frac{1}{3} J_{0,3} \left(3g_{03} + f_{12} \right) \\ &+ \frac{1}{15} \left(f_{13} + 4g_{04} - 2g_{22} - 3f_{31} \right) \left(15J_6f_{40} + 3J_{2,5}f_{04} + 5J_{4,3}f_{22} \right) . \end{split}$$

By using the formulas in Lemma 2.3, $M_2(h)$ has the form (3.3), with

$$\begin{split} \alpha_2 &= -\frac{64f_{04}\left(f_{13}+4g_{04}\right)}{55}h^3 + \left[\left(3f_{31}+2g_{22}\right)\left(\left(\frac{320}{3003a}-\frac{4244}{27027a^2}\right)f_{04}-\frac{16f_{22}}{77a}\right)\right. \\ &+ \left(\left(\frac{38}{231a}-\frac{5854}{27027a^2}\right)f_{22} + \left(-\frac{3578}{45045a}+\frac{20968}{81081a^2}-\frac{179912}{1216215a^3}\right)f_{04}-\frac{48f_{40}}{77a}\right)\right. \\ &\times \left(f_{13}+4g_{04}\right)\right]h^2 + \left[\left(3f_{31}+2g_{22}\right)\right. \\ &\times \left(\frac{\left(144a-520\right)f_{40}}{189a^3} + \left(\frac{16}{1001a^2}-\frac{131}{819a^3}+\frac{65552}{243243a^4}-\frac{20672}{168399a^5}\right)f_{04}\right. \\ &+ \left(-\frac{16}{231a^2}+\frac{956}{2079a^3}-\frac{7072}{18711a^4}\right)f_{22}\right) + \frac{4}{7}f_{12} + \frac{12g_{03}}{7} + \left(f_{13}+4g_{04}\right)\right. \\ &\times \left(\left(\frac{956}{693a^3}-\frac{16}{77a^2}-\frac{7072}{6237a^4}\right)f_{40} + \left(\frac{16}{693a^2}-\frac{2456}{11583a^3}+\frac{21562}{66339a^4}-\frac{880624}{657561a^5}\right)f_{22}\right. \\ &+ \left(\frac{14579}{162162a^3}-\frac{304}{45045a^2}-\frac{23354}{104247a^4}+\frac{48008}{242243a^5}-\frac{5672384}{98513415a^6}\right)f_{04}\right)\right]h, \\ \beta_2 &= \left[\left(f_{13}+4g_{04}\right)\left(\left(\frac{1064}{1755a}-\frac{6724}{57915a^2}\right)f_{04}-\frac{215f_{22}}{1287a}\right)-\frac{14f_{04}\left(3f_{31}+2g_{22}\right)}{117a}\right]h^2 \\ &+ \left[\left(4g_{04}+f_{13}\right)\left(\frac{\left(7146a-1904\right)f_{40}}{2079a^3}+\left(\frac{258121}{1243243a^3}-\frac{106151}{108108a^2}-\frac{26344}{243243a^4}\right)f_{22}\right. \\ &+ \left(\frac{61753}{108108a^2}-\frac{1551428}{1216215a^3}+\frac{7702852}{10945935a^4}-\frac{305440}{6567561a^5}\right)f_{04}\right) \\ &+ \left(\left(\frac{794}{693a^2}-\frac{272}{891a^3}\right)f_{22} + \left(-\frac{668}{1001a^2}+\frac{64660}{81081a^3}-\frac{10336}{104247a^4}\right)f_{04}-\frac{20f_{40}}{9a^2}\right) \\ &\times \left(3f_{31}+2g_{22}\right)\right]h + \left(\left(\frac{283}{154a^3}-\frac{12896}{2079a^4}+\frac{7072}{1701a^5}\right)f_{40}\right) \\ &+ \left(\frac{18869}{138996a^4}-\frac{2000}{9009a^3}-\frac{2905366}{2189187a^5}+\frac{9686840}{19702683a^6}\right)f_{22} \\ &+ \left(\frac{18569}{240240a^3}-\frac{2479033}{4864860a^4}+\frac{10996207}{10945935a^5}-\frac{25672928}{2587805a^6}+\frac{62396128}{295540245a^7}\right)f_{04}\right) \\ &\times \left(4g_{04}+f_{13}\right) + \left(\left(\frac{5720}{576a}-\frac{39}{7a^3}\right)f_{40} + \left(\frac{283}{422a^3}-\frac{12896}{6237a^4}+\frac{7072}{5103a^5}\right)f_{22} \\ &+ \left(\frac{22277}{27027a^4}-\frac{3935}{24024a^3}-\frac{2312}{2079a^5}+\frac{20672}{45927a^6}\right)f_{04}\right)\left(2g_{22}+3f_{31}\right)-\frac{2(f_{12}+3g_{03}}{21a}, \\ \end{array}\right)$$

The number of limit cycles from Elliptic Hamiltonian vector fields. . .

$$\begin{split} \gamma_2 &= \left[\left(\left(\frac{4538}{6435} - \frac{18152}{19305a} \right) f_{04} - \frac{2}{3} f_{22} \right) (f_{13} + 4g_{04}) - \frac{16f_{04} (3f_{31} + 2g_{22})}{39} \right] h^2 \\ &+ \left[\left(\left(\frac{24}{77a} - \frac{3952}{693a^2} \right) f_{40} + \left(\frac{28541}{12474a^2} - \frac{256}{693a} - \frac{418928}{243243a^3} \right) f_{22} \right. \\ &+ \left(\frac{7688}{45045a} - \frac{10240}{6237a^2} + \frac{9630122}{3648645a^3} - \frac{961792}{841995a^4} \right) f_{04} \right) (4g_{04} + f_{13}) \\ &+ \left(\left(\frac{124}{231a} - \frac{3952}{2079a^2} \right) f_{22} + \left(\frac{42649}{27027a^2} - \frac{724}{3003a} - \frac{309896}{243243a^3} \right) f_{04} - \frac{4f_{40}}{3a} \right) \\ &\times (3f_{31} + 2g_{22}) \right] h + \left[\left(\frac{32}{77a^2} - \frac{697}{99a^3} + \frac{8320}{567a^4} - \frac{14144}{1701a^5} \right) f_{40} \right. \\ &+ \left(\frac{71464}{81081a^3} - \frac{32}{693a^2} - \frac{4066493}{1459458a^4} + \frac{2741920}{938223a^5} - \frac{19373680}{19702683a^6} \right) f_{22} \\ &+ \left(\frac{608}{45045a^2} - \frac{98593}{294840a^3} + \frac{10706659}{7297290a^4} - \frac{78939398}{32837805a^5} + \frac{11025488}{6567561a^6} \right. \\ &- \frac{124792256}{295540245a^7} \right) f_{04} \right] (4g_{04} + f_{13}) + \left[\left(\frac{3146}{189a^3} - \frac{32}{21a^2} - \frac{11440}{567a^4} \right) f_{40} \right. \\ &+ \left(\frac{32}{231a^2} - \frac{637}{297a^3} + \frac{8320}{1701a^4} - \frac{14144}{5103a^5} \right) f_{22} \\ &+ \left(\frac{23333}{36036a^3} - \frac{32}{1001a^2} - \frac{40930}{18711a^4} + \frac{37808}{15309a^5} - \frac{41344}{45927a^6} \right) f_{04} \right] (2g_{22} + 3f_{31}) \\ &+ g_{21} + 3f_{30} - \frac{(3a - 4)(3g_{03} + f_{12})}{21a} . \\ M_2(h) &\equiv 0 \iff Case(a) \text{ or } Case(b), \text{ with} \\ \mathbf{Case}(\mathbf{a}) : \quad f_{04} = f_{22} = f_{40} = 0, g_{04} = -\frac{1}{4}f_{13}, g_{03} = -\frac{1}{3}f_{12}, g_{21} = -3f_{30}; \\ &\Longrightarrow q_2 = -\frac{1}{4}f_{13} (3f_{31} + 2g_{22}) \left(\frac{1}{4}ax^8 - \frac{16x^7}{21} + \frac{2}{3}x^6 - 2Hx^4 \right) \\ &+ \frac{1}{9} (3f_{31} + 2g_{22}) (3f_{31} + g_{22}) x^6 - (f_{21} + g_{12}) x^2, \\ \mathbf{Case}(\mathbf{b}) : \quad f_{04} = f_{22} = 0, g_{04} = -\frac{1}{4}f_{13}, g_{22} = -\frac{3}{2}f_{31}, g_{03} = -\frac{1}{3}f_{12}, g_{21} = -3f_{30} \\ &\Rightarrow q_2 = -x^2 (f_{21} + g_{12}). \end{aligned}$$

Note that by computation, we find that the conditions of higher order Melnikov functions of **Case** (b) are similar as them of **Case**(a), we will not show them in this paper.

3.3. Calculation of $M_3(h)$

Lemma 3.3. (i) If $M_1(h) = M_2(h) \equiv 0$, then the function $M_3(h)$ has the form

$$M_3(h) = \alpha_3 J_0 + \beta_3 J_1 + \gamma_3 J_2, \qquad (3.4)$$

where α_3 , β_3 and γ_3 are all polynomials of degree one of h. (ii) If $M_1(h) = M_2(h) = M_3(h) \equiv 0$, then $\Omega_3 = q_3 dH + dQ_3$, where Q_3 and q_3 are polynomials.

Proof. Case (a): It follows from (2.1) and Lemma 2.2,

$$\begin{split} M_{3}(h) &= \oint_{\delta(h)} \Omega_{3} = \oint_{\delta(h)} \omega_{3} + q_{1}\omega_{2} + q_{2}\omega_{1} \\ &= \oint_{\delta(h)} \left[-\frac{1}{3} \left(3f_{31} + 2g_{22} \right) y^{3} f_{12} x^{3} + \left(-\left(3f_{31} + 2g_{22} \right) f_{30} x^{5} + \left(2f_{20} + g_{11} \right) x \right) y \right] dx \\ &= -\frac{1}{3} \left(3f_{31} + 2g_{22} \right) \left(3J_{5} f_{30} + J_{3,3} f_{12} \right) + \left(2f_{20} + g_{11} \right) J_{1}. \end{split}$$

By Lemma 2.3, $M_3(h)$ has the form (3.4), where

$$\begin{split} \alpha_3 &= \frac{(3f_{31} + 2g_{22})h\left(99f_{12}a - 702f_{30}a - 104f_{12}\right)}{567a^3},\\ \beta_3 &= \left[\frac{(3f_{31} + 2g_{22})\left(27af_{12} - 54af_{30} - 8f_{12}\right)}{54a^2}\right]h\\ &+ \left[\left(\frac{286}{63a^3} - \frac{5}{4a^2}\right)f_{30} + \left(\frac{1}{8a^2} - \frac{52}{63a^3} + \frac{1144}{1701a^4}\right)f_{12}\right]\left(2g_{22} + 3f_{31}\right) + 2f_{20} + g_{11},\\ \gamma_3 &= \left[\left(\frac{209}{42a^2} - \frac{572}{63a^3}\right)f_{30} + \left(\frac{1144}{567a^3} - \frac{151}{252a^2} - \frac{2288}{1701a^4}\right)f_{12} - \frac{8f_{12}h}{9a}\right]\left(3f_{31} + 2g_{22}\right). \end{split}$$

By $M_3(h) = 0$, we can deduce that the following two cases: **Case (a1):**

$$g_{22} = -\frac{3}{2}f_{31}, g_{11} = -2f_{20}$$

$$\Longrightarrow q_3 = -\frac{1}{2}f_{13}\left(f_{21} + g_{12}\right)\left(\frac{2}{7}ax^7 - \frac{8x^6}{9} + \frac{4}{5}x^5 - \frac{8}{3}Hx^3\right) + \frac{2}{5}f_{31}\left(f_{21} + g_{12}\right)x^5$$

$$-2\left(\frac{1}{2}f_{11} + g_{02}\right)x,$$

Case (a2):

$$\begin{split} f_{12} &= f_{30} = 0, g_{11} = -2f_{20} \\ \Longrightarrow q_3 = -\frac{7f_{13}^2 \left(3f_{31} + 2g_{22}\right)x^5y^4}{40} + \left[-\frac{1}{30}f_{13}^2 \left(3f_{31} + 2g_{22}\right)x^8 \left(4ax - 9\right)\right. \\ &- \frac{f_{13} \left(3f_{31} + 2g_{22}\right)\left(225f_{31} + 72f_{13} + 100g_{22}\right)x^7}{420} \\ &+ \left(\frac{2}{3} \left(f_{21} + g_{12}\right)f_{13} + \frac{1}{3}f_{03} \left(3f_{31} + 2g_{22}\right)\right)x^3\right]y^2 - \frac{x^{12}f_{13}^2 \left(3f_{31} + 2g_{22}\right)}{2340} \\ &\times \left(48ax - 221\right) - \left[\left(\frac{64a}{1155} - \frac{6}{55}\right)f_{13} + \frac{197af_{31}}{1232} + \frac{101ag_{22}}{1848}\right]f_{13}\left(3f_{31} + 2g_{22}\right)x^{11} \\ &+ \frac{f_{13}\left(3f_{31} + 2g_{22}\right)\left(75f_{31} + 27f_{13} + 26g_{22}\right)x^{10}}{210} - \left[\frac{4g_{22}^3}{81} + \left(\frac{4}{9}f_{31} + \frac{1}{7}f_{13}\right)g_{22}^2 \\ &- \left(\frac{2}{3}f_{21} - \frac{11f_{31}^2}{9} - \frac{13f_{31}f_{13}}{21} - \frac{1}{9}f_{13}g_{40} - \frac{8f_{13}^2}{10}\right)g_{22} + f_{31}^3 + \frac{17f_{13}f_{31}^2}{28} \\ &+ \left(\frac{1}{6}f_{13}g_{40} + \frac{4f_{13}^2}{35} - 2f_{21} - g_{12}\right)f_{31}\right]x^9 + \frac{2}{21}a\left(2f_{13}f_{21} + 2f_{13}g_{12}\right)g_{12} + \frac{1}{2}g_{13}g_{12} + \frac{1}{2}g_{13}g_{12}\right)g_{12} + \frac{1}{2}g_{13}g_{12} + \frac{1}{2}g_{13}g_{13} + \frac{1}{2}g_{13}g_{1$$

$$+3f_{03}f_{31} + 2f_{03}g_{22}x^{7} - \left(\left(\frac{2}{3}f_{31} + \frac{4}{9}g_{22}\right)f_{03} + \frac{4}{9}(f_{21} + g_{12})f_{13}\right)x^{6} \\ + \left(\frac{2}{5}(f_{03} + g_{12})f_{31} + \left(\frac{4f_{03}}{15} + \frac{2}{5}f_{221} + \frac{2}{3}g_{12}\right)g_{122} + \left(\frac{4f_{21}}{15} + \frac{4g_{12}}{15}\right)f_{13}\right)x^{5} \\ - (f_{11} + 2g_{02})x$$

by using Lemma 2.2 and substituting $H = \frac{1}{2}y^2 + \frac{1}{2}x^2 - \frac{2}{3}x^3 + \frac{1}{4}ax^4$ into q_2 of **Case(a)**.

3.4. Calculation of $M_4(h)$

Lemma 3.4. (i) If $M_1(h) = M_2(h) = M_3(h) \equiv 0$, then the function $M_4(h)$ has the form

$$M_4(h) = \alpha_4 J_0 + \beta_4 J_1 + \gamma_4 J_2, \qquad (3.5)$$

where α_4 , β_4 and γ_4 are all polynomials of degree one of h. (ii) If $M_1(h) = M_2(h) = M_3(h) = M_4(h) \equiv 0$, then $\Omega_4 = q_4 dH + dQ_4$, where Q_4 and q_4 are polynomials.

Proof. Case (a1):

$$\begin{split} M_4(h) &= \oint_{\delta(h)} \Omega_4 \\ &= \oint_{\delta(h)} \left[-\frac{2}{3} f_{12} \left(f_{21} + g_{12} \right) x^2 y^3 + \left(f_{10} + g_{01} - 2 f_{30} \left(f_{21} + g_{12} \right) x^4 \right) y \right] dx \\ &= -\frac{2}{3} f_{12} \left(f_{21} + g_{12} \right) J_{2,3} + \left(f_{10} + g_{01} \right) J_0 - 2 f_{30} \left(f_{21} + g_{12} \right) J_4. \end{split}$$

It follows from the formulas in Lemma 2.3, $M_4(h)$ has the form (3.5) with

$$\begin{aligned} \alpha_4 &= \left(\left(\frac{8}{63a} - \frac{104}{567a^2}\right) f_{12} - \frac{8f_{30}}{7a} \right) \left(f_{21} + g_{12}\right) h + f_{10} + g_{01}, \\ \beta_4 &= \left[-\frac{4hf_{12}}{27a} + \left(\frac{1144}{1701a^3} - \frac{41}{63a^2}\right) f_{12} + \frac{88f_{30}}{21a^2} \right] \left(f_{21} + g_{12}\right), \\ \gamma_4 &= \left[-\frac{8hf_{12}}{9} + \left(\frac{16}{7a} - \frac{176}{21a^2}\right) f_{30} + \left(\frac{946}{567a^2} - \frac{16}{63a} - \frac{2288}{1701a^3}\right) f_{12} \right] \left(f_{21} + g_{12}\right), \end{aligned}$$

 $M_4(h) = 0$ implies **Case(a11):**

$$g_{01} = -f_{10}, g_{12} = -f_{21}$$

$$\Longrightarrow q_4 = (f_{11} + 2g_{02}) x^2 \left[\left(H - \frac{1}{12}ax^4 + \frac{4x^3}{15} - \frac{1}{4}x^2 \right) f_{13} + \frac{1}{4}f_{31}x^2 \right];$$

Case(a12):

$$g_{01} = -f_{10}, f_{30} = f_{12} = 0$$
$$\implies q_4 = -\frac{5f_{13}^2 (g_{12} + f_{21}) x^4 y^4}{12}$$

$$+ \left[-\frac{x^{6}f_{13}\left(g_{12} + f_{21}\right)\left(63\,ax^{2}f_{13} - 144\,xf_{13} + 84\,f_{13} + 56\,f_{31}\right)}{168} \right] \\ + \left(f_{03}\left(g_{12} + f_{21}\right) + \frac{1}{2}f_{113}\left(f_{311} + 2\,g_{302}\right) \right)x^{2} \right]y^{2} \\ - \frac{x^{11}f_{13}^{2}a\left(g_{12} + f_{21}\right)\left(77ax - 360\right)}{1232} \\ - \frac{f_{13}\left(g_{12} + f_{21}\right)\left(49af_{13} + 56af_{31} + 96f_{13}\right)x^{10}}{280} \\ + \frac{2f_{13}\left(g_{12} + f_{21}\right)\left(13\,f_{13} + 14f_{31}\right)x^{9}}{63} \\ - \frac{1}{24}\left(3f_{13}^{2} + 6f_{13}f_{31} + 4f_{13}g_{40} + 6f_{31}^{2}\right)\left(g_{12} + f_{21}\right)x^{8} \\ + \frac{1}{30}x^{5}\left(f_{13}\left(f_{11} + 2g_{02}\right) + 2f_{03}\left(g_{12} + f_{21}\right)\left(5ax - 12\right) \\ + \left(\frac{1}{4}\left(f_{11} + 2g_{02}\right)\left(f_{13} + f_{31}\right) + \frac{1}{2}\left(g_{12} + f_{21}\right)\left(2\,f_{21} + f_{03} + g_{12}\right)\right)x^{4}.$$

Case (a2):

$$\begin{split} M_4(h) &= \oint_{\delta(h)} \Omega_4 \\ &= \oint_{\delta(h)} \left(-\frac{1}{3} f_{02} \left(3f_{31} + 2g_{22} \right) x^2 y^3 + \left(f_{10} + g_{01} - f_{20} \left(3f_{31} + 2g_{22} \right) x^4 \right) y \right) dx \\ &= -\frac{1}{3} f_{02} \left(3f_{31} + 2g_{22} \right) J_{2,3} + \left(f_{10} + g_{01} \right) J_0 - f_{20} \left(3f_{31} + 2g_{22} \right) J_4, \end{split}$$

 $M_4(h)$ has the form (3.5) with

$$\begin{aligned} \alpha_4 &= \left[\left(\frac{4}{63a} - \frac{52}{567a^2} \right) f_{02} - \frac{4f_{20}}{7a} \right] \left(3f_{31} + 2g_{22} \right) h + f_{10} + g_{01}, \\ \beta_4 &= \left[-\frac{2f_{02}h}{27a} + \left(\frac{572}{1701a^3} - \frac{41}{126a^2} \right) f_{02} + \frac{44f_{20}}{21a^2} \right] \left(3f_{31} + 2g_{22} \right), \\ \gamma_4 &= \left[-\frac{4}{9}f_{02}h + \left(\frac{8}{7a} - \frac{88}{21a^2} \right) f_{20} + \left(-\frac{8}{63a} + \frac{473}{567a^2} - \frac{1144}{1701a^3} \right) f_{02} \right] \left(3f_{31} + 2g_{22} \right). \end{aligned}$$

Following $M_4(h) = 0$, we have $g_{01} = -f_{10}, g_{22} = -\frac{3}{2}f_{31}$, we can compute that q_4 is the same as **Case(a12)** or $g_{01} = -f_{10}, f_{02} = f_{20} = 0$, since the expression of q_4 is very long, we will not consider it in the following.

3.5. Calculation of $M_5(h)$

Lemma 3.5. (i) If $M_1(h) = M_2(h) = M_3(h) = M_4(h) \equiv 0$, then the function $M_5(h)$ has the form

$$M_5(h) = \alpha_5 J_0 + \beta_5 J_1 + \gamma_5 J_2, \tag{3.6}$$

where α_5 , β_5 are all polynomials of degree one of h, γ_5 is constant. (ii) If $M_1(h) = \cdots = M_5(h) \equiv 0$, then $\Omega_5 = q_5 dH + dQ_5$, where Q_5 and q_5 are polynomials.

Proof. Case(a11):

$$M_{5}(h) = \oint_{\delta(h)} \Omega_{5} = \oint_{\delta(h)} -\frac{1}{3} \left(f_{11} + 2g_{02} \right) \left(3y f_{30} x^{3} + y^{3} f_{12} x \right) dx$$
$$= -\frac{1}{3} \left(f_{11} + 2g_{02} \right) \left(3f_{30} J_{3} + f_{12} J_{1,3} \right),$$

which implies $M_5(h)$ has the form (3.6), and

$$\begin{aligned} \alpha_5 &= -\frac{\left(f_{11} + 2g_{02}\right)hf_{12}}{21a}, \\ \beta_5 &= \left(-\frac{1}{2}f_{12}h + \left(\frac{11}{63a^2} - \frac{1}{8a}\right)f_{12} + \frac{f_{30}}{a}\right)\left(f_{11} + 2g_{02}\right), \\ \gamma_5 &= \left(\left(\frac{29}{84a} - \frac{22}{63a^2}\right)f_{12} - 2\frac{f_{30}}{a}\right)\left(f_{11} + 2g_{02}\right). \end{aligned}$$

 $M_5 = 0 \Longrightarrow$ Case(a11-1): $g_{02} = -\frac{1}{2}f_{11} \Longrightarrow q_5 = 0$, Case(a11-2):

$$\begin{split} f_{212} &= f_{230} = 0 \Longrightarrow \\ q_5 &= x \left(2g_{02} + f_{11} \right) \left[-\frac{1}{4} x^2 y^4 f_{13}^2 + \left(\left(\frac{2}{3} x^5 - \frac{2}{7} a x^6 - \frac{2}{5} x^4 \right) f_{13}^2 - \frac{1}{10} x^4 f_{13} f_{31} + f_{03} \right) y^2 \\ &\quad - \frac{2a x^9 f_{13}^2 \left(30a x - 143 \right)}{1155} - \left(\left(\frac{16a}{105} + \frac{16}{27} \right) f_{13}^2 + \frac{2}{15} a f_{13} f_{131} \right) x^8 \\ &\quad + \frac{1}{30} f_{13} \left(11 f_{13} + 9 f_{31} \right) x^7 - \left(\frac{4 f_{13}^2}{35} + \left(\frac{6 f_{131}}{35} + \frac{1}{7} g_{40} \right) f_{13} + \frac{1}{7} f_{31}^2 \right) x^6 \\ &\quad + \frac{1}{5} x^3 f_{03} \left(2a x - 5 \right) + \frac{1}{3} \left(2 f_{03} + f_{21} \right) x^2 + \frac{8 f_{13}^2}{27} \right]. \end{split}$$

Case(a12):

$$M_{5}(h) = \oint_{\delta(h)} \Omega_{5} = (f_{21} + g_{12}) \oint_{\delta(h)} \left(x^{4} f_{20} + x^{2} y^{2} f_{02} \right) dy + 2y f_{20} x^{3} dx$$
$$= -2(f_{21} + g_{12}) \left(\frac{1}{3} J_{1,3} f_{02} + f_{20} J_{3} \right) = \alpha_{5} J_{0} + \beta_{5} J_{1} + \gamma_{5} J_{2},$$

where

$$\alpha_{5} = -\frac{2hf_{02}}{21a}(f_{21} + g_{12}), \quad \beta_{5} = \left[-hf_{02} + \left(\frac{22}{63a^{2}} - \frac{1}{4a}\right)f_{02} + \frac{2f_{20}}{a}\right](f_{21} + g_{12}),$$

$$\gamma_{5} = \left[\left(\frac{29}{42a} - \frac{44}{63a^{2}}\right)f_{02} - \frac{4f_{20}}{a}\right](f_{21} + g_{12}),$$

Clearly,

$$M_5(h) = 0 \Longrightarrow \mathbf{Case}(\mathbf{a12} - \mathbf{1}) : f_{02} = f_{20} = 0,$$

(since the expression of q_5 is too long, we will not show it here) or $g_{12} = -f_{21}$, this case is the same as **Case**(a11 - 2).

3.6. Calculation of $M_6(h)$ and $M_7(h)$

Case (a11-2):

$$M_6(h) = \oint_{\delta(h)} \Omega_6 = -\frac{1}{3} \left(f_{11} + 2 g_{02} \right) \left(3 f_{20} J_2 + f_{02} J_{0,3} \right) = \alpha_6 J_0 + \beta_6 J_1 + \gamma_6 J_2,$$

with

$$\begin{aligned} \alpha_6 &= -\frac{4}{7} \left(f_{11} + 2 g_{02} \right) h f_{02}, \quad \beta_6 &= \frac{2 \left(f_{11} + 2 g_{02} \right) f_{02}}{21 a}, \\ \gamma_6 &= \frac{\left(f_{11} + 2 g_{02} \right) \left(3 f_{02} a - 21 f_{20} a - 4 f_{02} \right)}{21 a}. \end{aligned}$$

 $M_6 = 0$ implies $g_{02} = -\frac{1}{2}f_{11} \Longrightarrow q_6 = 0$, system (1.5) is integrable or $f_{02} = f_{20} = 0$, since q_6 is too long, we will not consider it in the rest part. **Case (a12-1):**

$$M_6(h) = \oint \Omega_6 = -2 f_{10} \left(f_{21} + g_{12} \right) J_2,$$

by $M_6(h) = 0$ we have or $f_{10} = 0$ (the expression of q_7 is too long, we do not consider this case) or $g_{12} = -f_{21} \Longrightarrow M_7(h) = -f_{10} (f_{11} + 2 g_{02}) J_1$, if $g_{02} = -f_{11}$ we deduce that $q_7 = 0$ which implies that system (1.5) is integrable.

4. Main results

Theorem 4.1. System (1.5) is integrable if $g_{13} = g_{31} = f_{04} = f_{22} = f_{40} = 0$, $g_{04} = -\frac{1}{4}f_{13}, g_{03} = -\frac{1}{3}f_{12}, g_{21} = -3f_{30}, g_{22} = -\frac{3}{2}f_{31}, g_{11} = -2f_{20}, g_{01} = -f_{10}, g_{12} = -f_{21}, g_{02} = -\frac{1}{2}f_{11}.$

Proof. It follows from the expressions of $M_i(h)$, $i = 1, 2, \dots, 7$ in Section 3.1-3.6, we achieve this conclusion. On the other hand, under these condition, system (1.5) becomes

$$Z_{\epsilon}: \begin{cases} \dot{x} = y + \epsilon^{4} \left(f_{10}x + f_{0,1}y\right) + \epsilon^{3} \left(f_{20}x^{2} + f_{11}xy + f_{02}y^{2}\right) \\ + \epsilon^{2} \left(f_{30}x^{3} + f_{21}x^{2}y + f_{12}xy^{2} + f_{03}y^{3}\right) + \epsilon \left(f_{31}x^{3}y + f_{13}xy^{3}\right) \\ := F_{1}, \\ \dot{y} = -x + 2x^{2} - ax^{3} + \epsilon^{4} \left(xg_{10} - yf_{10}\right) + \epsilon^{3} \left(g_{20}x^{2} - 2xyf_{20} - \frac{1}{2}y^{2}f_{11}\right) \\ + \epsilon^{2} \left(g_{30}x^{3} - 3x^{2}yf_{30} - xy^{2}f_{21} - \frac{1}{3}y^{3}f_{12}\right) + \epsilon \left(g_{40}x^{4} - \frac{3}{2}x^{2}y^{2}f_{31} - \frac{1}{4}y^{4}f_{13}\right) \\ := G_{1}, \end{cases}$$

since $\frac{\partial G_1}{\partial y} + \frac{\partial F_1}{\partial x} = 0$, we can obtain the results.

Theorem 4.2. (i) At most 11 limit cycles can bifurcate from each one of the annuli inside the loop in the interior eight-loop case.

(ii) At most 16 limit cycles can bifurcate from the annulus outside the loop in the exterior eight-loop case.

(iii) At most 15 limit cycles can bifurcate from the period annulus in the saddle-loop case.

Proof. By Theorem 1.2 and the expressions of $M_i(h)$, $i = 1, 2, \dots, 7$ in Section (3.1)-(3.6), one can see that under the condition (3.2),

$$M_2(h) = \alpha_2 J_0 + \beta_2 J_1 + \gamma_2 J_2,$$

where β_2 and γ_2 are all polynomials of degree two of h, α_2 is polynomials of degree three of h. But for other $M_i(h)$, the coefficients $\alpha_i(h)$, $\beta_i(h)$, $\gamma_i(h)$ in the expression of $M_i(h)$ be polynomials of degree at most one, hence, we can obtain this conclusion.

5. Disscussion

For system (1.5), we can see that $M_2(h)$ can bifurcate the maximum number limit cycles, by computating the higher order Melnikov functions, we can obtain the conditions that the system becomes integral. However, if f_i and g_i are homogeneous polynomials of degree i, i = 1, 2, 3, 4, there are less number limit cycles, we do not show them in this paper. For cubic perturbation, the authors in [1,7] obtained the same number limit cycles.

References

- R. Asheghi and A. Nabavi, Higher order Melnikov functions for studying limit cycles of some perturbed elliptic Hamiltonian vector fields, Qual. Theory Dyn. Syst., 2019, 18, 289–313.
- [2] R. Asheghi and A. Nabavi, The third order melnikov function of a cubic integrable system under quadratic perturbations, Chaos, Solitons and Fractals, 2020, 139, 110291.
- [3] A. Buica, A. Gasull and J. Yang, The third order Melnikov function of a quadratic center under quadratic perturbations, J. Math. Anal. Appl., 2007, 331, 443–454.
- [4] J. P. Françoise, Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergodic Theory Dynam. Systems, 1996, 16, 87–96.
- [5] J. P. Françoise, H. He and D. Xiao, The number of limit cycles bifurcating from the period annulus of quasi-homogeneous Hamiltonian systems at any order, Journal of Differential Equations, 2021, 276, 318–341.
- [6] M. Gentes, Center conditions and limit cycles for the perturbation of an elliptic sector, Bull. Sci. Math., 2009, 133, 597–643.
- [7] L. Gavrilova and I. D. Iliev, Cubic perturbations of elliptic Hamiltonian vector fields of degree three, J. Differential Equations, 2016, 260, 3963–3990.
- [8] L. Gavrilov, et al., Special cubic perturbations of the Duffing oscillator $x'' = x x^3$ near the eight-Loop, Mediterr. J. Math., 2021, 18, 229.
- [9] B. B. Hamed, et al., Cubic perturbations of symmetric elliptic Hamiltonians of degree four in a complex domain, Bull. Sci. math., 2019, 157, 102796.
- [10] M. Han and J. Chen, The number of limit cycles bifurcating from a pair of homoclinic loops, Sci. China, 2000, 30A, 401–414.

- [11] M. Han and C. Fan, On the number and distributions of limit cycles in a quartic system, Chin. Ann. Math., 2005, 26A, 825–834.
- [12] M. Han and J. Yang, The maximum number of zeros of functions with parameters and application to differential equations, Journal of Nonlinear Modeling and Analysis, 2021, 3, 13–34.
- [13] I. D. Iliev, On second order bifurcations of limit cycles, J. London Math. Soc., 1998, 58, 353–366.
- [14] I. D. Iliev, The number of limit cycles due to polynomial perturbations of the harmonic oscillator, Math. Proc. Cambridge Philos. Soc., 1999, 127, 317–322.
- [15] I. D. Iliev, On the limit cycles available from polynomial perturbations of the Bogdanov-Takens Hamiltonian, Israel Journal of Mathematics, 2000, 115, 269– 284.
- [16] S. Liu, X. Jin and Y. Xiong, The number of limit cycles in a class of piecewise polynomial systems, Journal of Nonlinear Modeling and Analysis, 2022, 4, 352– 370.
- [17] X. Sun and P. Yu, Cyclicity of periodic annulus and Hopf cyclicity in perturbing a hyper-elliptic Hamiltonian system with a degenerate heteroclinic loop, J. Differential Equations, 2020, 269, 9224–9253.
- [18] Y. Tian and M. Han, Hopf and homoclinic bifurcations for near-Hamiltonian systems, J. Differential Equations, 2017, 262, 3214–3234.
- [19] G. Tigan, Using Melnikov functions of any order for studying limit cycles, J. Math. Anal. Appl., 2017, 448, 409–420.
- [20] J. Yang and M. Han, Limit cycles near a double homoclinic loop, Ann. of Diff. Eqs., 2007, 23, 536–545.
- [21] J. Yang, M. Han and V. G. Romanovski, *Limit cycle bifurcations of some Lienard systems*, J. Math. Anal. Appl., 2010, 366, 242–255.
- [22] P. Yang and J. Yu, The number of limit cycles from a cubic center by the Melnikov function of any order, J. Differential Equations, 2020, 268, 1463– 1494.
- [23] Y. Zhao and Z. Zhang, Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians, J. Differential Equations, 1999, 155, 73–88.