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SUMUDU TRANSFORM FOR TIME
FRACTIONAL PHYSICAL MODELS AN
ANALYTICAL ASPECT
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Abstract Present paper deals with the development of a novel and reliable
algorithm to solve various time-fractional differential prototypes regarding en-
gineering and physics. The developed algorithm is named as Sumudu Iterative
Transform Regime. In present work, proposed regime is applied to tackle dif-
ferent models of importance. The fetched results have shown the efficiency,
efficacy and reliability of the developed scheme. In most of the cases, closed
form of the solutions is provided. Moreover, profiles of solutions are pro-
vided to show the behavior of the fetched results. Error analysis of the results
is already notified as well as convergence aspect is also mentioned. On the
basis of the discussed aspects, it can be claimed the Sumudu Iterative Trans-
form Regime is a robust technique to deal with the complex natured PDEs.
Present scheme will surely add importance in the literature. With the aid of
the present regime numerous fractional PDEs and partial-integro differential
equations can be tackled.

Keywords Time-fractional fractional differential models, Sumudu Trans-
form, closed form of solution, error analysis, convergence analysis, 2D and
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1. Introduction

1.1. Fractional Calculus

The calculus notion begun in the 17th century, gradually, it began a reliable and
efficient tool to tackle various phenomena of importance. Moreover, due to demand
of research in this area, researchers and investigators explored some limitations
regarding calculus of integer order related to the phenomena like non-Markovian
processes, memory-based processes, random walk, Brownian motion and many oth-
ers. Soon after the traditional calculus, the calculus of integer order got progress.
Many Pioneers have taken into account the importance of Fractional Calculus and
therefore provided diversified definitions and properties to deal with differential op-
erator and integral operators regarding fractional calculus. There exist numerous
theories and applications of fractional calculus, which can relate to many real-world
problems and many noticeable physical problems. Many researchers have worked
upon different aspects of fractional order and have enriched the literature with the
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updated knowledge. Atagane and Baleanu [4] provided the solution of fractional
order Jaulent-Miodek and Whitham-Broer-Kaup equations using Sumudu trans-
form. Ray [17] provided the analytical approximate solution of Whitham-Broer-
Kaup (WBK) equation, fractional modified Boussinesq equation and fractional-
approximate long wave equation using a novel method. Prakasha et al. [15] gave
the novel approach to deal with Schrodinger-Boussinesq equation using the Mittag-
Leffler kernel. In their paper, -HATM was implemented to deal with the men-
tioned equation. Veeresha et al. [22] provided the analytical-approximated solution
to deal with Lakshmanan-Porsezian-Danial model to deal with the analytical so-
lution of the mentioned equation using q-HATM. q-HATM is treated as a fusion
of Laplace transform and g-Homotopy analysis method. Loyinmi and Akinfe [8]
provided the analytical solution to the Fisher’s reaction-diffusion equation using
the EHTPM (Elzaki Homotopy transform perturbation method). In their paper,
a fusion of Elzaki transform and HPM was implemented to solve the prescribed
equation. Cetinkaya et al. [5] provided the solution of space-time fractional equa-
tion using Shehu-Variational iteration method. Where a hybrid scheme using the
Shehu transform and Variational iteration method was implemented. Akinyemi
and Iyioly [3] provided the analytical solution of (341)-D fractional RD equation
tri molecular models. Shah and Chung [18] gave the analytical solution of fractional
Whitham-Broer-Kaup equation using Elzaki Decomposition method, where a hy-
brid scheme was implemented using Elzaki transform and Adomian Decomposition
Method. Some more noteworthy work in this regard is provided in [12,14,16,20,21].

1.2. Sumudu Transform

Definition of Sumudu Transform. Sumudu transform of a function f(t) is
defined as follows [23]:

1= [ Semnl-ipoe (1.1)

u

Riemann-Liouville Fractional Integral operator. Riemann-Liouville Frac-
tional Integral operator is as follows [9-11, 13]:

U = g [, Foen” (1.2

where, I" is considered as the Gamma function.
Caputo Fractional Derivative. Caputo Fractional Derivative is defined as fol-
lows [9-11,13]:

D%f(t))zfm-am[f(t)]:% / (t—a)ym et fr@)de (13)

I'(m-«

where, m — 1 < a < m.
Sumudu Transform of Caputo derivative. Sumudu transform of Caputo
derivative is defined as follows [13]:

SIDEC( )] = u ™ S[C 0] — 3 u (). (1.4)
r=0

In Table 1, basic properties of Sumudu transform are provided.
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Table 1. Basic properties of Sumudu transform.

f(t) S[F@)]
1 1
t 0
t"=1t/(n—1)! o1
et 1/(1 - ab)
sinat/a 0/(1+ a%6*
cos(at) 1/(1 + a?6?

— — — —

(
sinh(at)/a  0/(1 — a%6?
cosh(at) 1/(1 — a?6?

Linearity property of Sumudu Transform. Let S[u1] = Vi and S[ug] = Va,
where S is considered as the Sumudu transform.

Slarur + asug] = a1 S[ui] + aoSus] = a1 Vi + asVe = a1 S[ug] + aaS[us].  (1.5)

Linearity property of Inverse Sumudu Transform. Let u; = S~![V}] and

Ug = Sil[‘/ﬂ
Sfl[Olel + QQ‘/Q] = alsfl[Vl] + OtQSil[Vrg] = U1 + agUs. (16)

Mittag- Leffler function. Mittag- Lefler function considered for two parameters
was given in [6,7,19].

E,,(n)= - 1.7

22 ( ) —~ F(kM+V) ( )

where, E1 1(n) = exp(n) and Es 1(n?) = cos(n).

Originality of the work. Originality of this paper lies in the development and
implementation of efficient regime to solve complex-natured differential equations
in different dimensions.

Merits of the proposed method. An iterative scheme is developed in the
present research regarding the solution of various fractional equations. The present
scheme is easy to implement and needs no complex programming regarding numer-
ical discretization. Developing the numerical programs for the fractional PDEs is
not an easy task; therefore, developing such iterative schemes is the need of time
to find the approximated-analytical solutions. There are several transforms pro-
vided in the literature but from the calculation aspect some transforms are easy to
implement and some are not. Sumudu transform is notified as one of the easiest
methods to implement integral transform among all existing integral transforms.
Due to importance of fractional equations, in this research, concentration is focused
upon the solution for the same, which retains the novelty of the study. Moreover,
error and convergence analysis are also incorporated in the article.

Limitations of the proposed method. Although, the developed regime is
self-efficient to deal with most of the differential equations, but there exist some
models which demands a lot of calculation, which is time taking by this approach.
This is the only limitation of the proposed scheme.
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Outline of the work. In Section 2, the Iterative Sumudu Transform Method
is implemented upon the non-linear time fractional PDE. Where the generalized
formulae are developed to deal with different examples.

In Section 3, four examples are taken into account to find the analytical-approxi-
mate solution of the various fractional PDEs of importance. 2D and 3D plots are
also provided for the comparison. In Section 4, concluding remarks are provided as
a crux of this research.

2. Implementation of Iterative Sumudu Transform
Method [ISTM]

Non-linear Fractional PDE is defined as follows:

DY [¢(x,1)] = [RIC(x, )] + N[C(x, t)] + ¢(x, )] (2.1)

where, D} is the derivative in Caputo sense. R is considered as the linear operator
and N is considered as the non-linear operator. Applying Sumudu transform:

= SIDY[C(x, 1)]] = S[RIC(2, )] + N[((z,1)] + ¢(=,1)] (2.2)

= u*S[C(z,t)] = Y uTCN(0) = S[R[(z,0)] + N[((w, 6)] + ¢l )] (2.3)

S ] = 3w (0) + SIRIC(, )]+ NI ] + 0, t)] (2.4)
r=0

S S[C(t) = w3 T (0) 4wl [SIRIC, 0] + NG, )] + bl )] (25)
r=0

= (o, t) = 57 u Y umTCT0) + u! [S[R[C(x, )] + N[, )] + éla, )]

r=0
(2.6)
where,
N[C(‘T, t)} - N[Z Cr(xv t)]
r—0
= N[¢(z,0)] = N{¢o(x,t) + Y Go(a, 1)]
r=1

= N[¢(2,0)] = Nl¢o(x, )] + N[Y_ (o, )]

= N 0] = Nieo(w, 0]+ SN Gl = S Gt (27)
and

R[C(xv t)] = Z Cr(aj’ t)
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= R[¢(z,t)] = R[Go(x.t) + > Gola, )]
= R[((x,t)] = RlGo(,0)] + R[Y_ G (w.1)]
00 r r—1
= R[((x.t)] = RlGo(x, 0] + Y _[RQY_ Gl t) = D Gx,0)l.  (2.8)
r=1 ;=0 §=0
Using Equation (2.7) and Equation (2.8) in Equation (2.6):
S Gl t) = 57Ut 3w (0) + S[o(e, )]
k=0 r=0
+ S utSR[Go (1)) + Z R[G, (1)) + N{Go(,1)]
+ZN Zqﬁjxt Zqﬁjxt (2.9)
= Gelw,t) =5 u" Z uTCT(0) + S((, 1))
k=0 r=0
T S WS RIG (w,6) + NGola, 1)
+ZRth +N2gjm Z@xt D). (2.10)
r=1 =0
Comparing terms in Equation (2.10):
5 Z w1 ¢r(0) + u [ (a, ), (2.11)
Gz, 1) =S~ [U“S{R[Co(x,t)] + NCo(z, 1)]}] (2.12)
where, r =1,2,3, ...
Gr (@, t) = ST ! S{R[G ()] + N(Y_ ¢, 1)) — N(z_: Gz, 1)} (2.13)
§=0 §=0
If ¢(x,t) = 0: then
G =57 30w 0)] (214)
r=0
Ci(z,t) = S™HuMS{R[Co(, )] + N{Co (=, 1)]}], (2.15)
where, r =1,2,3,...
Grpa(a,t) = ST U S{R[G (@, )] + N ¢, 1)) — N(Z_: Gz, 1)}, (2.16)

J=0
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3. Applications to Fractional equations

In present section, four examples are elaborated to test the proposed scheme. Closed
form of the solution is tried to be fetched. 2D and 3D plots are also provided in
some cases. In Plot 1, approx. and exact results are provided at ¢ = 0.1,0.2,0.3
and 0.4 for €1 = €3 = €3 =0.1, u = 1, N = 50 regarding Example 3.1. In Table 2,
error analysis and convergence aspects are provided at various time levels regarding
Example 3.1. In Plot 2, approx. and exact results are provided at t = 1,2,3 and
4 for e=es=€3 = 0.1, = 1, N = 50 regarding Example 3.1. In Plot 3, 2D plot
for approx. and exact results are discussed at ¢ = 1,2, where p = 1, v = 0.1 and
N = 30 regarding Example 3.4. In Plot 4, 3D plot for approx. and exact results are
discussed at ¢t = 1,2, where p =1, v = 0.1 and N = 30 regarding Example 3.4. Via
Plot 5 and Plot 6 approx. and exact compatibility of solution profiles is validated
at t = 3 and t = 4 regarding Example 3.4, where mesh, surface and contour plots
are provided. In Table 3, error analysis and convergence aspects are validated at
various time levels for Example 3.4.

Example 3.1. The generalized time-fractional Burgers-Fisher equation is as fol-
lows [2]:

DY [¢(x, )] = e1(¢(w,1))aw — €2(C(2, 1)) (C (1)) + €3¢ (@, 1) — €3(C(w, 1)) (3.1)
I1.C.:

C(su 0) — (3((—63/62)90)7

¢ :L',t) =0,

R[((z,1)] = e1(¢(2,1))wa + €3(C(2, 1)),

N[¢(a, )] = —e2(C(a, 1) (¢, )0 — ea(¢ (. 4) 7,

Gola,t) = S™ u Y~ "~ (((, )" (0)]. (3.2)
r=0

Considering m = 1 in Equation (3.2):

Co(z,t) = Sil[u”uof“C(LO)] = (o(z,t) = S*I[UOC(:E, 0)]
= (o(x,t) = S’_l[uoe(_%/”)ﬂ = (o(x,t) = e(_53/52)m5_1[u0]
¢ (

= (o(z,t) = "9/ 22G71[1] = (y(z,t) = e~/ (3.3)
Ci(x,t) = STHutSR[Co ()] + N[Co(z, 1)]]
where,
R[CO(J:’ t)] = 61((0(557 t))xa: + €3C0($v t)
and

N[Go(a,1)] = —e2(C0)* (Col, 1)) — e3(Col, 1))7F,

(Co(w,t))q = e/ (—e3/ey),

(Co(@, 1))za = 79/ (e3/€2)* = (e3/€2)*Co(, 1),
From Equation (3.4):

Cl(x’t) = S_l[uus{el(CO(xvt))a:m + 63(0(.1‘,t)



Sumudu transform for time fractional. .. 1261

— e2(Co(, 1))’ (Go(, 1)) — €3(Go(x, 1)) P (3.5)
=Ci(x,t) = ST HutS{er(e3/€2)*Co(x, t) + e3(o(x, 1)
— €2(Co(, 1)) (—es/e2)Col, 1) — es(Col, 1)) PHIY] (3.6)
= (x,t) = S [u"S{e1(es/e2)*Co(, 1) + €esCo(, 1) + es(Co(a, ) P
— e3(Co(, 1)) PTVY (3.7)
=i (2, 1) = S7Hu'S{e1(e3/e2)*Co(, 1) + e3Co(,1)}]
=Ci(x,t) = 87 u"S{(e1(ea/e2)? + €3)Co(, 1)}]
=(1(x,t) = (e1(e3/€2)? + €3)S HurS{Co(z,1)}]
=(i(x,1) = (e1(es/e2)” + €3) S ut S[e /)]
=G (2, 1) = (e1(es/ea)” + e3)el /75~ uk S[1]]
=Ci(z,t) = (e1(es/ea)” + €a)e /7S ]
=Ci (2, 1) = (e1(ea/ea)” + eg)e /2 (F(:: )
=Co(x,t) = ST ! S{R[Gi (2, 1)] + N[Co(x, 1) + (2, )] = N[Go(z,1)]}]  (3.8)
where,

R[Gi(2,1)] = €1 (G (@,1)ae + €3G (2, 1) = (e1(es/e2)? + €3)Ci (1),
NiCo(,t) + Ci(x, )] = —€a[Co(@, 1) + Ca(x, )] [Go(w, ) + Ci(, 1))
— e3lCo(@, 1) + Ca (w, 1))
= —(ea + €3)[Co(,t) + Ci (w, 1)) F,
NlGo(z,t)] = —€2 [Co(m,t)}ﬂ[Co($7t)]z — e3[¢o] (@, 1) = 0.
From Equation (3.8):

Ga(w,t) = 8™ u" S{RIC1 (x, )] + NlGo(z, 1) + Ci(x,t)]}] (3.9)
=Ca(x,t) = 57 [u'S{(e1(es/e2)? + €3)Ca (1) — (e2 + €3)(Co(w, 1) + Cu(w, 1))7 Y]
=Co(x,t) = ST u"S{(e1(e3/€2)® + €3)Cu (,1)}]
=Co(,t) = (e1(e3/ea)” + €3) S uS{Ci (2, 1)}]
=Ca(w,t) = (e1(ea/ea)” + €3) S [u' S{(ex(es/e2)” + €5)el /™ /(T(pu+ 1))}]
=Ca(x,t) = (e1(es/e2)’ + e3)(ex(es/e2)” + e3)e /DTS ut S{t# /(T (p+ 1)) }]
=Ca(w,t) = (e1(es/e2)” + €3)%el /DTS ur S {4 /(T (1 + 1))}]
=CGo(n,t) = (e1(e3/e2)* + 63)26(_63/62)z5_1[u“u“]
=Co(,1) = (e1(es/e2)? + e3)%el e/ @) g1y 20]
=Co(z,t) = (e1(e3/€2)? + 63)26(_63/62)t2“/(F(2u +1)). (3.10)

Similarly

Gs(w,1) = (e1(es/e2)” + e3)°el /D3 /(T (3 + 1)) (3.11)
Cm(, 1) = (e1(€3/€2)? + €3)™ el T/ ™1 /(T (my 4 1)) (3.12)

C(m)(m,t) = Co(z,t) + Gz, t) + Gz, t) + Cx,t) + ...
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=" (2, t) = 7S/ 4 (e)(es/e2) + e3)el TS/ DT /(T (1 + 1))
+ (e1(es/e2)” + e3)%e~ 63/52)t3“/(F(3u+1))+~-~
+ (e1(€s/e2)? + e3) el /g (T (myps + 1))

=(" (@, 1) = el7/2) wz e1(es/ea)? +e3)' " /(T(ip + 1))

where, ((z,t) = limg,— oo (" (2, t)

= ((e,t) = lim D7 (e(ea/er)’ +e) H/TEn+D)
=0
= (o, t) = D7 Tim Y (ea(eafea)? + €)' £/(Clip+ 1)
i=0
= ((2,1) = /N (1 (eafea)? + e3)T /(g + 1))
=0
= ((x,t) = /TR [(€1(e3/€2)? + €3)tM]. (3.13)

Considering p = 1 in Equation (3.13),

= ((z,t) = e(_€3/€2)mE1[(61(63/61)2 + €3)t]

o —e3z/€ea)x 2 2
= ((z,t) = el(7e/2)T 1 ((e1€2)/(€2) + e3)t). 3.14
Ci i of Al il and Exact { att=0.1 Compari of i and Exact i att=0.2
3 T T T T T T T T T 3 T T T T T T T T T
¥ Approx. ((x, yatt= 0.1 *  Approx. {(x, thatt=02
251 Exact {(x, that t=0.1 25 Exact {(x, f)att= 02
Z 2 Z 2
15 15
0 01 02 03 04 05 08 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
x x
c ison of i and Exact solutions at t = 0.3 Comparison of Approximated and Exact solutions at t = 0.4
3 3
*  Approx. ((x, att=0.3 #*  Approx. ((x, f)att=04
251 Exact ((x, t)at 1= 0.3 25 Exact ((x, ) att= 04
= o =
X 2t ﬁ**** x 2
S 5 = 5
e
15 o™ 15
S
HoHH
el
1 1
0 01 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 06 07 08 09 1
x x

Figure 1. Approx. and exact results at ¢ = 0.1,0.2,0.3 and 0.4 for ¢; = €3 = €3 = 0.1, p = 1,N = 50
regarding Example 3.1.

Example 3.2. Considered non-homogenous time-fractional backward Klomogorov
equation as follows [2]:

Di¢(z,t) = —a€'Cua + (w0 + 1), + t (3.15)

where,

C:(l',O) =z +1,
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Ci i of i and Exact i att=1 Comparison of d and Exact i att=2
T T T T T T 5 T T T T T T T T T

0 Approx. ((x, fatt=1 ' O Approx. ((x, hatt=
© —Exact ((x, Yatt=2

Exact {(x Yatt=1

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 08 07 08 09 1
X x

C i of { and Exact i att=3 Comparison of i and Exact i att=4
T T T T T T T T T 7 T T T T T T T T T

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X

Figure 2. Approx. and exact results at ¢ = 1,2,3 and 4 for e = ¢ = €3 = 0.1, p =1 ,N = 50
regarding Example 3.1.

Table 2. Error analysis regarding Example 3.1

N t=1 t=2 t=3
Lo Lo Leoo
10 7.86E-14 8.15E-11 4.79E-09
20 1.33E-15 8.88E-16 1.78E-15
30 1.33E-15 1.33E-15 1.78E-15

Converging up to 1071  Converging up to 10715  Converging up to 1071°

¢(xz,t) = xt,
R[¢(z,t)] = —2e"(¢(2,))aw + (2 + 1)(C(2,1))s + at,
N[((z,1)] = 0.

Considering Sumudu transform in Equation (3.15):

SID¢(x, )] = S[=a?e (C(2, 1))z + (x +1)(¢ (2, ))s + at],

o =S u" > uTHC (@, 0) + ut S[e(x, )]]. (3.16)

r=0
Considering m=1 in Equation (3.16):

Co(x,t) = ST [u'u’7#¢(x,0) + u" S[at]]

= (ola,t) = STHQ(,0) + u"Sat]]
= Co(z,t) = S7H(x 4+ 1) + u*S[at]]
= (o, t) = S7H(z + 1) + zutS[t]]
= Co(z,t) = S7H(z + 1) + zury]
= (o, t) = S7H(z + 1) + zur T
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= Colz,t) = (z+1)S7 1) + 28 ulp + 1)]
= Go(z,t) = (x + 1) + a5 ul ]
= Gz, t) = (x+1) +z t"T/(D(p+1)), (3.17)
Gi(@,t) = ST HuMSR[Co(x, 1)] + N[Co(x, )] (3.18)
where,
R[Co(a,t)] = =€ (Co(@,1))aa + (2 + 1) (Co(2,8))aw + (2 + 1)(Co(, 1)), + 2t
=R[Co(z,1)] = (x + D[+ "7 /T (u +2)]

and N[(o(z,t)] = 0 From Equation (3.18):

= Gz, t) = ST u"S (2 + 1)1 + 47 /D(p + 2)]
= G(x,t) = (2 + 1S HulS1 4+ "1 T (1 + 2)]
= G@,) = (o + DS ul 1+ S /D +2))]
= G(2,t) = (2 +1)S™Hull + u )
= (i (z,t) = (x 4+ 1)S ™ uk + w1
= Gu(x,t) = (o + D[S [w'] + S [u 1]
= Ci(a, t) = (2 + D[t"/(T(u + 1)) + /(T (20 +2))), (3.19)
Ga(z,t) = ST W' R[Gi (2, 1)) + NGo(z, ) + Cu(2,t)] = NlCo(z, )],
Gz, t) = S*l[ufiSR[ 1] (3.20)
where,
NGo(x,t) + Cu(x, t)] =0,
R[G] = —a?e (G, 1))aa + (@ + 1) (Gi(2,1))s
where,

G, t) = (x+ D[t*/T(p + 1) + 2471 T(2u + 2)),

(G, 1)e = [t"/(D(p+ 1)) + 21 /(T(2p + 2))],
(Gi(z,t))zz =0,

R[Gi(z,1)] = (x + D[t"/(T(p + 1)) + 2/ (D (2 + 2))).

From Equation (3.20):

Cola,t) = ST HuMS(z + D /T(u+ 1) + 2441 /T (2 + 2)]]
= G(,t) = (¢ + DS S /T(n+ 1) + 2441 /T (20 + 2)]]
= Gz, t) = (z + 1S Hulu! 4 w1
= Co(z,t) = (x + 1)S ™ u + u®# )
= Gz, 1) = (+ D[S~ (W) + 57 ()]
= Co(z,t) = (x 4+ D[E**/T(2u + 1) + 3T /T(3u + 2)]. (3.21)

Similarly,

Glx,t) = (x + D[P /TBu + 1) + t* /T (4p + 2)], (3.22)
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Cm(z,t) = (@ + D)™ /T (mp + 1) + ™1 T (mp + 2)], (3.23)

C(m)(.T,t) = Z Ci(wat)7

¢ (z,t) = Cola, t) + Gz, t) 4 Co(, t) + G, t) + - - + G, 1),
= (M@ t) =[x+ 1) +2t" D+ )] + [z + D[t /T(n+1)
F 2T 2p + 2)]] + [( + D[P /DB + 1) + 4+ /T (4p + 2)]]
o [l DE T (mp+ 1) + D (mp+ 2)]]

= (M, t) = (z+ 1)[§}w JT(ip + 1)+§:t(i+2)”“ JT((i + 2)u+2)]

i=0 =0
+ oth /(D (p+2))
= (M (@, t) = (@ + DD _t*/Tlip+1)+ Y DT+ 2)pu + 2))
=0 1=0

+ [+ 1) = e/ (T(p + 2))
= (" (2, t) = (@ + DD _t*/T(ip+1) + Yt ((i 4+ 2)p + 2)
=0 i=0

+ (z+ Dt T (p+2) — ##T1 T (p + 2),

O (2, t) = —t" T T (u+2) + (z + 1)[§: £ T (i + 1)
1=0

I (1))
=0

C(z,t) = lim ¢ (1),

C(at) = (o + D[ 369 /(0Gp -+ 1)) + tim S H D 0((4 Dp+ 2)
=0 =0
- tqul/F(:u' + 2)a

() = o+ DIEM) + Tim S 4D 1+ 2)] = 6T+ 2),

(3.24)
Considering p = 1 in Equation (3.24):
(z,t) = (x+ D[EL(t") + lim Y O+ 1)1 4 2)] — 171 /T(1 + 2),
n—oo =0

C(x,t) = (z + 1[Ea(t) + lim_ f: t2 T (i + 3)] — t2/T(3). (3.25)
=0
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Example 3.3. Considered the fractional time Klein-Gordon equation as follows [2]:
DY¢ = Cpp — ¢+ 2sinx (3.26)

where,

I
—

x,0) =sinz, '(2,0) = 1,

¢(x,t) = 2sinzx,

R[Q(Qﬁ,t)] = (C(w7t)>zz - C(l‘,t),

N[¢(z, )] =0,

Colz,t) = S~ ut Z u"7HCT(0) + ut S[p(x, t)]]- (3.27)
r=0

Considering m = 2 in Equation (3.27):

Cow,t) = S~ u" ZuH‘cr(m +uS[p(, )] (3.28)
= Co(w,t) = 5~ I[U“UO #¢(0) +ul T (0) + u S[g(, 1)]]
= Co(x,t) = S~ HuMu™"¢(0) +u' ¢ (0) + uS[¢(, t)]]
= Go(x,t) = STHC(0) + uC’(0) + uS{g(x,1)}]
= (o(x,t) = S Hsina + u + uS{p(z,t)}]
= (o(x,t) = S sina + u + u”S{2sinz}]
= (o2, t = S™ sinz + u + 2sinx u”S{1}]
= (o(x,t) = S sinw + u + 2sinx u”]
= (o(z,t) =sinz +t + 2sinz t#/(T(p + 1))
¢1 = 87 u"SRIGo] + NG| (3.29)

where, R[(o] = ((0)za — (o — 2s8inz —4sinzx t*/T'(u+ 1) — ¢ and N[(] = 0.
From Equation (3.29):

Ci(w,t) = ST HutS—2sina — dsina t#/T(u + 1) — 1]

= ((x,t) = S~ Hut—2sinx — 4sinz S(t*/T(u+ 1)) — S(1)]

= (i(2,t) = ST Hut —2sine — 4sina u” — u]

= (i (z,t) = STH—2sinzut — 4sinx v — ut T

= (i(2,t) = —2sinaS™Hu'] — 4sinz ST Hu] — ST u

= (i(a,t) = —2sinat! /T(p+1) —4sinae  t2*/T(2u+ 1) — ' /T(u+2)

Ga(z,t) = ST u'SR[G] + NGo + 1] = N{Goll,

Co(,t) = ST " SRIG] + N[C1]] (3.30)
where,

R[G1] = (C1)ae — 1,

R[¢1] = [2sina t#/T(p + 1) 4 4sinx 2 /T (2u + 1)]
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— [~2sinz t"/T(p + 1) — 4sina 24 /T(2u + 1) — t*1 /T (1 + 2)]
= R[¢1] = 4sinz t"/T(p+ 1) + 8sinx t2#/T(2u + 1) + t" T /T (u + 2),
N[G]=0.

From Equation (3.30):

Gl t) = S~ u" S[R[G:]]]
= Go(2,t) = ST utS[Asinat” /T (u + 1) + 8sin at?* /T (2u + 1) + t*TH /T (u + 2)]]
= Co(x,t) = ST Hut[4sinzS(t" /T (u+ 1)) + 8sinxS(t* /T (2 + 1))
+SE /T (p+2))]]
= Go(a,t) = ST HuM[4sin zut 4 8sinzu + ut ]
= Co(x,t) = S 4sin zu* + 8sin zud 4+ w2t
= Go(a,t) = dsin xS~ u?"] + 8sin xS~ [u®] + S u? ]
= (o(w,t) = dsinat® /T (2u + 1) + 8sinxt® /T (3u + 1) + t*TH/T(2u + 2).
(3.31)
Similarly,
G(x,t) = —8sinat® /T (3 + 1) — 16sin xt* /T (4 + 1) + t3* T /T (3u 4 2),
(3.32)

Cm(zyt) = (=1)™(2)" sinat™" /T (mp + 1)
+ (=1)™2mH  sin at VR T ((m 4+ 1)p + 1) + t™ T (mp + 2) (3.33)

where, m = 2,3,4,5,...

C(m) (2,t) = ZCZ
= (™ (2, 1) = Go(m,t) + G (@, 1) + Gl t) + G, t) + -+ + (2, )
= C(m)(ﬂf, t) =sinx + i(_l)itiu-;-l/r(iu n 2>7

=0
C(z,t) = lim ¢ (x,1)

m—r 00
_ . ip+1
:C(m,t)—yggnoosmx—i—zo Yt T (i + 2)],
((x,t) =sinzx + sint. (3.34)

Example 3.4. Considered generalized 2D time-fractional biological population
model as follows [2]:

D¢ = (2,9, ))zw + (C (2,9, 1))y + (2, 9,8) — (2,9, 1)) (3.35)
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where, 0 < pp < 1.

C(a,y,0) = eV O/,

¢(x,y,t) =0,
RC(z,y. )] = (¢* (2,5, t))aw + (¢, 5,1) )y + C(2,9,1),
N[C(@,y, )] = =7(¢(x,y,1))*,

m—1

Golw,y,t) = S~ u >~ w M (¢(w,y,0) 7 (0) + So(w,y,1)].  (3.36)

r=0
Considered m = 1 in Equation (3.36):
Golz,y,t) =S¢ )+ Sz, y,t)]
=Co(z, 1) C(2,,0)] = Golw,y, 1) = S [eV /D)
(z,y,t) = \/(v/S)(x+y)S—1[1] = Co(z,y,t) = eV (1/8)(z+y) (3.37)
(z,y,t) = S~ u"SR[Go] + N[o]] (3.38)

[¢(2, 9,0
1[(

=(o
=1

where,
R[CO(Z'7 Y, t)] = (Cg(xv Y, t))”£$ + (Cg(l’, Y, t))yy + CO(I7 Y, t)7
C§ — 2V (7/8)(z+y)
((3)e = VOPEI 2 /48],

(D) = € V&/8) (@ +y) 2\/,%]2

R[Go(z,y, )] = (&8 (@, 4, ))ea + (G5 (2, 4,1))yy + o2, 9, 1),

RlCo(z, 4, 8)] = e2VOREH 2, /7782 4 2VOIOE 9, /3 78]% + VOO,
R[G

o(2, 9, 1) + NCo(x,,8)] = eVOOEF),

From Equation (3.38):

Gz, y,t) = S~ HutSeV (/8@ ty))
= (G (z,y,t) = eVO/BE GG = ¢ (x,y,t) = eV /D ETY g1 [yH)

= G(2,y, ) eV OO T (14 1) (3.39)

Gz, y,t) = S ! SR[G (2, y,1)] 4+ N(Co(2,y, 1) + Ci (2,9, 1)) — N[Co(z,y, 1))

Col@,y,t) = ST ! SR[C1 (x,y, )] + N[Gi (=, y, 1)]] (3.40)
where,

R[Cl(x’yvt)] = (<12(337y7t))xa: + (Cf(xvy’t))yy + Cl(x’ y7t)
R[Gi(,y,1)] = [2¢/7/8]e*V OO0 P (1 4 1)
+ [2\/%]262\/(7/8)(w+y)tu/p(ﬂ +1)+ e\/(v/S)(Hy)tu/p(M +1)
and

N[ (o, 0] = 2V ORI T+ 1)
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R[Gi(x,y,0)] + N[Gi(w,y, 1)) = eVO/DEI D (0 1 1)
From Equation (3.40):
Galw,y,t) = S [uwhSeV O/DEFVP T (4 4 1)
= Golw,y,) = VOIS [y g /D + 1))
= Gol@,y,t) = VDG Whyl] = Go(a, y, 1) = eV O/ 5712

= (o = eV OB+ P (9 4 1), (3.41)
Similarly,

ol ,t) = VO T (30 1 1), (3.42)

Cm(z,y,t) = eV (7/8)(x+y)tm“/F(mu +1), (3.43)

¢ (,y,t) = ZQﬂ?%

C(m (1‘ Y, ):CO( z,Y, )+Cl($ Y, )+<2(’l} Y, )+C3( z,Y, )+"'+Cm(z7yvt)7

((z,y,t) = lim Z VO8R4 1),

m— o0

C(z,y,t) = eV O/OEHY) iy Zt”‘/F ip+1),

m—0o0
((z,y,t) = eV OO0 te, (3.44)
Considering p=1 in Equation (3.44),

((z,y,t) = eV O/OETOHL (3.45)

Table 3. Error analysis regarding Example 3.4.

N t=1 t=2 t=3
Lo L L
10 6.11E-07 6.94E-04 4.47E-02
20 1.78E-15 9.59E-13 3.37E-09
30 2.66E-15 5.33E-15 2.13E-14

Converging up to 107! Converging up to 107! Converging up to 104

Convergence Analysis. Convergence of the proposed scheme can be affirmed via
following two lemmas.
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Approximated Solution att = 1 .

Figure 3. 2D plot for Approx. and Exact results at ¢t = 1, 2, where p = 1, v = 0.1 and N = 30
regarding Example 3.4.
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Figure 4. 3D plot for Approx. and Exact results at ¢t = 1, 2, where p = 1, v = 0.1 and N = 30
regarding Example 3.4.

Lemma 3.1 ( [1]). If the integral L [ exp[—L]f(t)dt converges at s = so then the
integral converges for s < sg.

Lemma 3.2 ( [1]). If the integral h(z,u) =% fooo exp—L]f(t)dt converges for s < sg
and the integral % fooo e:z:p[—%]h(s)dx converges at p = pgo then the above-mentioned
integral converges for p < pg.

4. Concluding Remarks

Present research is related to the implementation of a novel approach Sumudu
Transform for the solution of time fractional PDEs. Sumudu transform is em-
ployed to fetch the analytical-approx. results of the various time fractional PDEs.
Proposed scheme is easy to implement and also do not require a lengthy and cum-
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Approximated ((x,y.t)

Approximated Solution at t = 3

Figure 5. Mesh
Example 3.4.
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and contour plot for approx. and exact solution profiles at ¢t = 3, N = 50 regarding

Approximated Solution at t = 4

Exact ((x,y.t)

Figure 6. Surface and contour plot for approx. and exact solution profiles at t = 4, N = 50 regarding

Example 3.4.

bersome numerical program. Graphical matching of the approx. and exact solution
profile is matched with aid of 2D and 3D plots. Present scheme will surely be helpful
to solve complex natured fractional PDEs where, developing the numerical scheme
is not an easy task. As the present regime does not demand any discretization
or complex numerical algorithm, it can be utilized to tackle the complex natured
fractional ODEs, PDEs, fractional systems, and integro differential equations in an

efficient way.
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