
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 13, Number 3, June 2023, 1274–1303 DOI:10.11948/20220099

DYNAMICS OF A STOCHASTIC
VECTOR-HOST EPIDEMIC MODEL WITH

AGE-DEPENDENT OF VACCINATION AND
DISEASE RELAPSE∗

Zhen Cao1 and Lin-Fei Nie1,†

Abstract Due to the ubiquitous stochastic interference in nature, the un-
certainty of the disease relapse and the duration of immunity, we present a
stochastic vector-host epidemic model with age-dependent of vaccination and
disease relapse, where two general incidences are also introduced to depict
the transmission of virus between vectors and hosts. By constructing a suit-
able Lyapunov function, the existence and uniqueness of the global positive
solution of our model are proved. Further, the stochastic extinction of dis-
ease, the existence of stationary distribution are also discussed. Moreover, the
stochastic extinction of disease and the existence of stationary distribution for
special incidence are obtained as an application, where the general incidence
degenerates into the billinear incidence. Finally, numerical simulations are
given to illuminate the main results, which also suggest that the behaviors of
vectors and the self-protection of hosts are the key factors to eliminate the
disease relative to the quantity of vector population during the transmission
of vector-host infectious diseases.

Keywords Vector-host disease, stochastic perturbation, age-dependent, gen-
eral incidence rate, extinction and stationary.
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1. Introduction
Vector-host infectious diseases, such as Malaria, Dengue fever, Japanese encephalitis
and West Nile fever, etc, are transmitted to humans through the bites of insects or
animals that carry certain pathogens or parasites. At present, vector-host infectious
diseases have been involved in more than 100 countries and regions around the world,
accounting for more than 17% of all infectious diseases [34]. Thus, it is very urgent
to study the control and prevention of vector-host infectious diseases.
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In order to explain the propagative law of vector-host diseases and the effec-
tiveness of control strategies, many scholars have proposed various mathematical
models to simulate the transmission of pathogen in vectors and hosts. For example,
Esteva et al. [9] proposed an ordinary differential equation model for the spread
of Dengue virus between mosquitoes and human population, and proved the exis-
tence and stability of equilibria. Bowman et al. [4] proposed a mathematical model
to describe the spread of West Nile virus among mosquitoes, birds and humans,
obtained the basic reproduction number and demonstrated the existence and sta-
bility of the disease-free equilibrium for the threshold value is less than 1. See
Refs. [5, 15,18,22,39,40,42] for more studies, and the topic is still continuous.

Whether in the past or now, vaccinations have always been considered one of
the most effective strategies to curb the spread of diseases, such as Measles, Polio,
Pertussis, Tuberculosis (TB) and Hepatitis B virus (HBV), etc [35]. A notable suc-
cess story was the eradication of Small-pox in 1997 [36]. However, the effectiveness
of vaccines is a problem that cannot be ignored, which have become the cause of
recurrence and frequent of some diseases (such as, Rubella, Measles, Pertussis and
Chickenpox). To this end, some researchers introduced imperfect immunity and
reduced immunity into mathematical models of infectious diseases [6,10,12,24,28].
In particular, Nkamba et al. [23] proposed a SELI (susceptible, earyly latent, late
latent, TB-infected) compartment model with immunization to assess the effect
of vaccination rate on TB transmission. On the effectiveness and timeliness of
vaccines, a reasonable assumption is that immunity depends on the duration of
vaccination for susceptible individuals being vaccinated, but the time period is not
always fixed. Based on this, Yang et al. [38] established an SIVS model with the
age of vaccination and nonlinear incidence, and discussed th global dynamics of
this model. Duan et al. [7] introduced a SVIR model with the age of inoculation,
and discussed the global stability of equilibria. More related studies are available
in Refs. [1, 8, 14,20,27,31].

On the other hand, the spread of infectious diseases is constantly affected by un-
certainties or stochastic perturbation in the environment, especially in vector-host
diseases. These factors, such as temperature changes, seasonal changes, weather
conditions and media coverage inevitably affect the quantity and behaviors of vec-
tors or hosts, which in turn influence the infectious diseases that spread between
them. Therefore, it is more reasonable to introduce stochastic differential equa-
tions into the modeling of vector-borne infectious diseases [11,29,30]. In particular,
Jovanovi et al. [17] proposed a vector-host disease model with stochastic perturba-
tion and direct transmission, and obtained some sufficient conditions for stochastic
stability. Ran et al. [25] introduced uncertainty into a vector-host disease model
with class-age structured and discussed global existence of positive solutions, the
stochastic extinction of disease, and the existence of stationary distribution.

This paper proposes a stochastic vector-host disease model with the age of vac-
cination and relapse to study the impact of uncertainties. This work is organized as
follows: the model is formulated and the global existence and boundedness of posi-
tive solutions are proved in Section 2 and Section 3, respectively. The main result
on the stochastic extinction of disease is derived in Section 4. The existence and
uniqueness of ergodic stationary distribution are analyzed in Section 5, and investi-
gate the extinction and permanence in the mean and the existence and uniqueness
of stationary distribution for special incidence in Section 6. We illustrate the main
results, and a brief concluding remark in Section 7 and Section 8, respectively.
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2. Model formulation
The quantity of hosts at time t (that is, Nh(t)) is split into susceptible class Sh(t),
vaccinated class Vh(t, a) with the age of vaccination a (that is, the time-since-
vaccination), infected class Ih(t) and recovered class Rh(t, b) with the age of recover
b (that is, the time-since-recover). The vector population Nv(t) at time t includes
susceptible class Sv(t) and infected class Iv(t). Therefore, the total quantities of
vaccinated class and recovered class at time t are

∫∞
0
Vh(t, a)da and

∫∞
0
Rh(t, b)db,

respectively. Assume that the age-dependent of immune loss rate and disease relapse
rate are denoted by ω(a) and r(b), respectively, and 0 ⩽ ω(a), r(b) ⩽ 1. Since
the nonlinear incidence rate is very important in the mathematical modeling of
infectious diseases [26, 33], the generalized incidence is used in this paper. More
specifically, the rate of susceptible host population Sh(t) get infectious by infected
vectors Iv(t) is governed by β1f(Sh, Iv), where, β1 is the probability of exposure of
a susceptible person to an infected vector. Similarly, the rate of transmission from
infected class Ih(t) to susceptible class Sv(t) is β2g(Sv, Ih).

Based on the transmission pattern of pathogens between hosts and vectors, a
model with age structured and general incidence reads

dSh(t)

dt
= Λh − (µh + ψh)Sh(t)− β1f(Sh(t), Iv(t)) +

∫ ∞

0

ω(a)Vh(t, a)da,(
∂

∂t
+

∂

∂a

)
Vh(t, a) = −(µh + ω(a))Vh(t, a), Vh(t, 0) = ψhSh(t),

dIh(t)

dt
= β1f(Sh(t), Iv(t))− (µh + k + ν)Ih(t) +

∫ ∞

0

r(b)Rh(t, b)db,(
∂

∂t
+

∂

∂b

)
Rh(t, b) = −(µh + r(b))Rh(t, b), Rh(t, 0) = kIh(t),

dSv(t)

dt
= Λv − β2g(Sv(t), Ih(t))− µvSv(t),

dIv(t)

dt
= β2g(Sv(t), Ih(t))− µvIv(t)

(2.1)

with the initial conditions Sh(0) = Sh0, Vh(0, a) = Vh0(a), Ih(0) = Ih0, Rh(0, b) =
Rh0(b), Sv(0) = Sv0, Iv(0) = Iv0 for a ⩾ 0, b ⩾ 0, where Sh0, Ih0, Sv0 and Iv0 are
non-negative constants and Vh0(a) and Rh0(b) are non-negative essentialy bounded
functions. In addition, let Sh0+Ih0+Sv0+Iv0+

∫∞
0
Vh0(a)da+

∫∞
0
Rh0(b)db = Nh0,

where Nh0 is the total size of hosts which is a positive constant.
Restricting the second and fourth equations of model (2.1) to the partial differ-

ential equations and solving then along the characteristic curve t − a = const and
t− b = const (see Refs. [16, 32] for more details), one have

Vh(t, a) =


ψhSh(t− a)Γ0(a), t > a ⩾ 0,

Vh0(a− t)
Γ0(a)

Γ0(a− t)
, a ⩾ t > 0,

Rh(t, b) =


kIh(t− b)π0(b), t > b ⩾ 0,

Rh0(b− t)
π0(b)

π0(b− t)
, b ⩾ t > 0,
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Table 1. The biological significance and value range of parameters for model (2.1), where, take the
transmission of Malaria between mosquitoes and humans as an example.

Param. Interpretation Range Source
Λh/Λv Replenishment rate of hosts/vectors Assumed –
ν Disease-related death rate of infected hosts 0 ∼ 1 –
1/µh Average lifespan of hosts (years) 68 ∼ 79 [5, 29]
1/µv Average life span of vectors (days) 4 ∼ 35 [2]
ψh Vaccination coverage rate 0 ∼ 1 −
k Proportional coefficient of recovered from infected 0 ∼ 1 −
ω(a) Rate of vaccine shedding at age a Assumed −
r(b) Relapse rate at relapse age b Assumed −
β1 Probability of transmission from

infectious vectors to susceptible hosts 1.35e−6 ∼ 2.09e−4 [29]
β2 Probability of transmission from

infectious hosts to susceptible vectors 2.82e−6 ∼ 3.65e−4 [29]

where Γ0(a) = exp{−
∫ a
0
(µh + ω(τ))dτ} and π0(b) = exp{−

∫ b
0
(µh + r(τ))dτ}. For

t ⩾ 0, it follows that

∫ ∞

0

ω(a)Vh(t, a)da =

∫ t

0

ω(a)ψhSh(t− a)Γ0(a)da

+

∫ ∞

t

ω(a)Vh0(a− t)
Γ0(a)

Γ0(a− t)
da. (2.2)

Due to ∫ ∞

t

ω(a)Vh0(a− t)
Γ0(a)

Γ0(a− t)
da ⩽ e−µht

∫ ∞

0

Vh0(â)dâ < e−µhtNh0,

where â = a− t. Since e−µhtNh0 → 0 as t→ ∞, equation (2.2) can be rewritten

∫ ∞

0

ω(a)Vh(t, a)da =

∫ ∞

0

ω(a)ψhSh(t− a)Γ0(a)da =

∫ ∞

0

Sh(t− a)Γ(a)da,

where Γ(a) = ω(a)ψhΓ0(a). Similarly, we can get

∫ ∞

0

r(b)Rh(t, b)db =

∫ ∞

0

Ih(t− b)π(b)db, π(b) = r(b)kπ0(b).

Considering the effect of uncertainties (or, stochastic perturbation) on the be-
haviors of vectors and hosts, we assume that perturbation has an effect on the
incidence of infected vectors/hosts to susceptible hosts/vectors, and the intensities
of perturbations are denoted by σ2

1 and σ2
2 , respectively. In addition, the quantity

of vectors is also affected by uncertainties, such as temperature, rainfall, humidity,
and so on, and the impact of these factors are denoted as σ2

3 and σ2
4 , respectively.

As pointed out in Ref. [21], this stochastic perturbation is known as white noise.
Based on the above assumptions and model (2.1), an age-dependent vector-host
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epidemic model with stochastic perturbation reads

dSh(t) =
(
Λh − (µh + ψh)Sh(t)− β1f(Sh(t), Iv(t))

+

∫ ∞

0

Γ(a)Sh(t− a)da
)
dt− σ1f(Sh(t), Iv(t))dB1(t),

dIh(t) =
(
β1f(Sh(t), Iv(t))− (µh + k + ν)Ih(t)

+

∫ ∞

0

π(b)Ih(t− b)db
)
dt+ σ1f(Sh(t), Iv(t))dB1(t),

dSv(t) =
(
Λv − β2g(Sv, Ih)− µvSv

)
dt− σ2g(Sv, Ih)dB2(t) + σ3SvdB3(t),

dIv(t) =
(
β2g(Sv, Ih)− µvIv

)
dt+ σ2g(Sv, Ih)dB2(t) + σ4IvdB4(t),

(2.3)

where, Bi(t) is the standard Brownian motion and defined on (Ω,F ,P) (i = 1, · · · , 4).
Here, (Ω,F ,P) is a complete probability space with a filtration {Ft}t>0 which
is increasing and right continuous with F0 contains all P-null sets. Let Rn+ =
{(x1, · · · , xn) : xi > 0, i = 1, 2, · · · , n}, (a1 ∧ a2) = min{a1, a2} and (a1 ∨ a2) =
max{a1, a2}, for all a1, a2 ∈ R = (−∞,+∞).

(H1) Function f(Sh, Iv) has two-order continuous derivative for any Sh ⩾ 0, Iv ⩾ 0,
and Sh+Iv > 0. For each fixed Iv ⩾ 0, f(Sh, Iv) is increasing for Sh > 0 , and
f(Sh, Iv)/Iv is decreasing for Iv > 0 and each fixed Sh ⩾ 0, and f(Sh, 0) =
f(0, Iv) = 0 for any Sh > 0 or Iv > 0.

(H2) Function g(Sv, Ih) has two-order continuously derivative for any Sv ⩾ 0, Ih ⩾
0, and Sv + Ih > 0. For each fixed Ih ⩾ 0, g(Sv, Ih) is increasing for Sv > 0,
and g(Sv, Ih)/Ih is decreasing for Ih > 0 and each fixed Sv ⩾ 0, and g(Sv, 0) =
g(0, Ih) = 0 for any Sv > 0 or Ih > 0.

Remark 2.1. If f(Sh, Iv) = ShIv/N and g(Sv, Ih) = SvIh/N (standard incidence),
where N = Sh + Ih + Sv + Iv, f(Sh, Iv) = ShIv/(1 + α1Iv + α2Sh) and g(Sv, Ih) =
SvIh/(1 + α3Ih + α4Sv) (Beddington-DeAngelis incidence) with constants αi (i =
1, · · · , 4), and f(Sh, Iv) = ShIv/(1 + α5I

2
v ) and g(Sv, Ih) = SvIh/(1 + α6I

2
h) with

constants α5, α6 ⩾ 0, then (H1) and (H2) are satisfied.

3. Global existence and uniqueness of solution
To prove the global existence and uniqueness of positive solutions for model (2.3),
we show, firstly, the following result, whose proof is similar to the proof of Lemma
3 in Ref. [26].

Lemma 3.1. For any positive constants p > q and D = {(Sh, Ih, Sv, Iv) : Sh >
0, Ih > 0, Sv > 0, Iv > 0, q ⩽ Sh + Ih + Sv + Iv ⩽ p}, then,

max
(Sh,Iv)∈D

{
f(Sh, Iv)

Sh
,
f(Sh, Iv)

Iv

}
<∞, max

(Sv,Ih)∈D

{
g(Sv, Ih)

Sv
,
g(Sv, Ih)

Ih

}
<∞.

From Lemma 3.1, we introduce the following notations,

max
(Sh,Iv)∈Ω

{
f(Sh, Iv)

Sh

}
= K1, max

(Sh,Iv)∈Ω

{
f(Sh, Iv)

Iv

}
= K2,
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max
(Sv,Ih)∈Ω

{
g(Sv, Ih)

Sv

}
= K3, max

(Sv,Ih)∈Ω

{
g(Sv, Ih)

Ih

}
= K4.

Theorem 3.1. For (Sh0, Ih0, Sv0, Iv0) ∈ R4
+, model (2.3) exists a unique solution

(Sh(t), Ih(t), Sv(t), Iv(t)) on [0,∞), which remains in R4
+ with probability one. That

is, (Sh(t), Ih(t), Sv(t), Iv(t)) ∈ R4
+ for t ∈ R+ a.s. (almost surely).

Proof. Since the local Lipschitz condition is valid for model (2.3), which has a
unique positive solution X(t) = (Sh(t), Ih(t), Sv(t), Iv(t)) on t ∈ [0, τe) satisfies
X(0) = (Sh(0), Ih(0), Sv(0), Iv(0)) = (Sh0, Ih0, Sv0, Iv0) ∈ R4

+, where τe is the ex-
plosion time. This only needs to be proved τe = ∞ a.s.

Choose m0 to be a large integer so that Sh0, Ih0, Sv0 and Iv0 belongs to
[m−1

0 ,m0]. For any integer m ⩾ m0, define stopping time by τm = inf{t ∈ [0, τe) :
Sh(t) /∈ (m−1,m), or Ih(t) /∈ (m−1,m), or Sv(t) /∈ (m−1,m), or Iv(t) /∈ (m−1,m)},
where, inf ∅ = ∞. Due to the nondecreasing of the sequence {τm}, limit τ∞ =
limt→∞ τm exists, and τ∞ ⩽ τe a.s.

Next, we show τ∞ = ∞ a.s. If it is invalid, then there is a T > 0 and ϵ ∈ (0, 1)
such that P {τ∞ ⩽ T} ⩾ ϵ. Thus, there is an integer m1 ⩾ m0 such that

P {τm ⩽ T} ⩾ ϵ for all m ⩾ m1. (3.1)

Let Nh(t) = Sh(t) + Ih(t), it is obvious that lim supt→∞Nh(t) ⩽ Λh/µh. Define a
function V by

V (Sh, Ih, Sv, Iv) = (Sh + Ih)− 1− ln(Sh + Ih) + (Sv + Iv)− 1− ln(Sv + Iv).

Note that V (Sh, Ih, Sv, Iv) is non-negative for X(t) ∈ R4
+. This yields from Itô’s

formula that

dV = LV dt+

(
1− 1

Sv(t) + Iv(t)

)
[σ3Sv(t)dB3(t) + σ4Iv(t)dB4(t)] , (3.2)

where

LV =Λh − (µh + ψh)Sh(t)− (µh + k + ν)Ih(t) +

∫ ∞

0

Γ(a)Sh(t− a)da

+
(µh + ψh)Sh(t)

Sh(t) + Ih(t)
−

∫∞
0

Γ(a)Sh(t− a)da+
∫∞
0
π(b)Ih(t− b)db

Sh(t) + Ih(t)

− Λh
Sh(t) + Ih(t)

+
(µh + k + ν)Ih(t)

Sh(t) + Ih(t)
+ Λv − µvSv(t)− µvIv(t)

− Λv
Sv(t) + Iv(t)

+
µv(Sv(t) + Iv(t))

Sv(t) + Iv(t)
+
σ2
1f

2(Sh(t), Iv(t))

(Sh(t) + Ih(t))2

+
σ2
2g

2(Sv(t), Ih(t))

(Sv(t) + Iv(t))2
+
σ2
3S

2
v(t) + σ2

4I
2
v (t)

2(Sv(t) + Iv(t))2
+

∫ ∞

0

π(b)Ih(t− b)db

and

LV ⩽Λh + Λv + µh + ψh + k + ν + µv + (Γ + π)
Λh
µh

+ σ2
1K

2
1 + σ2

2K
2
3 +

max{σ2
3 , σ

2
4}

2
.
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Here Γ =
∫∞
0

Γ(a)da =
∫∞
0
ω(a)ψhΓ0(a)da ⩽

∫∞
0
ψh exp{−µha}da = ψh/µh and

π =
∫∞
0
π(b)db =

∫∞
0
r(b)kπ0(b)db ⩽

∫∞
0
k exp{−µhb}db = k/µh. Then it turns to

LV ⩽Λh + Λv + µh + µv + ψh + k + ν +
ψh + k

µh

Λh
µh

+ σ2
1K

2
1 + σ2

2K
2
3 +

max{σ2
3 , σ

2
4}

2
:= K. (3.3)

Substituting (3.3) into (3.2), and integrating both ends of (3.2) from 0 to τm ∧ T
yields∫ τm∧T

0

dV (Sh(t), Ih(t), Sv(t), Iv(t))

⩽
∫ τm∧T

0

Kdt+

∫ τm∧T

0

(
1− 1

Sv(t) + Iv(t)

)
[σ3Sv(t)dB3(t) + σ4Iv(t)dB4(t)].

By taking expectations we have

E[V (Sh(τm ∧ T ), · · · , Iv(τm ∧ T ))] ⩽V (Sh(0), Ih(0), Sv(0), Iv(0)) +KT.

Let Ωm = {τm ⩽ T} for m ⩾ m1. From (3.1), it follows that P(Ωm) ⩾ ϵ for
m > m1. For any ω ∈ Ωm, at least one component of solution (Sh(τm, ω), Ih(τm, ω),
Sv(τm, ω), Iv(τm, ω)) equals m or 1/m. Therefore, one get

∞ >V (Sh(0), Ih(0), Sv(0), Iv(0)) +KT

⩾P {τm ⩽ T}min{2m− 1− ln 2m, 1/2m− 1 + ln 2m}
⩾ϵmin

{
2m− 1− ln 2m, 1/2m− 1 + ln 2m

}
.

This derives a contradiction ∞ > V (Sh(0), Ih(0), Sv(0), Iv(0)) +KT ⩾ ∞ as m →
∞. Therefore, one have τe = ∞ a.s., which completes the proof.

Theorem 3.2. Assume (Sh(t), Ih(t), Sv(t), Iv(t)) is the solution of model (2.3) sat-
isfies the initial value (Sh0, Ih0, Sv0, Iv0) ∈ R4

+, then lim supt→∞(Sv(t) + Iv(t)) <
∞ a.s. Moreover, lim supt→∞⟨Sv(t)+Iv(t)⟩t ⩽ Λv/µv a.s., where, ⟨Sv(t)+Iv(t)⟩t =
t−1

∫ t
0
(Sv(s) + Iv(s))ds.

Proof. From the third and fourth equations of model (2.3), we have

d[Sv(t) + Iv(t)] = Λv − µv(Sv(t) + Iv(t)) + σ3Sv(t)dB3(t) + σ4Iv(t)dB4(t).

From the above equation and the principle of comparison of stochastic differential
equations, it yields that

Sv(t) + Iv(t) ⩽
Λv
µv

+

(
Sv(0) + Iv(0)−

Λv
µv

)
e−µvt +M(t) := Nv(t) a.s., (3.4)

where, M(t) = σ3
∫ t
0
e−µv(t−s)Sv(s)dB3(s) + σ4

∫ t
0
e−µv(t−s)Iv(s)dB4(s). From the

Definition 1.5.23 in Ref. [21], M(t) is a continuous local martingale with M(0) = 0.
Therefore, by Theorem 1.3.9 in Ref. [21], it follows that limt→∞M(t) exists and is
finite almost surely. Thus, limt→∞Nv(t) <∞.
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Now, we turn to the second conclusion. Define ρ1(t) =
∫ t
0
Sv(s)dB3(s), ρ2(t) =∫ t

0
e−µv(t−s)Sv(s)dB3(s), ρ3(t) =

∫ t
0
Iv(s)dB4(s) and ρ4(t)=

∫ t
0
e−µv(t−s)Iv(s)dB4(s),

it is easy to calculate the quadratic variations that

⟨ρ1(t), ρ1(t)⟩ =
∫ t

0

S2
v(s)ds ⩽ t sup

t⩾0
S2
v(t),

⟨ρ2(t), ρ2(t)⟩ =
∫ t

0

e−2µv(t−s)S2
v(s)ds ⩽ t sup

t⩾0
S2
v(t),

⟨ρ3(t), ρ3(t)⟩ =
∫ t

0

I2v (s)ds ⩽ t sup
t⩾0

I2v (t),

⟨ρ4(t), ρ4(t)⟩ =
∫ t

0

e−2µv(t−s)I2v (s)ds ⩽ t sup
t⩾0

I2v (t).

By using the strong law of large number for martingales (see Theorem 1.3.4 in
Ref. [21] for more detail), it can get that

lim
t→∞

ρi(t)

t
= 0, i = 1, 2, 3, 4. (3.5)

It can be obtained by changing the order of integration that

⟨M(t)⟩t =
σ3
t

∫ t

0

∫ u

0

eµv(s−u)Sv(s)dB3(s)du+
σ4
t

∫ t

0

∫ u

0

eµv(s−u)Iv(s)dB4(s)du

=
σ3
µvt

(∫ t

0

Sv(s)dB3(s)−
∫ t

0

e−µv(t−s)Sv(s)dB3(s)

)
+

σ4
µvt

(∫ t

0

Iv(s)dB4(s)−
∫ t

0

e−µv(t−s)Iv(s)dB4(s)

)
.

This yields from (3.5) that limt→∞⟨M(t)⟩ = 0. In addition,

lim
t→∞

∫ t
0
(Sv(0) + Iv(0)− Λv

µv
)e−µvsds

t
= lim
t→∞

Sv(0) + Iv(0)− Λv

µv

µvt
(1− e−µvt) = 0.

Thus, from the above discussion and (3.4), we have

lim sup
t→∞

⟨Sv(t) + Iv(t)⟩t ⩽ lim sup
t→∞

1

t

∫ t

0

Λv
µv

ds =
Λv
µv
.

This completes the proof.

4. The extinction of disease without relapse
The stochastic extinction of disease and the asymptotic behavior of solutions for
model (2.3) without relapse will be discussed in this section. From Theorem 3.2,
there is a constant Ňv such that lim supt→∞Nv(t) ⩽ Ňv.

Theorem 4.1. Let (Sh(t), Ih(t), Sv(t), Iv(t)) be the solution of model (2.3) with
r(b) = 0 satisfies the initial value (Sh(0), Ih(0), Sv(0), Iv(0)) ∈ R4

+. If one of the
following conditions holds:
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(i) R̃0 < 1 and σ2
1 ⩽ β1/

(
∂f(Λh/µh, 0)/∂Iv

)
, σ2

2 ⩽ β2/
(
∂g(Ňv, 0)/∂Ih

)
, where

R̃0 =
β1

∂f(Λh/µh,0)
∂Iv

+ β2
∂g(Ňv,0)
∂Ih

min{µh + k + ν, µv}+ σ2
1

2

(
∂f(Λh/µh,0)

∂Iv

)2

+
σ2
2

2

(
∂g(Ňv,0)
∂Ih

)2 ; (4.1)

(ii) β2
1/2σ

2
1 + β2

2/2σ
2
2 < min{µh + k + ν, µv};

then lim supt→∞ ln(Ih(t) + Iv(t))/t < 0 a.s.

Proof. For any η > 0, there exists a large enough T0 > 0 such that Sh(t) <
Λh/µh + η and Sv(t) < Ňv + η for t ∈ [T0,∞). Further, by using the L’Hospital
principle, it is easy to prove

f(Sh, Iv)

Iv
∈
(
0,
∂f(Λh/µh + η, 0)

∂Iv

]
,
g(Sv, Ih)

Ih
∈
(
0,
∂g(Ňv + η, 0)

∂Ih

]
. (4.2)

When r(b) = 0, let V (t) = ln(Ih(t) + Iv(t)), from the Itô’s formula, we obtain

dV =

{
1

Ih(t) + Iv(t)

(
β1f(Sh(t), Iv(t))− (µh + k + ν)Ih(t) + β2g(Sv(t), Ih(t))

− µvIv(t)
)
− 1

2(Ih(t) + Iv(t))2

(
σ2
1f

2(Sh(t), Iv(t)) + σ2
2g

2(Sv(t), Ih(t))

+ σ2
4I

2
v (t)

)}
dt+

1

Ih(t) + Iv(t)

(
σ1f(Sh(t), Iv(t))dB1(t)

+ σ2g(Sv(t), Ih(t))dB2(t) + σ4Iv(t)dB4(t)
)
.

Directly integrating the above expression form 0 to t and dividing t, we can get

ln(Ih(t) + Iv(t))

t

⩽ ln(Ih(0) + Iv(0))

t
+
β1 + ϵ

t

∫ t

0

f(Sh(s), Iv(s))

Ih(s) + Iv(s)
ds− µh + k + ν

t

×
∫ t

0

Ih(s)ds

Ih(s) + Iv(s)
+
β2 + ϵ

t

∫ t

0

g(Sv(s), Ih(s))

Ih(s) + Iv(s)
ds− µv

t

∫ t

0

Iv(s)ds

Ih(s) + Iv(s)

− σ2
1

2t

∫ t

0

f2(Sh(s), Iv(s))

(Ih(s) + Iv(s))2
ds− σ2

2

2t

∫ t

0

g2(Sv(s), Ih(s))

(Ih(s) + Iv(s))2
ds

− σ2
4

2t

∫ t

0

I2v (s)

(Ih(s) + Iv(s))2
ds+

M1(t)

t
+
M2(t)

t
+
M4(t)

t

⩽ ln(Ih(0) + Iv(0))

t
+
β1 + ϵ

t

∫ t

0

f(Sh(s), Iv(s))

Ih(s) + Iv(s)
ds−min{µh + k + ν, µv}

+
β2 + ϵ

t

∫ t

0

g(Sv(s), Ih(s))

Ih(s) + Iv(s)
ds− σ2

1

2t

∫ t

0

f2(Sh(s), Iv(s))

(Ih(s) + Iv(s))2
ds

− σ2
2

2t

∫ t

0

g2(Sv(s), Ih(s))

(Ih(s) + Iv(s))2
ds+

M1(t)

t
+
M2(t)

t
+
M4(t)

t
,

where, ϵ > 0 and

M1(t) = σ1

∫ t

0

f(Sh(s), Iv(s))dB1(s)

Ih(s) + Iv(s)
, M2(t) = σ2

∫ t

0

g(Sv(s), Ih(s))dB2(s)

Ih(s) + Iv(s)
,
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M4(t) = σ4

∫ t

0

Iv(s)dB4(s)

Ih(s) + Iv(s)

are local martingales that satisfy

⟨M1,M1⟩ = σ2
1

∫ t

0

(
f(Sh(s), Iv(s))dB1(s)

Ih(s) + Iv(s)

)2

⩽ σ2
1K

2
2 t,

⟨M2,M2⟩ = σ2
2

∫ t

0

(
g(Sv(s), Ih(s))dB2(s)

Ih(s) + Iv(s)

)2

⩽ σ2
2K

2
4 t,

⟨M4,M4⟩ = σ2
4

∫ t

0

(
Iv(s)dB4(s)

Ih(s) + Iv(s)

)2

⩽ σ2
4t.

By the strong law of large numbers of martingale, one have lim supt→∞Mi(t)/t = 0,
i = 1, 2, 4.

Next, we define two functions G1(x) = −σ2
1x

2/2+(β1+ϵ)x−min{µh+k+ν, µv},
G2(x) = −σ2

2x
2/2 + (β2 + ϵ)x, where Gi(x) is monotonically increasing for x ∈

[0, (βi + ϵ)/σ2
i ) (i = 1, 2). Since ∂f(Λh/µh, 0)/∂Iv ⩽ β1/σ

2
1 and ∂g(Ňv, 0)/∂Ih ⩽

β2/σ
2
2 , we can choose η > 0 and η ⩽ ϵ such that ∂f(Λh/µh+η, 0)/∂Iv ⩽ (β1+ϵ)/σ

2
1

and ∂g(Ňv + η, 0)/∂Ih ⩽ (β2 + ϵ)/σ2
2 . Obviously, from (4.2) we have, for t ⩾ T0,

G1

(
f(Sh(t), Iv(t))

Iv(t)

)
⩽ G1

(
∂f(Λh/µh + η, 0)

∂Iv

)
,

G2

(
g(Sv(t), Ih(t))

Ih(t)

)
⩽ G2

(
∂g(Ňv + η, 0)

∂Ih

)
.

Therefore, it yields from the above discussion that

ln(Ih(t) + Iv(t))

t

⩽ ln(Ih(0) + Iv(0))

t
+

1

t

∫ t

0

G1

(
f(Sh(s), Iv(s))

Ih(s) + Iv(s)

)
ds

+
1

t

∫ t

0

G2

(
g(Sv(s), Ih(s))

Ih(s) + Iv(s)

)
ds+

M1(t)

t
+
M2(t)

t
+
M4(t)

t

⩽ ln(Ih(0) + Iv(0))

t
+

1

t

∫ t

0

G1

(
f(Sh(s), Iv(s))

Iv(s)

)
ds

+
1

t

∫ t

0

G2

(
g(Sv(s), Ih(s))

Ih(s)

)
ds+

M1(t)

t
+
M2(t)

t
+
M4(t)

t

⩽ ln(Ih(0) + Iv(0))

t
+

1

t

∫ T0

0

G1

(
f(Sh(s), Iv(s))

Iv(s)

)
ds

+G1

(
∂f(Λh/µh + η, 0)

∂Iv

)
t− T0
t

+
1

t

∫ T0

0

G2

(
g(Sv(s), Ih(s))

Ih(s)

)
ds

+G2

(
∂g(Ňv + η, 0)

∂Ih

)
t− T0
t

+
M1(t)

t
+
M2(t)

t
+
M4(t)

t

for t ⩾ T0. Thus,

lim sup
t→∞

ln(Ih(t) + Iv(t))

t
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⩽G1

(
∂f(Λh/µh, 0)

∂Iv

)
+G2

(
∂g(Ňv, 0)

∂Ih

)
=(β1 + ϵ)

∂f(Λh/µh + η, 0)

∂Iv
+ (β2 + ϵ)

∂g(Ňv + η, 0)

∂Ih

− σ2
1

2

(
∂f(Λh/µh + η, 0)

∂Iv

)2

− σ2
2

2

(
∂g(Ňv + η, 0)

∂Ih

)2

−min{µh + k + ν, µv}.

From the arbitrariness of ϵ and η, and (4.1), one can get lim supt→∞ ln (Ih(t)
+Iv(t))/t < 0. This proves (i).

Finally, we consider (ii). Since G1(x) and G2(x) get their maximum values

Gmax
1 (x) =

(β1 + ϵ)2

2σ2
1

−min{µh + k + ν, µv}, Gmax
2 (x) =

(β2 + ϵ)2

2σ2
2

at x = (β1 + ϵ)/σ2
1 and x = (β2 + ϵ)/σ2

2 , respectively, G1(x) and G2(x) satisfy

G1

(
f(Sh, Iv)

Iv(t)

)
⩽ (β1 + ϵ)2

2σ2
1

−min{µh + k + ν, µv},

G2

(
g(Sv, Ih)

Ih(t)

)
⩽ (β2 + ϵ)2

2σ2
2

.

Discussions similar to the case (i), it follows that

lim sup
t→∞

ln(Ih(t) + Iv(t))

t
⩽ β2

1

2σ2
1

+
β2
2

2σ2
2

−min{µh + k + ν, µv} < 0.

This is (ii). The proof is completed.
It is obvious that model (2.3) exists a disease-free equilibrium E0(S

0
h, 0, S

0
v , 0)

for σ3 = σ4 = 0, where

S0
h =

Λh

µh + ψh −
∫∞
0

Γ(a)da
, S0

v =
Λv
µv
.

For Ih(t) ≡ 0 and Iv(t) ≡ 0, model (2.3) reduce asdSh(t) =

[
Λh − (µh + ψh)Sh(t) +

∫ ∞

0

Γ(a)Sh(t− a)da

]
dt,

dSv(t) = [Λv − µvSv(t)] dt.

(4.3)

On the stability of equilibrium (S0
h, S

0
v) of model (4.3), similar to the proof of

Theorem 3.1 in Ref. [37], the following result is obvious.

Theorem 4.2. The equilibrium (S0
h, S

0
v) of (4.3) is globaly asymptotically stable .

From Theorems 4.1 and 4.2, for σ3 = σ4 = 0, we have the follow result.

Theorem 4.3. Assume that r(b) = σ3 = σ4 = 0 and (Sh(t), Ih(t), Sv(t), Iv(t)) is the
solution of model (2.3) satisfies the initial value (Sh(0), Ih(0), Sv(0), Iv(0)) ∈ R4

+.
Assume that one of the following conditions is met,
(i) R̃0 < 1, σ2

1 ⩽ β1/
(
∂f(S0

h, 0)/∂Iv
)
, σ2

2 ⩽ β2/
(
∂g(S0

v , 0)/∂Ih
)
, where

R̃0 =
β1

∂f(S0
h,0)

∂Iv
+ β2

∂g(S0
v,0)

∂Ih

min{µh + k + ν, µv}+ σ2
1

2

(
∂f(S0

h,0)

∂Iv

)2

+
σ2
2

2

(
∂g(S0

v,0)
∂Ih

)2 ;
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(ii) β2
1/2σ

2
1 + β2

2/2σ
2
2 < min{µh + k + ν, µv};

then limt→∞ Sh(t) = S0
h a.s., limt→∞ Sv(t) = S0

v a.s.

5. The existence of stationary distribution
Since there is no equilibrium point in model (2.3), it is very necessary to consider
the existence of stationary distribution for model (2.3), which means the stochastic
persistence of disease. Let X(t) ∈ Rd is a homogeneous Markov process and satisfies

dX(t) = b(X)dt+

k∑
r=1

gr(X)dBr(t), (5.1)

and the diffusion matrix of X(t) is defined as follows

Ã(X) = (aij(X)), aij(X) =

k∑
r=1

gir(X)gjr(X).

Lemma 5.1 is a criterion on the existence of stationary distribution of (5.1).

Lemma 5.1 ( [19, 41]). The model (5.1) is positive recurrent if there is a bounded
open subset D of Rd with a regular boundary (i.e., smooth), and (i) there is a
constant κ > 0 such that aιι(x) ⩾ κ for x ∈ D; (ii) there is a function V : Dc → R+

with second-order continuous derivative such that LV (x) ⩽ −θ for x ∈ Dc, θ > 0.
Then, stochastic process X(t) admits a unique stationary distribution µ(·) satisfies
limt→+∞ P(t, x,B) = µ(B) for any Borel set B ∈ Rd, and

Px

{
lim
T→∞

1

T

∫ T

0

f(X(t))dt =

∫
Rd

f(x)µ(dx)

}
= 1

for all x ∈ Rd, where f(·) is an integrable function with respect to µ(·).

Next, we turn to the existence of unique stationary distribution for model (2.3).

Theorem 5.1. Assume that r(b) = 0. If Rs
0 > 1 and

(µh ∧ µv) >
(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ σ2

3/2 ∨ σ2
4/2

)
,

where,

Rs
0 = 4

√√√√ ΛhΛvµv(µh + ψh)(
Λh + Λv + β1M1 +

σ2
1

2 K
2
1 + ψhΛh

µ2
h

)3(
µv +

σ2
3

2 + β2K3 +
σ2
2

2 K
2
3

)
and ρh = ψh + µh, then solution (Sh(t), Ih(t), Sv(t), Iv(t)) of model (2.3) with the
initial value (Sh(0), Ih(0), Sv(0), Iv(0)) ∈ Γ = {(Sh, Ih, Sv, Iv) : (Sh, Ih, Sv, Iv) ∈
R4

+, Sh + Ih + Sv + Iv ⩽ Λh/µh + Ňv} is positive recurrent and exists a stationary
distribution in Γ which is unique and ergodic.
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Proof. Define a bounded open subset of Γ as Dε = {(Sh, Ih, Sv, Iv) ∈ Γ : ε ⩽
Sh, Ih, Sv, Iv ⩽ 1/ε}, where ε is a small enough positive constant. The diffusion
matrix associated with model (2.3) is given by

Ã = (aij)4×4 =

A1 0

0 A2

 , A1 =

 σ2
1f

2(Sh, Iv) −σ2
1f

2(Sh, Iv)

−σ2
1f

2(Sh, Iv) σ2
1f

2(Sh, Iv)

 ,

and

A2 =

σ2
2g

2(Sv, Ih) + σ2
3S

2
v −σ2

2g
2(Sv, Ih)

−σ2
2g

2(Sv, Ih) σ2
2g

2(Sv, Ih) + σ2
4I

2
v

 .

Since Dε ⊂ R4
+, then

σ2
1f

2(Sh, Iv) = σ2
1

f2(Sh, Iv)

I2v
I2v ⩾ σ2

1

f2(ε, Iv)

I2v
I2v ⩾ ε4σ2

1f
2

(
ε,

1

ε

)
,

σ2
2g

2(Sv, Ih) = σ2
2

g2(Sv, Ih)

I2h
I2h ⩾ σ2

2

g2(ε, Ih)

I2h
I2h ⩾ ε4σ2

2g
2

(
ε,

1

ε

)
.

Therefore, one verify the condition (i) of Lemma 5.1.
Next, we turn to condition (ii) of Lemma 5.1. Define a function Ṽ : R4

+ → R as
Ṽ (Sh, Ih, Sv, Iv) =MV1+NV2+V3+V4, where V1 = − lnSh−c lnSv+Sh+Sv−Ih,
V2 = − lnSh − c lnSv + Sh + Sv − Iv, V3 = − lnSh − lnSv and

V4 =
1

θ + 2
(Sh + Ih + Sv + Iv)

θ+2,

c =
µh + ψh + β1K1 + Λh + Λv +

ψhΛh

µ2
h

+
σ2
1

2 K
2
1

µv + β2K3 +
σ2
3

2 +
σ2
2

2 K
2
3

.

Here, M and N are sufficiently large positive constants which satisfy

−Mλ+ F2 ⩽ −2, −Nλ+ F3 ⩽ −2, (5.2)

and

λ = 2

(
µh + ψh + β1K1 + Λh +

ψhΛh
µ2
h

+ Λv +
σ2
1

2
K2

1

)(√
Rs

0 − 1
)
, (5.3)

F1 = sup
(Sh,Ih,Sv,Iv)∈R4

+

{
M(µh + k + ν)Ih +NµvIv −

1

2

[
(µh ∧ µv)− (θ + 1)

×
(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)] (
Sθ+2
h + Iθ+2

h + Sθ+2
v + Iθ+2

v

)
+ µh + ψh + β1K1 +

σ2
1

2
K2

1 + β2K3 + µv +
σ2
2

2
K2

3 +
σ2
3

2
+B

}
, (5.4)

F2 = sup
(Sh,Ih,Sv,Iv)∈R4

+

{
NµvIv −

1

2

[
(µh ∧ µv)− (θ + 1)

×
(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)](
Sθ+2
h + Iθ+2

h + Sθ+2
v + Iθ+2

v

)
(5.5)
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+ µh + ψh + β1K1 +
σ2
1

2
K2

1 + β2K3 + µv +
σ2
2

2
K2

3 +
σ2
3

2
+B

}
,

F3 = sup
(Sh,Ih,Sv,Iv)∈R4

+

{
M(µh + k + ν)Ih −

1

2

[
(µh ∧ µv)− (θ + 1)

×
(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)] (
Sθ+2
h + Iθ+2

h + Sθ+2
v + Iθ+2

v

)
+ µh + ψh + β1K1 +

σ2
1

2
K2

1 + β2K3 + µv +
σ2
2

2
K2

3 +
σ2
3

2
+B

}
, (5.6)

F4 = sup
(Sh,Ih,Sv,Iv)∈R4

+

{
M(µh + k + ν)Ih +NµvIv −

1

4

[
(µh ∧ µv)− (θ + 1)

×
(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)] (
Sθ+2
h + Iθ+2

h + Sθ+2
v + Iθ+2

v

)
+ µh + ψh + β1K1 +

σ2
1

2
K2

1 + β2K3 + µv +
σ2
2

2
K2

3 +
σ2
3

2
+B

}
, (5.7)

B = sup
(Sh,Ih,Sv,Iv)∈R4

+

{
(Sh + Ih + Sv + Iv)

θ+1

(
Λh + Λv +

Λh(ψh + k)

µ2
h

)
− 1

2

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)]
(5.8)

× (Sh + Ih + Sv + Iv)
θ+2

}
,

and θ > 0 satisfying (µh ∧ µv) > (θ + 1)(σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ σ2

3/2 ∨ σ2
4/2). Due to

lim inf
k→∞

(Sh,Ih,Sv,Iv)∈R4
+\Dk

Ṽ (Sh, Ih, Sv, Iv) = +∞,

then Ṽ (Sh, Ih, Sv, Iv) has a minimum point (S̄h, Īh, S̄v, Īv) ∈ R4
+. So, one can

construct a function V : R4
+ → R+ as V (Sh, Ih, Sv, Iv) = MV1 +NV2 + V3 + V4 −

Ṽ (S̄h, Īh, S̄v, Īv). It can be obtained by direct calculation that

LV1 =− 1

Sh

[
Λh − ρhSh − β1f(Sh, Iv) +

∫ ∞

0

Γ(a)Sh(t− a)da

]
− c

Sv
[Λv − β2g(Sv, Ih)− µvSv] +

cσ2
2

2

g2(Sv, Ih)

S2
v

+
cσ2

3

2
+ Λh − ρhSh

− β1f(Sh, Iv) +

∫ ∞

0

Γ(a)Sh(t− a)da+ Λv − β2g(Sv, Ih)− µvSv

− β1f(Sh, Iv) + (µh + k + ν)Ih −
∫ ∞

0

π(b)Ih(t− b)db+
σ2
1

2

f2(Sh, Iv)

S2
h

⩽− Λh
Sh

+ ρh + β1K1 −
cΛv
Sv

+ cβ2K3 + cµv + Λh − ρhSh

+
ψhΛh
µ2
h

+ Λv − µvSv + (µh + k + ν)Ih +
σ2
1

2
K2

1 +
cσ2

2

2
K2

3 +
cσ2

3

2

⩽− 4 4
√
cΛhΛvµvρh + ρh + β1K1 + Λh +

ψhΛh
µ2
h

+ Λv
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+
σ2
1

2
K2

1 + c

(
β2K3 + µv +

σ2
2

2
K2

3 +
σ2
3

2

)
+ (µh + k + ν)Ih

=− 2
(
ρh + β1K1 + Λh +

ψhΛh
µ2
h

+ Λv +
σ2
1

2
K2

1

)(√
Rs

0 − 1
)

+ (µh + k + ν)Ih

:=− λ+ (µh + k + ν)Ih,

where λ is given by equation (5.3). Similarly

LV2 =− 1

Sh

[
Λh − ρhSh − β1f(Sh, Iv) +

∫ ∞

0

Γ(a)Sh(t− a)da

]
− c

Sv
[Λv − β2g(Sv, Ih)− µvSv] +

cσ2
2

2

g2(Sv, Ih)

S2
v

+
cσ2

3

2
+ Λh

− ρhSh +

∫ ∞

0

Γ(a)Sh(t− a)da+ Λv − β2g(Sv, Ih)

− µvSv − β2g(Sv, Ih) + µvIv +
σ2
1

2

f2(Sh, Iv)

S2
h

− β1f(Sh, Iv)

⩽− Λh
Sh

+ ρh + β1K1 −
cΛv
Sv

+ cβ2K3 + cµv + Λh − ρhSh +
ψhΛh
µ2
h

+ Λv − µvSv + µvIv +
σ2
1

2
K2

1 +
cσ2

2

2
K2

3 +
cσ2

3

2

⩽− 4 4
√
cΛhΛvµvρh + ρh + β1K1 + Λh +

ψhΛh
µ2
h

+ Λv +
σ2
1

2
K2

1 + c

(
β2K3 + µv +

σ2
2

2
K2

3 +
σ2
3

2

)
+ µvIv

=− 2

(
ρh + β1K1 + Λh +

ψhΛh
µ2
h

+ Λv +
σ2
1

2
K2

1

)(√
Rs

0 − 1
)
+ µvIv

=− λ+ µvIv,

LV3 =− 1

Sh

[
Λh − ρhSh − β1f(Sh, Iv) +

∫ ∞

0

Γ(a)Sh(t− a)da

]
+
σ2
1

2

× f2(Sh, Iv)

S2
h

− 1

Sv
[Λv − β2g(Sv, Ih)− µvSv] +

σ2
2

2

g2(Sv, Ih)

S2
v

+
σ2
3

2

⩽− Λh
Sh

− Λv
Sv

+ ρh + β1K1 +
σ2
1

2
K2

1 + β2K3 + µv +
σ2
2

2
K2

3 +
σ2
3

2
,

LV4 =(Sh + Ih + Sv + Iv)
θ+1

[
Λh − ρhSh +

∫ ∞

0

Γ(a)Sh(t− a)da

− (µh + k + ν)Ih +

∫ ∞

0

π(b)Ih(t− b)db+ Λv − µv(Sv + Iv)

]
+ (θ + 1)

× (Sh + Ih + Sv + Iv)
θ

[
σ2
1f

2(Sh, Iv) + σ2
2g

2(Sv, Ih) +
σ2
3

2
S2
v +

σ2
4

2
I2v

]
⩽(Sh + Ih + Sv + Iv)

θ+1

(
Λh + Λv +

Λh(ψh + k)

µ2
h

)
+ (θ + 1)(Sh + Ih + Sv + Iv)

θ

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)
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× (Sh + Ih + Sv + Iv)
2 − (Sh + Ih + Sv + Iv)

θ+2(µh ∧ µv)

⩽B − 1

2

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)]
×
(
Sθ+2
h + Iθ+2

h + Sθ+2
v + Iθ+2

v

)
,

where B is given by (5.8). From the above calculation, one can get that

LV ⩽−Mλ+M(µh + k + ν)Ih −Nλ+NµvIv −
Λh
Sh

− Λv
Sv

− 1

2

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)]
×
(
Sθ+2
h + Iθ+2

h + Sθ+2
v + Iθ+2

v

)
+ µh + ψh + β1K1

+
σ2
1

2
K2

1 + β2K3 + µv +
σ2
2

2
K2

3 +
σ2
3

2
+B.

We claim LV (Sh, Ih, Sv, Iv) ⩽ −1 on R4
+ \ Dε, this is equivalent to prove it on the

following eight regions

D1 = {(Sh, Ih, Sv, Iv)R4
+ : Sh < ε}, D2 ={(Sh, Ih, Sv, Iv)R4

+ : Ih < ε},
D3 = {(Sh, Ih, Sv, Iv)R4

+ : Sv < ε}, D4 ={(Sh, Ih, Sv, Iv)R4
+ : Iv < ε},

D5 = {(Sh, Ih, Sv, Iv)R4
+ : Sh > 1/ε}, D6 ={(Sh, Ih, Sv, Iv)R4

+ : Ih > 1/ε},
D7 = {(Sh, Ih, Sv, Iv)R4

+ : Sv > 1/ε}, D8 ={(Sh, Ih, Sv, Iv)R4
+ : Iv > 1/ε}.

Case 1. If (Sh, Ih, Sv, Iv) ∈ D1, it can be easily shown that LV ⩽ −Λh/Sh+F1 ⩽
−Λh/ε + F1, where F1 is given by (5.4). Therefore, we could pick a very small
constant ε > 0 such that −Λh/ε+ F1 ⩽ −1. Then, it yields

LV ⩽ −1, for any (Sh, Ih, Sv, Iv) ∈ D1. (5.9)

Case 2. If (Sh, Ih, Sv, Iv) ∈ D2, it follows that LV ⩽ −Mλ+M(µh+k+ν)Ih+F2,
where F2 is given by (5.5). Therefore, it is possible to select a ε > 0 so that
M(µh + k + ν)ε ⩽ 1. Hence, from (5.2),

LV ⩽ −1, for any (Sh, Ih, Sv, Iv) ∈ D2. (5.10)

Case 3. For (Sh, Ih, Sv, Iv) ∈ D3, one have LV ⩽ −Λv/Sv + F1 ⩽ −Λv/ε+ F1.
That is, there exists a ε > 0 so that −Λv/ε+ F1 ⩽ −1. Therefore

LV ⩽ −1, for any (Sh, Ih, Sv, Iv) ∈ D3. (5.11)

Case 4. If (Sh, Ih, Sv, Iv) ∈ D4, it yields that LV ⩽ −Nλ+NµvIv + F3, where
F3 is given by (5.6).Therefore, we can select a ε > 0 such that Nµvε ⩽ 1. Hence,
from (5.2),

LV ⩽ −1, for any (Sh, Ih, Sv, Iv) ∈ D4. (5.12)
Case 5. If (Sh, Ih, Sv, Iv) ∈ D5, we can get

LV ⩽− 1

4

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)]
×
(
Sθ+2
h + Iθ+2

h + Sθ+2
v + Iθ+2

v

)
+ F4
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⩽− 1

4

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)]
1

εθ+2
+ F4,

where F4 is given by (5.7). So, one have

−1

4

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)]
1

εθ+2
+ F4 ⩽ −1

for some ε > 0. Then it follows that

LV ⩽ −1 for any (Sh, Ih, Sv, Iv) ∈ D5. (5.13)

Case 6. If (Sh, Ih, Sv, Iv) ∈ D6, for ε is small enough, one have

LV ⩽− 1

4

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)]
Iθ+2
h + F4

⩽− 1

4

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)]
1

εθ+2
+ F4

⩽− 1. (5.14)

Case 7. If (Sh, Ih, Sv, Iv) ∈ D7, for small enough ε, we can get

LV ⩽− 1

4

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)]
Sθ+2
v + F4

⩽− 1

4

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ 1

2
σ2
3 ∨

1

2
σ2
4

)]
1

εθ+2
+ F4

⩽− 1. (5.15)

Case 8. If (Sh, Ih, Sv, Iv) ∈ D8, for small enough ε, we have

LV ⩽− 1

4

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ σ2

3

2
∨ σ2

4

2

)]
Iθ+2
v + F4

⩽− 1

4

[
(µh ∧ µv)− (θ + 1)

(
σ2
1K

2
1 ∨ σ2

2K
2
4 ∨ σ2

3

2
∨ σ2

4

2

)]
1

εθ+2
+ F4

⩽− 1. (5.16)

Therefore, from (5.9)-(5.16), one finally drive LV (Sh, Ih, Sv, Iv) ⩽ −1 for all
(Sh, Ih, Sv, Iv) ∈ R4

+ \ Dε. This is, all conditions of Lemma 5.1 hold. Thus, model
(2.3) admits a unique stationary distribution which has ergodicity. This finishes the
proof.

6. A special case
Note that the conditions of Theorems 4.1 and 5.1 are not easy to test due to the
general incidences f(Sh, Iv) and g(Sv, Ih). Therefore, we discuss, in this section,
the stochastic dynamics of model (2.3) with a special case of general incidences
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f(Sh, Iv) = ShIv and g(Sv, Ih) = SvIh. As a result, the model is stated as follows

dSh(t) =
(
Λh − (µh + ψh)Sh(t)− β1Sh(t)Iv(t)

+

∫ ∞

0

Γ(a)Sh(t− a)da
)
dt− σ1Sh(t)Iv(t)dB1(t),

dIh(t) =
(
β1Sh(t)Iv(t)− (µh + k + ν)Ih(t) +

∫ ∞

0

r(b)Ih(t− b)db
)
dt

+ σ1Sh(t)Iv(t)dB1(t),

dSv(t) =
(
Λv − β2Sv(t)Ih(t)− µvSv(t)

)
dt

− σ2Sv(t)Ih(t)dB2(t) + σ3Sv(t)dB3(t),

dIv(t) =
(
β2Sv(t)Ih(t)− µvIv(t)

)
dt+ σ2Sv(t)Ih(t)dB2(t)

+ σ4Iv(t)dB4(t).

(6.1)

According to Theorem 4.1, we have the following corollary.

Corollary 6.1. Let (Sh(t), Ih(t), Sv(t), Iv(t)) be the solution of model (6.1) satisfies
the initial value (Sh(0), Ih(0), Sv(0), Iv(0)) ∈ R4

+. Assume that r(b) = 0 and one
of the following conditions is met:

(i) R̃∗
0 < 1 and Λh/µh ⩽ β1/σ

2
1, Ňv ⩽ β2/σ

2
2, where,

R̃∗
0 =

β1
Λh

µh
+ β2Ňv

min{µh + k + ν, µv}+ σ2
1

2

(
Λh

µh

)2

+
σ2
2

2 Ň
2
v

;

(ii) β2
1/2σ

2
1 + β2

2/2σ
2
2 < min{µh + k + ν, µv}.

Then disease is extinct with probability one, that is, lim supt→∞ ln (Ih(t)+Iv(t))/t <
0 a.s.

Lemma 6.1. Assume that (Sh(t), Ih(t), Sv(t), Iv(t)) is the solution of model (6.1)
satisfies the initial value (Sh0, Ih0, Sv0, Iv0) ∈ R4

+, then

⟨Sh⟩t ⩾
Λh

µh + ψh
− µh + k + ν

µh + ψh
⟨Ih⟩t + φh(t), ⟨Sv⟩t =

Λv
µv

− ⟨Iv⟩t + φv(t), (6.2)

where,

φh(t) =− 1

µh + ψh

[
Sh(t)− Sh(0)

t
+
Ih(t)− Ih(0)

t

]
,

φv(t) =− 1

µv

[
Sv(t)− Sv(0)

t
+
Iv(t)− Iv(0)

t

− σ3
t

∫ t

0

Sv(s)dB3(s)−
σ4
t

∫ t

0

Iv(s)dB4(s)

]
.

Proof. It can be obtained by calculating the sum of the first and second equations
of model (6.1)

d(Sh(t) + Ih(t)) =
[
Λh − (µh + ψh)Sh(t) +

∫ ∞

0

Γ(a)Sh(t− a)da
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− (µh + k + ν)Ih(t) +

∫ ∞

0

r(b)Ih(t− b)db
]
dt

⩾[Λh − (µh + ψh)Sh(t)− (µh + k + ν)Ih(t)]dt.

Directly integrating the above expression form 0 to t and dividing t gives

Sh(t)− Sh(0)

t
+
Ih(t)− Ih(0)

t
⩾ Λh − (µh + ψh)⟨Sh⟩t − (µh + k + ν)⟨Ih⟩t.

Hence

⟨Sh⟩t ⩾
Λh

µh + ψh
− µh + k + ν

µh + ψh
⟨Ih⟩t + φh(t).

Similarly, d(Sv(t)+Iv(t))=[Λv−µvSv(t)−µvIv(t)]dt+σ3Sv(t)dB3(t)+σ4Iv(t)dB4(t).
Thus, ⟨Sv⟩t = Λv/µv − ⟨Iv⟩t + φv(t). This completes the proof.

Now, we explain the stochastic persistence of disease of model (6.1).

Theorem 6.1. Assume that (Sh(t), Ih(t), Sv(t), Iv(t)) is the solution of model (6.1)
satisfies the initial value (Sh0, Ih0, Sv0, Iv0) ∈ R4

+. If Rm
0 > 1, then

lim
t→∞

⟨Ih⟩t + lim
t→∞

⟨Iv⟩t ⩾
D

C
(Rm

0 − 1) > 0 a.s., (6.3)

where

Rm
0 =

(
β1Λh
µh + ψh

+
β2Λv
µv

)
1

D
, C =

β1(µh + k + ν)

µh + ψh
∨ β2,

D =

(
β1Λh
µh

+ µh + k + ν

)
∨
(
β2Λv
µv

+ µv

)
+
σ2
1

2

Λ2
h

µ2
h

+
σ2
2

2

Λ2
v

µ2
v

+
σ2
4

2
.

Proof. Let V = ln(Ih + Iv), from Itô’s formula, the following inequality can be
obtained by direct calculation

dV =

{
1

Ih(t) + Iv(t)

(
β1Sh(t)Iv(t)− (µh + k + ν)Ih(t) +

∫ ∞

0

r(b)Ih(t− b)db

+ β2Sv(t)Ih(t)− µvIv(t)
)
− 1

2(Ih(t) + Iv(t))2

(
σ2
1S

2
h(t)I

2
v (t)

+ σ2
2S

2
v(t)I

2
h(t) + σ2

4I
2
v (t)

)}
dt+

1

Ih(t) + Iv(t)

×
(
σ1Sh(t)Iv(t)dB1(t) + σ2Sv(t)Ih(t)dB2(t) + σ4Iv(t)dB4(t)

)
⩾
{

1

Ih(t) + Iv(t)

(
β1Sh(t)(Iv(t) + Ih(t))− β1Sh(t)Ih(t)− (µh + k + ν)Ih(t)

+ β2Sv(t)(Ih(t) + Iv(t))− β2Sv(t)Iv(t)− µvIv(t)
)

− σ2
1S

2
h(t)I

2
v (t) + σ2

2S
2
v(t)I

2
h(t) + σ2

4I
2
v (t)

2(Ih(t) + Iv(t))2

}
dt+

1

Ih(t) + Iv(t)

×
(
σ1Sh(t)Iv(t)dB1(t) + σ2Sv(t)Ih(t)dB2(t) + σ4Iv(t)dB4(t)

)
⩾
{
β1Sh(t) + β2Sv(t)−

(β1Λh
µh

+ µh + k + ν
)
∨
(β2Λv
µv

+ µv
)
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− σ2
1Λ

2
h

2µ2
h

− σ2
2Λ

2
v

2µ2
v

− σ2
4

2

}
dt+

1

Ih(t) + Iv(t)

(
σ1Sh(t)Iv(t)dB1(t) (6.4)

+ σ2Sv(t)Ih(t)dB2(t) + σ4Iv(t)dB4(t)
)
.

Integrating the both ends of (6.4) from 0 to t and then dividing t on both ends

V (t)

t
⩾β1⟨Sh⟩t + β2⟨Sv⟩t −

(
β1Λh
µh

+ µh + k + ν

)
∨
(
β2Λv
µv

+ µv

)
− σ2

1

2

Λ2
h

µ2
h

− σ2
2

2

Λ2
v

µ2
v

− σ2
4

2
+
V (0)

t
+
M5(t)

t
+
M6(t)

t
+
M7(t)

t
, (6.5)

where,

M5(t) =

∫ t

0

σ1Sh(s)Iv(s)

Ih(s) + Iv(s)
dB1(s), M6(t) =

∫ t

0

σ2Sv(s)Ih(s)

Ih(s) + Iv(s)
dB2(s),

M7(t) =

∫ t

0

σ4Iv(s)dB4(s)

Ih(s) + Iv(s)
.

Substituting (6.2) into (6.5)

V (t)

t
⩾β1

(
Λh

µh + ψh
− µh + k + ν

µh + ψh
⟨Ih⟩t + φh(t)

)
+ β2

(
Λv
µv

− ⟨Iv⟩t + φv(t)

)
−
(
β1Λh
µh

+ µh + k + ν

)
∨
(
β2Λv
µv

+ µv

)
− σ2

1

2

Λ2
h

µ2
h

− σ2
2

2

Λ2
v

µ2
v

− σ2
4

2
+
V (0)

t
+

7∑
i=5

Mi(t)

t

=− β1(µh + k + ν)

µh + ψh
⟨Ih⟩t − β2⟨Iv⟩t + β1

(
Λh

µh + ψh
+ φh(t)

)
+ β2

(
Λv
µv

+ φv(t)

)
−
(
β1Λh
µh

+ µh + k + ν

)
∨
(
β2Λv
µv

+ µv

)
(6.6)

− σ2
2Λ

2
v

2µ2
v

− σ2
4

2
+
V (0)

t
+

7∑
i=5

Mi(t)

t
− σ2

1Λ
2
h

2µ2
h

.

By taking the limit of (6.6) we have

β1(µh + k + ν)

µh + ψh
lim
t→∞

⟨Ih⟩t + β2 lim
t→∞

⟨Iv⟩t

⩾ lim
t→∞

[
β1

(
Λh

µh + ψh
+ φh(t)

)
+ β2

(
Λv
µv

+ φv(t)

)
−
(
β1Λh
µh

+ µh + k + ν

)
∨
(
β2Λv
µv

+ µv

)
− σ2

1

2

Λ2
h

µ2
h

− σ2
2

2

Λ2
v

µ2
v

− σ2
4

2
+
V (0)− V (t)

t
+

7∑
i=5

Mi(t)

t

]
. (6.7)

From the large number theorem of martingales and Theorem 3.2, this yields

lim
t→∞

φk(t) = 0, k = h, v; lim
t→∞

V (0)− V (t)

t
= 0, lim

t→∞

Mi(t)

t
= 0, i = 5, 6, 7.

Therefore, from (6.7) we finally obtain (6.3). The proof is completed.
Finally, we consider the stationary distribution of (6.1) for σ1 = σ2 = r(b) = 0.
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Corollary 6.2. Assume that σ1 = σ2 = r(b) = 0. If Rs
∗ > 1 and (µh ∧ µv) >

(σ2
3 ∨ σ2

4)/2, then the solution (Sh(t), Ih(t), Sv(t), Iv(t)) of model (6.1) satisfies the
initial value (Sh(0), Ih(0), Sv(0), Iv(0)) ∈ Γ is positive recurrent and has a ergodic
unique stationary distribution in Γ, where

Rs
∗ =

√
ΛhΛvβ1β2

(µv +
σ2
3

2 )(µv +
σ2
4

2 )(µh + ψh)(µh + k + ν)

and Γ = {(Sh, Ih, Sv, Iv) ∈ R4
+ : Sh + Ih + Sv + Iv ⩽ Λh/µh + Ňv}.

Proof. According to the proof of Theorem 5.1, it can easily get that condition (i)
of Lemma 5.1 holds. Now, one verify condition (ii). By the condition (µh ∧ µv) >
(σ2

3 ∨ σ2
4)/2, it can choose a sufficiently small positive constant θ which satisfies

ρ := (µh ∧ µv) − (θ + 1)(σ2
3 ∨ σ2

4)/2 > 0. Define a function V : R4
+ → R as

V (Sh, Ih, Sv, Iv) = V5 +NV6 + V7, where V7 = (θ + 2)−1(Sh + Ih + Sv + Iv)
θ+2,

V5 =− lnSh − lnSv − ln Ih +
β2Ih

µh + k + ν
,

V6 =− lnSv − c1 ln Iv − c2 lnSh − c3 ln Ih +
β2Ih

µh + k + ν
,

c1 =
µv + σ2

3/2

µv + σ2
4/2

, c2 =
µv + σ2

3/2

µh + ψh
, c3 =

µv + σ2
3/2

µh + k + ν
,

and N > 0 satisfies the following condition

−4N

(
µv +

σ2
3

2

)(√
Rs

∗ − 1
)
+ J ⩽ −2, (6.8)

where

J = sup
(Sh,Ih,Sv,Iv)∈R4

+

{
β1Iv +

I2v
4

+
2β2

1β
2
2S

2
h

(µh + k + ν)2
− ρ

2

(
Sθ+2
h + Iθ+2

h

+ Sθ+2
v + Iθ+2

v

)
+ 2µh + k + ν + ψh + µv +

σ2
3

2
+Q

}
,

Q = sup
(Sh,Ih,Sv,Iv)∈R4

+

{
(Sh + Ih + Sv + Iv)

θ+1

(
Λh + Λv +

Λhψh
µ2
h

)
− ρ

2

(
Sh + Ih + Sv + Iv

)θ+2
}
.

Note that

lim inf
k→∞

(Sh,Ih,Sv,Iv)∈R4
+\Dk

V (Sh, Ih, Sv, Iv) = +∞

and V (Sh, Ih, Sv, Iv) is a continuous function, V (Sh, Ih, Sv, Iv) has a unique mini-
mum value at point (S̄h, Īh, S̄v, Īv) ∈ R4

+. Therefore, one introduce a non-negative
function V : R4

+ → R+ as V (Sh, Ih, Sv, Iv) = V5 +NV6 + V7 − V (S̄h, Īh, S̄v, Īv).
Directly applying Itô’s formula, one can separately obtain

LV5 ⩽− Λh
Sh

− Λv
Sv

− β1ShIv
Ih

+ β1Iv + 2µh + k + ν
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+ ψh + µv +
σ2
3

2
+

β1β2ShIv
µh + k + ν

⩽− Λh
Sh

− Λv
Sv

− β1ShIv
Ih

+ β1Iv + 2µh + k + ν + ψh

+ µv +
σ2
3

2
+

β2
1β

2
2S

2
h

(µh + k + ν)2
+
I2v
4
,

LV6 ⩽− Λv
Sv

− c2Λh
Sh

− c1β2SvIh
Iv

− c3β1ShIv
Ih

+ µv +
σ2
3

2
+ c1

(
µv +

σ2
4

2

)
+ c2(µh + ψh) + c3(µh + k + ν) +

β1β2
µh + k + ν

ShIv + c2β1Iv

⩽− 4

(
µv +

σ2
3

2

)(√
Rs

∗ − 1
)
+

β1β2
µh + k + ν

ShIv + c2β1Iv,

LV7 ⩽(Sh + Ih + Sv + Iv)
θ+1

(
Λh + Λv +

Λhψh
µ2
h

)
− (Sh + Ih + Sv + Iv)

θ+2

× (µh ∧ µv) +
θ + 1

2
(Sh + Ih + Sv + Iv)

θ(σ2
3 ∨ σ2

4)(Sh + Ih + Sv + Iv)
2

⩽Q− ρ

2

(
Sθ+2
h + Iθ+2

h + Sθ+2
v + Iθ+2

v

)
.

Moreover, from the above discussion, we can get that

LV ⩽− Λh
Sh

− Λv
Sv

− β1ShIv
Ih

− ρ

2
(Sθ+2
h + Iθ+2

h + Sθ+2
v + Iθ+2

v ) + β1Iv + 2µh

+
σ2
3

2
+Q− 4N

(
µv +

σ2
3

2

)(√
Rs

∗ − 1
)
+

2β2
1β

2
2S

2
h

(µh + k + ν)2
(6.9)

+
I2v
4

+ k + ν + ψh + µv +
N

4
I2v + c2Nβ1Iv.

Choose a bounded closed set

Dϵ =
{
(Sh, · · · , Iv) ∈ R4

+ : ϵ ⩽ Sh ⩽ 1

ϵ
, ϵ3 ⩽ Ih ⩽ 1

ϵ3
, ϵ ⩽ Sv ⩽

1

ϵ
, ϵ ⩽ Iv ⩽

1

ϵ

}
,

where, 0 < ϵ < 1 is a sufficiently small constant such that

(1 + F )max

{
1

Λh
,
1

Λv
,

1

β1

}
⩽ 1

ϵ
,
Nϵ2

4
+ c2Nβ1ϵ ⩽ 1, − ρ

4ϵθ+2
+ F ⩽ −1, (6.10)

where,

F = sup
(Sh,Ih,Sv,Iv)∈R4

+

{
− ρ

4
(Sθ+2
h + Iθ+2

h + Sθ+2
v + Iθ+2

v ) + β1Iv + 2µh + k

+ ν + ψh + µv +
σ2
3

2
+Q+

2β2
1β

2
2S

2
h

(µh + k + ν)2
+
I2v
4

+
N

4
I2v + c2Nβ1Iv

}
.

For convenience, we divide R4
+ \ Dϵ into the following eight regions

D1 =
{
(Sh, · · · , Iv) ∈ R4

+ : Sh < ϵ
}
, D3 =

{
(Sh, · · · , Iv) ∈ R4

+ : Sv < ϵ
}
,

D4 =
{
(Sh, · · · , Iv) ∈ R4

+ : Iv < ϵ
}
, D5 =

{
(Sh, · · · , Iv) ∈ R4

+ : Sh > 1/ϵ
}
,
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D6 =
{
(Sh, · · · , Iv) ∈ R4

+ : Ih > 1/ϵ3
}
, D7 =

{
(Sh, · · · , Iv) ∈ R4

+ : Sv > 1/ϵ
}
,

and D2 =
{
(Sh, · · · , Iv) ∈ R4

+ : Ih < ϵ3, Sh ⩾ ϵ, Iv ⩾ ϵ
}

, D8 = {(Sh, · · · , Iv) ∈ R4
+ :

Iv > 1/ϵ}.
Next, we verify that LV (Sh, Ih, Sv, Iv) ⩽ −1 on R4

+ \ Dϵ. This is equivalent to
prove the inequality on the above domains.

Case 1. If (Sh, Ih, Sv, Iv) ∈ D1, one can see from (6.9) that LV ⩽ −Λh/Sh+F ⩽
−Λh/ϵ+ F. Thus, one can conclude that LV ⩽ −1 on D1 for small enough ϵ.

Case 2. For (Sh, Ih, Sv, Iv) ∈ D2, we have from (6.9) that LV ⩽ −β1ShIv/Ih +
F ⩽ −β1/ϵ+ F. According to (6.10), one get LV ⩽ −1 on D2 for small enough ϵ.

Case 3. If (Sh, Ih, Sv, Iv) ∈ D3, it yields from (6.9) that LV ⩽ −Λv/Sv + F ⩽
−Λv/ϵ+ F. In view of (6.10), it follows that LV ⩽ −1 on D3 for small enough ϵ.

Case 4. If (Sh, Ih, Sv, Iv) ∈ D4, it yields that

LV ⩽− 4N

(
µv +

σ2
3

2

)(√
Rs

∗ − 1
)
+
N

4
I2v + c2Nβ1Iv + J

⩽− 2 +
Nϵ2

4
+ c2Nβ1ϵ,

which follows from the condition (6.10) that LV ⩽ −1 on D4 for small enough ϵ.
Case 5. If (Sh, Ih, Sv, Iv) ∈ D5, then LV ⩽ −ρSθ+2

h /4 + F ⩽ −ρ/4ϵθ+2 + F. It
follows from (6.10) that LV ⩽ −1 on D5 for small enough ϵ.

Case 6. If (Sh, Ih, Sv, Iv) ∈ D6, one can get LV ⩽ −ρIθ+2
h /4+F ⩽ −ρ/4ϵ3(θ+2)+

F ⩽ −ρ/4ϵθ+2 + F. Combining with (6.10) that LV ⩽ −1 on D6 for small ϵ.
Case 7. For (Sh, Ih, Sv, Iv) ∈ D7, it can get LV ⩽ −ρSθ+2

v /4+F ⩽ −ρ/4ϵθ+2+F.
This together with (6.10), one conclude that LV ⩽ −1 on D7 for small enough ϵ.

Case 8. If (Sh, Ih, Sv, Iv) ∈ D8, we have LV ⩽ −ρIθ+2
v /4 + F ⩽ −ρ/4ϵθ+2 + F.

By virtue of (6.10), it obtained that LV ⩽ −1 on D8 for small ϵ.
To sum up, we finally drive LV (Sh, Ih, Sv, Iv) ⩽ −1 for (Sh, Ih, Sv, Iv) ∈ R4

+\Dϵ.
Therefore, from Lemma 3.1, model (6.1) has a unique stationary distribution which
has the ergodic property. The proof of Corollary 6.2 is completed.

Remark 6.1. The stationary distribution of model (6.1) is obtained under addi-
tional conditions. Of course, we can also get the existence and uniqueness of the
stationary distribution of model (6.1) with σ1 ̸= 0, σ2 ̸= 0 and r(b) ̸= 0, which
makes the criteria more complicated. How to obtain a simple and easy-to-verify
criteria for the stationary distribution will be an interesting question.

7. Numerical simulations and discussion
In this section, some numerical simulations are given to show the effect of stochastic
perturbation. According to the possible values in Table 1, some basic model pa-
rameters are fixed as following: µh = 1/(72×365), k = 1/7, ν = 0.0035, Λv = 5000,
r(b) = 0.003(1 + sin(b− 10)π/20) and

ω(a) =


0, if 0 < a ⩽ 10;

0.6667(a− 200)2e−0.6(a−200), if 10 < a ⩽ 30;

0.0185, if 30 < a.
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By using the discretization methods of class-age-structure model and stochastic
differential equation which are proposed in Refs. [3, 13] , the discretization system
of model (6.1) writes

Shi+1 =Shi + [Λh − (µh + ψh)Shi − β1ShiIvi +D1]∆t

− σ1ShiIvi
√
∆tξ1i −

σ2
1

2
ShiIvi(ξ

2
1i − 1)∆t

Ihi+1
=Ihi

+ [β1Shi
Ivi − (µh + k + ν)Ihi

+D2]∆t

+ σ1Shi
Ivi

√
∆tξ1i +

σ2
1

2
Shi

Ivi(ξ
2
1i − 1)∆t

Svi+1 =Svi + [Λv − β2SviIhi − µvSvi ]∆t− σ2SviIhi

√
∆tξ2i

− σ2
2

2
SviIhi(ξ

2
2i − 1)∆t+ σ3Svi

√
∆tξ3i +

σ2
3

2
Svi(ξ

2
3i − 1)∆t

Ivi+1
=Ivi + [β2SviIhi

− µvIvi ]∆t+ σ2SviIhi

√
∆tξ2i

+
σ2
2

2
SviIhi

(ξ22i − 1)∆t+ σ4Ivi
√
∆tξ4i +

σ2
4

2
Ivi(ξ

2
4i − 1)∆t,

where, D1 =
∫∞
0

Γ(a)Sh(t − a)da, Γ(a) = ψhω(a) exp
{
−
∫ a
0
(µh + ω(τ))dτ

}
, D2 =∫∞

0
π(b)Ih(t − b)db and π(b) = kr(b) exp{−

∫ b
0
(µh + r(τ))dτ}, and ξ1i, ξ2i, ξ3i and

ξ4i are independent stochastic variables which obey Gaussian distribution N(0, 1).
Firstly, one choose parameters as Λh = 1, µv = 5000, ψh = 0.375, µv = 0.12,

β1 = 2.875 × 10−6, β2 = 4.275 × 10−6, σ1 = 1.0 × 10−5, σ2 = 9.0 × 10−6, σ3 =
3.2× 10−6 and σ4 = 2.3× 10−6. It can be obtained by direct calculation that R̃∗

0 ≈
0.9360 < 1, σ2

1 − β1/Ňh ≈ −1.0781× 10−6 < 0, σ2
2 − β2/Ňv ≈ −2.16× 10−11 < 0.

Thus, all conditions in (i) of Corollary 6.1 are satisfied. That is, the disease is
stochastic extinction, which are shown that infected hosts Ih(t) and infected vectors
Iv(t) tend to 0 a.s., as t→ ∞ in Figure 1(a)-1(c). At the same time, it is not difficult
to find that infected hosts and vectors are fluctuating in the initial stage of disease
outbreak because of the effects of stochastic perturbations. In addition, the Figure
1(d) also show that the quantity of susceptible vectors tend to the value Λv/µv
as t → ∞, this is the conclusion of Theorem 4.2. Both theoretical results and
numerical simulations show that as long as R̃∗

0 < 1, regardless of the initial state of
model (6.1), the disease will eventually become extinct.

However, if we change Λh = 10, ψh = 0.175, µv = 1/30, β1 = 2.875 × 10−4,
β2 = 4.275 × 10−4, σ3 = 8.678 × 10−38, σ4 = 8.678 × 10−3 and other parameters
are fixed as Figure 1. We can get Rs

∗ ≈ 14.6748 > 1 and (µh ∧ µv)− (σ2
3 ∨ σ2

4)/2 ≈
3.9791 × 10−7 > 0 by direct calculation. From Corollary 6.2, model (6.1) has
a unique stationary distribution which has the ergodic property. The Figure 2(a)
displays the trajectory of the element Iv(t) of solution (Sh(t), Ih(t), Sv(t), Iv(t)) and
the plot of Figure 2(b) shows the distribution of Iv(t) after some initial transients.
Further, the trajectories of Figures 2(c) and 2(d) show that the distributions of
infected classes Ih(t) and Iv(t) of model (6.1), which is obtained by 5000 numerical
simulations with the same initial condition and the same sufficiently large t, this
implies that the disease is endemic.

Finally, we consider the influence of temperature, humidity and other factors on
transmission of vector-borne infectious disease. To do so, the basic parameters of
model are fixed as follows: Λh = 10, Λv = 5000, ψ = 0.175, k = 1/7, µh = 1/(72×
365), β1 = β2 = 2.875×10−5, µv = 1/20. In Figure 3(a), we fix σ3 = σ4 = 2.5×10−6,
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Figure 1. The stochastic extinction of disease and asymptotical stability of the disease-free steady state
for model (6.1) with Λh = 1, µv = 5000, ψh = 0.375, µv = 0.12, β1 = 2.875× 10−6, β2 = 4.275× 10−6,
σ1 = 1.0 × 10−5, σ2 = 9.0 × 10−6, σ3 = 3.2 × 10−6 and σ4 = 2.3 × 10−6. Here, R̃∗

0 ≈ 0.9360 < 1,
σ2
1 − β1/S

0
h ≈ −1.0781 × 10−6 < 0, σ2

2 − β2/S
0
v ≈ −2.16 × 10−11 < 0.
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Figure 2. The persistence of disease of model (6.1) with Λh = 10, ψh = 0.175, µv = 1/30, β1 =

2.875× 10−4, β2 = 4.275× 10−4, σ3 = 8.678× 10−38, σ4 = 8.678× 10−3. Here, Rs
∗ ≈ 14.6748 > 1 and

(µh ∧ µv) − (σ2
3 ∨ σ2

4)/2 ≈ 3.9791 × 10−7 > 0: (a) the trajectory of Iv(t); (b) the distributions of Iv(t)
after some initial transients; (c) the histogram of Ih(t); (d) the histogram of Iv(t).

and choose σ1 = σ2 as 1.2× 10−6, 1.2× 10−5 and 5.2× 10−5 to discuss the impacts
of strengths of σ2

1 and σ2
2 on the disease transmission. This can be understood as

the impacts of stochastic perturbation on the behaviors and scope of activities of
vectors, or the protective measures of humans. The plots in Figures 3(a) and 3(b)
imply that σ1 and σ2 have an impact on the peak value of disease outbreak and the
arrival time of the peak value. However, if we fix σ1 = σ2 = 2.5× 10−6, and choose
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σ3 = σ4 as 8.2 × 10−4, 8.2 × 10−2 and 8.2 × 10−1 in Figures 3(c) and 3(d). The
plots show that σ3 and σ4 have very little influence on disease transmission. This
seems to imply that the size of vector population has a smaller impact on disease
than the behavior of vectors. Further, we choose the following three sets of values
in turn: (i) σ1 = σ2 = 2.5× 10−6, σ3 = σ4 = 1.2× 10−5; (ii) σ1 = σ2 = 2.5× 10−5,
σ3 = σ4 = 1.2× 10−4; (iii) σ1 = σ2 = 5.2× 10−5, σ3 = σ4 = 1.2× 10−2. The plots
in Figures 4(a) and 4(b) imply that the transmission of disease is unpredictable
due to the change of white noise strength, this may be one of the reasons why it is
difficult to control the vector-borne infectious diseases.
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Figure 3. The effect of strength of σ2
i (i = 1, 2, 3, 4) on the transmission of disease with Λh = 10,

Λv = 5000, ψ = 0.175, k = 1/7, µh = 1/(72 × 365), β1 = β2 = 2.875 × 10−5, µv = 1/20. Here, (a) and
(b): σ3 = σ4 = 2.5× 10−6 and σ1 = σ2 = 1.2× 10−6, 1.2× 10−5, 5.2× 10−4, respectively; (c) and (d):
σ1 = σ1 = 2.5 × 10−6 and σ3 = σ4 = 8.2 × 10−4, 8.2 × 10−2, 8.2 × 10−1, respectively.
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Figure 4. The effect of strength of σ2
i (i = 1, 2, 3, 4) on the transmission of disease with Λh = 10,

Λv = 5000, ψ = 0.175, k = 1/7, µh = 1/(72 × 365), β1 = β2 = 2.875 × 10−5, µv = 1/20. Here, (i)

σ1 = σ2 = 2.5 × 10−6, σ3 = σ4 = 1.2 × 10−5; (ii) σ1 = σ2 = 2.5 × 10−5, σ3 = σ4 = 1.2 × 10−4; (iii)

σ1 = σ2 = 5.2 × 10−5, σ3 = σ4 = 1.2 × 10−2, respectively.
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8. Concluding remark
In view of stochastic factors (such as, weather changes, living habitats and the
amount of medical resources, etc.) in the transmission of vector-host infectious
diseases, as well as the immune loss rate and disease relapse rate are related to
the vaccine effectiveness and recovery cycle, we propose a stochastic vector-host
epidemic model with the age of vaccination and relapse, to study the impacts of
random factors and compartment-age. Our model can be used to characterize the
transmission of Tuberculosis, Malaria, and so on.

By using Itô’s formula, and the techniques of some inequalities, the global ex-
istence and uniqueness of positive solution, some criteria of stochastic extinction
of disease, the existence of stationary distribution are obtained for this stochastic
model with general incidence. Further, when the general incidences are reduced
to bilinear incidences, some sufficient conditions on extinction, persistence, and
existence of ergodic stationary distribution are obtained. Numerical simulations
illustrate the main theoretical results and the impacts of stochastic perturbation.
Numerical simulations also imply that the transmission of vector-host disease be-
come more frequent and unpredictable due to uncertain factors. In addition, during
the spread of vector-host diseases, the behavior of vectors and the self-protection
of humans are the key factors to control the disease relative to the number of vec-
tor population. Therefore, the application of limited medical resources to personal
protection to avoid mosquito bites, rather than to reduce the number of vectors
and destroy the natural environment, may be one of the keys to control vector-host
infectious diseases in the future.

Vector-host infectious diseases are transmitted by infected vectors, and there-
fore, its transmission has a significant period. How seasonal fluctuations affect
the dynamics of vector-host infectious disease models with seasonal and stochas-
tic disturbances is a problem worthy of further study. In addition, we also pay
close attention to the dynamic properties of the stochastic vector-host models with
impulsive control. All these will be studied in the future.
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