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INTEGRAL EQUATIONS BY PIECEWISE
POLYNOMIAL PROJECTION METHODS
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Abstract In this article, we address the approximation solution of Volterra-
Urysohn integral equations which involves weakly singular kernels. In order to
get better convergence rates, projection methods namely Galerkin and multi
Galerkin methods, along with their iterated versions are used in the space of
piecewise polynomials subspaces based on the graded mesh. In addition, we
compute the superconvergence results for the proposed integral equation and
show that iterated Galerkin method outperforms Galerkin method in terms of
order of convergence. Further, we demonstrate numerical examples to verify
the proposed theoretical framework.
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1. Introduction

The well-known Volterra-Urysohn integral equation of the second kind with a weakly
singular kernel is given as follows:

u(t) =g(1) + /OT(T —8) k(7 s,u(s))ds, T€[0,1], 0<~vy<1, (1.1)

where ¢ is an inhomogeneous function in the Banach space X = L*°[0, 1], which
is sufficiently smooth, the unknown function u in X, is to be determined, and the
kernel function k(., ., .) is sufficiently smooth in the triangular area C(o), where
o={(r,8): 0 <s <7 <1} and C(0) signifies the set of all continuous functions
in 0. We say the preceding Eq. (1.1) weakly singular because (7 — s)~7 makes our
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kernel k(., ., .) unbounded at some s = 7, although its integral is finite. This type of
integral equation arises in the area of physics, chemistry, and biology [6,7,9,21,24].
With the use of the Laplace transformation, W. R. Mann and F. Wolf [21] explained
a nonlinear BVP of heat transfer between solids and gases by converting it into a
nonlinear integral equation. R.K. Miller discussed the regularity of solution of
second kind nonlinear Volterra integral equations (VIE’s) with convolution kernels
in [23]. Regularity of the solution u of the aforementioned second kind weakly
singular VIE (1.1) is discussed in [5].

The proposed Eq. (1.1) has an exact solution u that is either sufficiently smooth
or its derivative «'(7) contains a singularity around the origin 7 = 0 which implies
uw' (1) ~ 777 [9]. In general, finding an exact solution to the aforesaid nonlinear VIE
is difficult. The non-smoothness attribute of an exact solution causes a reduction
in the global order of convergence of numerical methods based on uniform meshes.
To retrieve the optimal order of convergence some classical approaches can be used.
Instead of employing uniform mesh, graded mesh can be used to tackle this difficulty
[3].

Several authors have studied and thoroughly documented many numerical ap-
proaches for finding numerical approximate solutions to non-linear VIE’s in [6-8,
13,27,32]. The Galerkin, collocation, and product integration methods [6-10, 14,
20,31, 34], are some of the most well-known numerical approaches to solve integral
equations. Due to the usage of projection operators, these methods are referred
to as projection methods. Brunner [8] developed the collocation method for non-
linear VIE’s, and compared the convergence results in quasi-uniform and graded
meshes successfully. Under certain assumptions, D O’regan [25] examined the exis-
tence of a solution for VIE’s of Urysohn, and Hammerstein types. Following that,
Brunner et al. [9] proposed a piecewise collocation approach based on the graded
mesh for solving the preceding Eq. (1.1) as well as discussed the solution’s smooth-
ness. To avoid the situation of unbounded derivative of exact solution u at the
left endpoint of the integration domain [0, 1], Orsi [26] introduced a new numerical
approach to solve second kind weakly singular nonlinear VIE’s with the product
integration method. An extrapolation technique for solving proposed equation is
described in [32], based on Gronwall inequality and Navot’s quadrature rule with
the endpoint singularity. In order to retrieve the optimal order, Rebelo et al. [2§]
used the Hybrid Collocation method and also obtained convergence rates by ap-
plying non-polynomial spline approximations and collocation on the graded mesh.
Baratella [3] suggested a Nystrom type interpolant of the solution for some weakly
singular nonlinear VIE’s based on Gauss Radau nodes and improved convergence
results by employing a smoothing transformation technique.

Z. Xie et al. in [34] discussed convergence analysis of spectral Galerkin method
for second kind Volterra type integral equations. S.Sohrabi et al. [30] proposed
spectral-collocation method for a class of nonlinear weakly singular VIE’s and ob-
tained the convergence results. Kant et al. [18] studied the order of convergence of
Galerkin and multi-Galerkin methods for Volterra Hammerstein integral equations.
Micula [22] described numerical iterative method for the approximate solutions of
weakly singular nonlinear VIE’s of the second kind. On the basis of multivariate
Jacobi approximation, Zaky et al. [35] recently discussed the spectral collocation
method for nonlinear weakly singular VIE’s.

This article discusses how to solve non-linear VIE’s with weakly singular kernels
using piecewise polynomials subspaces based on graded mesh to produce supercon-
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vergence results.
The significant contributions of this paper is given as follows:

o First, projection methods are discussed for solving the Volterra integral equa-
tions of type (1.1) with graded mesh in piecewise polynomials subspaces.

e In order to obtain the superconvergence rates, we transform weakly singular
VIE to Fredholm integral equation.

o We show that the Galerkin and iterated Galerkin solutions converge with the
order O(n~") and O(n~?"), respectively, where r is the order of piecewise
polynomials employed in the approximation and n signifies the number of
partition points.

e In addition, we use an iterated multi-Galerkin approach to improve the con-
vergence results. Indeed, we show that the iterated multi Galerkin approach
converges with O(n=3") order.

The remainder of the paper is depicted as follows: In Section 2, Galerkin and
iterated Galerkin methods for the proposed VIE of the type (1.1) are developed.
Preliminaries and auxiliary lemmas are discussed in Section 3. Section 4 discusses
the convergence results and the improved superconvergence rate using the iterated
multi-Galerkin method is presented in Section 5. Finally, numerical examples and
conclusions are striated in Section 6.

2. Non-linear Volterra-Urysohn Integral Equation

We covered the Galerkin and iterated Galerkin method for VIE of the urysohn type
with graded mesh in this section. To implement the enhanced solvability theory of
the Fredholm integral equation, we begin by transforming the Urysohn VIE to the
Fredholm integral equation.

Consider the second kind Volterra-Urysohn integral equation with a weakly sin-
gular kernel in a Banach space X = L*°[0, 1]

u(t) =g(1) + /OT(T —8) k(r,s,u(s))ds, 7€]0,1], v€(0,1). (2.1)

In the Eq. (2.1), u is the unknown function in the Banach space X, while k£ and g
are known and sufficiently smooth functions which represent the kernel and source
functions, respectively.

In order to obtain the superconvergence results, the domain of integration is
transformed from [0, 7] to the interval [0, 1] by the transformation, s(.,.) : ([0, 1] x
[0,1]) — [0,1]

§=TA, (r,A) € ([0,1] x [0, 1]). (2.2)

It reduces the problem (2.1) to the following integral equation

u(t) = g(1) —|—/0 (1- )\)_'Yl; (1,8(m, A), u(s(1,N\)))) dA. (2.3)

Let us define an operator K : L>°[0,1] — L*°[0, 1] for the integral portion of above
Eq. (2.3)

K(u)(T) :z/0 (1- /\)_712; (1, 8(1, A),u(s(T,N))) dA, (2.4)
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with
k (1, 8(1, A), u(s(1, ) := 7k (1, 5(7, ), u(s(1,\))) . (2.5)

The Fréchet derivative at u of integral operator (2.4) is given by
1
’C'(U)y(T)Z/ (L=A)""ku (7, 8(7, A), u(s(7, X)) y(s(7, X)) dA, y€ L>=[0,1], (2.6)
0

where ky, (7, 5(7, A), u(s(,\))) = %fc (1, 8(7, A),u(s(r, A)).
Set

W(r,s(1, A), u(s(m,\)) == (1 = N)Vky (7, 5(7, \), u(s(1, A))) . (2.7)
The integral equation (2.3) has the following operator equation form:

u(r) = g(7) + K(u)(7), T €[0,1]. (2.8)

2.1. Assumptions

Throughout this paper following assumptions are made on g, kernel k(.,.,.), and
transformed kernel (., ., ):

(i) The source function g is r times continuously differentiable over an interval
[0,1], where r is greater than or equal to 1 and it also satisfies Lipschitz
continuity with order §. That is, for any 71,7 € [0, 1] there exists a positive
number a such that

l9(s(71, X)) = g(s(72, M) < als(r1, A) = s(72, M), (2.9)

where 6 > 1 — 7.
(ii) The kernel k(., ., .) satisfies the Lipschitz continuity with respect to v and also

it is bounded over [0,1] x [0,1] x R. That is, for any uj, us € R, there exists
a positive number a; such that

|k (1, 8,u1) — k (7, 8,u2)| < ar|ur — ual. (2.10)

(iii) The partial derivative with respect to u of the transformed kernel k(.,.,.)
exists and it also satisfies Lipschitz continuity with respect to u. That is, for
any ui,us € R, there exists a positive number asg such that

[ku (T, 8,u1) — ky (7, 8,u2)| < aslur — us. (2.11)

(iv) Further, the partial derivative l;:u(, ., .) satisfies the Lipschitz continuity with
respect to s. Then, for any s1,s2 € [0, 1] there exists a positive number ay
such that

| (7, 51,u) — ko (7, 52,u)| < aalsy — sal. (2.12)
Remark 2.1. (i) By Eq. (2.5) and assumption (ii), we have

|l§: (1,8,u1) — k (1,8,u2)| = |7'1_7k (1,8,u1) — 1= (7,8,u2)|
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= |7—177Hk (Ta S, ul) —k (Ta S, u2)|
< 7 an fur — uzl
< ag\ul — U2‘7 (2.13)
where ay = sup |7'77|a;.
T€[0,1]
Hereby, the transformed kernel l’:;(7 .,.) also satisfies Lipschitz continuity with
respect to u.
(ii) As the kernel k(.,.,.) is sufficiently smooth, then the partial derivative
Ey (7,5(1,A), u(s(7, \))) of transformed kernel k (7, s(, \), u(s(r, A))) is sufficiently
smooth for any v € C"(0, 1], where r > 1, the space of r-times continuously differ-
entiable functions.

Let us introduce an operator T on X such that:
Tu)=g+K(u), veX (2.14)
The Fréchet derivative of T' at any u € X is as follows:
T (u) = K (u).
From Eq. (2.14), the Eq. (2.8) can be written as:
w="T(u). (2.15)

For aay < 1, a = 211%, T : X — X is a contraction mapping (by Eq. (2.13))
then 3 unique solution ug in a complete metric space X, for the Eq. (2.15).
Suppose that 1 is not an eigenvalue of linear operator T" (ug) then the inverse of

integral operator (I -7 (uo)> exists and uniformly bounded in infinity norm.

For any v € C"[0, 1], we can write

kv
||v||r,oo = max ok

:0§k§7‘>,

oo

k
where a—i denotes the k" order derivative of v w.r.t. 7 for any r € N.

Now we discuss the graded mesh for the given interval [0,1]. Since the kernel
function has singularity at A = 1 and the derivative of exact solution wug is un-
bounded at 7 = 0 in [0, 1], we consider the graded mesh II,, = {79, 71,..., 7} of the
following form:

1 /21\1 n
=—-|— 0<I< = 2.16
n=3(%) <1< (2.16)
n

=1—"1,_4, 3 <lIl<n, (2.17)

wherein g = ﬁ,r > 1.
Next, we set A;= [r_1,7], V [ be the sub-intervals of [0,1] and h :mlax{h,l =
ni—7i—1}, ({ =1,2,...,n) be the norm of partition, which tends to 0 when n — oo.

The approximating subspace X,, = S, (II,) over the interval [0,1], the space of
piecewise polynomials with degree less than and equals to » — 1, with continuous
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derivatives —1 < p < r — 2 at the break points 7, | = 1,2,...(n —1). If p =0,
then approximating subspace Sg’n(l_[n) becomes the case of continuous piecewise
polynomials while for 4 = —1 approximating subspace S, L(I1,,) has no requirement
of continuity at the breakpoints. In this case u,, € X,, is arbitrarily taken to be left
continuous at 77, V [ and right continuous at 79. Then

hy =7 —To= %(%)q =20t (%)q = O(n™9), (2.18)
and
oy =Tp—Tna=1—1+ %(%)q — 9u-1 (%)q = O 9. (2.19)
Hence
hlzhnzo(n%),o<w<1. (2.20)

After that, for rest of the sub-intervals Ay, by (I =2,3,...,(n — 1)) are computed
by using Mean Value Theorem (MVT), which is given as follows:

(&) -5 (22

(2) w-a-1m

n

(z)ng—l, (2.21)

where ( € (I —1,1) and [ <n — 1. Hence

q q
hi< <i) < (Z) (n— 1)1

q—1
<gq 2(!1*1)1 [1 _ 1]

hh=m—m_1=

IN

1
2
1
2
4
2

n n
<q ae-n L _ O(n~1h). (2.22)
n

Orthogonal projection:
Consider that P, : L*°[0, 1] — X,, represents the orthogonal projection operator
which is given as follows:

<Pn111,112> = <’U1,’Ug>, Vo € LOO[O, 1], Yy € Xn, (223)

where (vl,v2>:/0 v1(T)ve(T)dT.

2.2. Galerkin method

Here, the Galerkin and iterated Galerkin methods are discussed for obtaining ap-
proximate solutions to the integral equation (2.8). The Galerkin approximate solu-
tion u,, € X,, of the integral equation (2.8) is defined as follows:

Uy, = PrK(tn) + Png. (2.24)
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Let us define the operator T, as follows:
T, (u) = PoK(u) + Pry. (2.25)
So, we can write Eq. (2.24) as
Up, = T (Un). (2.26)
Next, we introduce the iterated Galerkin solution @, for the integral equation (2.8):
Uy = K(up) +g. (2.27)
By replacing u,, = Py, the Eq. (2.27) becomes:
Uy, = K(Ppiin) + 9. (2.28)

Let us define an integral operator S, (u) = K(P,u) + g, then the above Eq. (2.28)
becomes

= Ty = S (i) (2.29)

3. Preliminaries and auxiliary lemmas

The purpose of this part is to state and prove some lemmas and theorems which are
needed to get convergence results. Let b be a generic constant that is independent
of n and can take different values depending on context. BL(X) denotes the set of
bounded linear operators on X.

The following result stated by Ivan G. Graham [12] is significant in explaining
convergence analysis of the proposed integral equation (2.1).

Lemma 3.1. Let P,, be the orthogonal projection operator defined by (2.23). Then

(i) there exist a positive number p, such that
1PrllLe < p < oo. (3.1)

(ii) in the sub-interval A; = [r,-1,7], @ =1,2,--+,n for any u € C"[0,1] there
ezist a positive number C' such that

I(Z — Po)ull e an < CRlullcoeca- (3.2)

Next, we state the following lemma concerning about exact solution wug as its
derivative is unbounded at the starting point of the domain of integration.

Lemma 3.2. Suppose the source function g € C"[0,1],r > 1 satisfies Lipschitz
continuity with order . The exact solution ug € C™(0,1] and P,, be the orthogonal
projection operator, then it follows:

(4) I(Z = Pn)uo(s(r, )l L=o.0) = O(n"). (3-3)
(i1) lug(s(T, A+ 6)) — uo(s(, \))| = O(5* 7). (3.4)
Proof. Similar to the Lemma 1 of [18], it can be proved. O

Now, we quote a [33] Theorem, which helps us to show that the solution of an
equation u = Hu can be obtained if the solution of other equation u = Hu is already
known.
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Theorem 3.1. Let H and H be continuous operators over an open set A in a
Banach space X. Suppose ug € A be an isolated solution of equation u = Hu and
H' is Fréchet derivative Ofﬁ at ug. If the inverse of operator T — @(uo) erists in
the given norm then for sufficiently small §, there exists a positive constant q lying
in the open interval (0,1) such that

N (e H (o)) ™ (H/ (w) — H (uo))|| < g, (3.5)
X = (T — H'(u0)) " (H(uo) — H(uo))|| < 6(1 — q), (3.6)

holds. Then a unique solution iy of u = Hu lying in the open ball B(ug,d) with
centre ug and radius 6 > 0 such that

X < g — ol < X, (3.7)
q —q

satisfies.

The following Lemma is useful to prove the existence and to determine the order
of convergence of the approximate solution of the iterated Galerkin method.

Lemma 3.3. Let the function W (1, s(1, ), u(s(7, A))) = (1=\) "k, (7, s(7, X), u(s(7, \))),
which is defined by Eq. (2.7). Then for an exact solution uy € C"(0,1] following
result holds:

/O W (7, 5(7, A), uo(s(, X)) (P = Duo(s(7, A)) dA

<IW (T, s(7,.),u0(s(7,.))) = vellpy N (Pa = Duols(7,.))ll g

(A1)

3P~ DW (7, ) ol DLz, NP = Dts( Dl
=2

HIW (T, s(7,.), uo(s(7, ) = vrllpy  N(Pa = Duo(s(r, )l s

(An)

)

Proof. The derivative of exact solution ug is unbounded in the sub-interval [0, 7],
but is sufficiently smooth in rest of the sub-intervals whereas the kernel function ex-
hibits singularity at A = 1 in the last sub-interval [7,,_1, 1], although it is sufficiently
smooth in rest of the sub-intervals.

As a result, W(r,s(m,\),uo(s(1,A))) = (1 — X\) "7k, (,5(7, A), uo(s(7, \))) is
sufficiently smooth in the sub-intervals [1;_1, 7;] where ¢ varies from 2 to (n — 1),
it is singular in the sub-intervals [0, 71] and [7,,—1,1]. Thus to obtain the solution,
the standard integration domain [0,1] can be divided into n sub-intervals such as
[0,71], [Ti—1, 7], and [Ty—1,1].

/0 W(r, s(t, N), up(s(r, A\)))(Prn, — Dug(s(1,N)) d)\‘

= Z/T W (r,s(1,\), u0(s(1, ) (Pr, — Dug(s(m,\)) dX
i=1YTi-1

IN

/OT1 W(r, s(1, A),uo(s(1,A)))(Pn, — Duo(s(7, A)) d)\‘
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+ z_:/T W (r, s(1, A), uo(s(1, X)) (Pr, — Dug(s(m, ) dA
+ / W (r, (7, A), 1 (5(7, A)) (P — Dyto(s(7, ) dA|

For any v, € X,,, (vr, (Pn—I)uo(s(7,.))) = 0, by applying orthogonality of (P,, —I),
and Holder’s inequality, we get

1
/0 W (T, s(7, A),uo(s(7, X)) (Pr, — Duo(s(7,\)) dX

- |<W(T> S(Ta ')7 UO(S(Tv ))) - Vr, (Pﬂ - I)UO(S(T, ))>A1|

D W (ms(7,.),uo(s(7,)))s (P = Duo(s(7,.)))a,

+ |<‘;V(T» s(7,.),u0(s(7,.))) = vr, (Pn = Duo(s(7,.))a, |
=[(W(r,s(7,.),u0(s(7,.))) = vr, (Pn = Duo(s(7, )|

+

n—1

Z<(Pﬂ - I)W(Tv 5(7—7 ')7 u0(8<7_7 )))’ (Pn - I)UO<S(T7 ))>A1

+ |<‘;V(Ty s(7,-),uo(s(7; ) = vr, (P — Duo(s(7,.)))a,|

<IW(r,s(7,.),uo(s(7,.)) = vellpy N(Pa = Duols(7, )l |

+

n—1
+ 2 I(Pn = DW(r, s(r, ), uos(r, Dl e, 11(Pa = Do, Dz,
=2

HIW (T, s(7,.), uo(s(7,)) = vrllpy,  N(Pa = Duo(s(r, )l e -

(An)
Thus, this proves the anticipated result. O
Lemma 3.4. For any 6 > 0 and ug € C"(0, 1], the following hold:

(i)O<STu£)<1ku(T,S(T,)\+5),u0(5(7,/\+5)))71~£u(7’,5(7',)\),uo(s(T,)\)))‘Sb5+b15177.
I 1 1 1 g,

@ [ fa=rar - mow| A< a0

Proof.

(i) Using assumptions (iii), (iv) and estimate (3.4), we obtain

Ku (r,8(T, A+ 6),up(s(t,\+9))) — Ku (7, 8(1, \), up(s(r, )\)))‘
< ];u (7—7 8(7—7 A+ 6)7 uO(s(Ta A+ 5))) - ]::u (7—7 S(Ta )‘)7 uO(s(Ta A+ 5)))’
+ [ (7, (7, \)y w0 (507, A+ 6))) — Feu (7, 87, ), o (5(, /\)))‘

<ag|s(T, A+ 6) — s(7, A)| + a3 |uo(s(m, A+ 8)) — up(s(7, \))|
<ag|TA+9) —7(N)| +asd s
=ay |T‘ |(5‘ + blél_”’,
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where b = agb. Thus,

sup l;;u(T, s(T, A +0),up(s(r, A+ 9))) —];Ju(T, s(T,A), uo(s(1, M) | < b6 7,

0<7,A<Y
(3.8)
where sup aq4|T| = 0.
0<r<1
(ii) Consider,
1-6
/ 1 _ 1 )\
o 1A=MA+d8)) ([1-A)
1 1—v 1—v 1—v 1 1—
_ _ - <2 [§'7]. .
1_7[5 +(1-96) 1 }721_7[5 ] (3.9)
O

We now state and prove a Theorem which is useful in our convergence analysis,
with the help of a result from ( [29], Schumaker, p.92.)

Theorem 3.2. Let the function
W (r,s(1, M), uo(s(m, \) = (1=X) "k (7, 5(7, A), uo(s(1, A))),
is defined by Eq. (2.7). Then for every T € [0,1], 3 a polynomial v, € P, such that
W (7, 5(7,.),u0(5(7,.))) = vell rg,0 = O(R'7), (3.10)

where h is the norm of the partition and P, is the set of polynomials of degree
<r-—1.

Proof. W(r,s(r,.),uo(s(r,.))) € L'[0,1] and w; ; is the modulus of smoothness
of order 1 (cf. [29] Schumaker, p. 92), then for every 7 € [0,1] 3 a polynomial
v, € P, such that

HW(Tv S(T’ ), UO(S(T7 ))) - UTHLl[O,l] < Clwl,l(W(Tv s(T, ')7 uO(S(T’ ) h)’

where C is a constant free from n.
Let Is = [0,1 — 4], for very small 6 > 0. Thus,

[W (T, s(7, A), uo(s(7, X)) = vrll 1o 1y
< Clwl,l(W(Ta S(Tv ')’ uO(S(T’ )))7 h)
=y Sup 1AW (7, s(7,.), w0 (s(T, Il £ 1)

1-6
=(C; sup / W (T, s(T, A+ 9),uo(s(m, A+ 9)))
0<s<h Jo

— W (r,s(1,\),uo(s(1,A\)))| dA. (3.11)
Now consider,

W (r, s(t, A+ ), uo(s(m, A+ 9))) — W(r,s(, \), uo(s(7, \) )||L1(Ié)

1-6 | 1. 7.
/0

)
ko (1,8(7, A+ 0),up(s(m, A+ 9))) Ky (7, 8(7, N, uo(s(7,N))) QX

(1= (A+09) (1=
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1-6
<)
0
1-6
o,
0

< sup

0<7,A<1

+/016 1=

— Eu(7, 8(7, \), uo(s(7, )\)))’

1-4
<A} /
0

where Al = sup
0<7,A<1

AT = supopacr [k (7, 8(T, A+ 6), uo(s(m, A+ 6))) = ku (7, 5(7, A), uo(s(, A)))‘ :

I;u (Ta 5(7_7 A+ 5),11,0(5(7’, A+ 5))) ky, (Ta 5(T> A+ 5)3 uO(S(Ta A+ 5)))

(1—(\+0) B (1—X)

ky (7, 8(T, A4 6), u0(s(T, A+ 8))) Ky (7, 5(7, N), ug(s(7, \)))

(I=X) (1=
1 1

(I=(48)y (1=XN)

d\

X

dX

1-6
Fu (7, 8(7, A + 8), w0 (s(, A + 5)))‘ /0

d\ sup ];:u(T,S(T,)x+5),u0(5(7’,/\+5)))

0<T,A<1

1 1 , [
(=) (1_m‘ At A /

Fw (7, 5(7 A+ ), uo(s(7, A + 5)))\ and

1
FERVE

dA,

Let as = sup |ky (1, 5(7, A), uo(s(7, )\)))‘ < 00.

0<7,A<1
Evaluating A} with assumption (iii) and Lemma 3.2, we get

Al= sup zéu(T,s(m+5),u0(s(r,A+5)))]

0<7,A<1

Ey (7, 8(7, A+ 0), ug(s(7, A+ 0))) — Ky (7, 8(7, A), wo(s(T, A)))

< sup
0<7,A<1

+  sup l%u(T7S(T,>\),U0(8(T»)\)))‘

0<7,A<1

<asz sup |ug(s(T, A+ 0)) —up(s(7, A))| + as
0<7,A<1

<(azbd' ™ +as) < oco. (3.12)

1-06
/0

On combining estimates (3.12) and (3.13) with Lemma 3.4, we can write

HW(Ta 5(7—7 A+ 5)3“(5(7—7 A+ 5))) - W(Tv 5(T7 A)a u(S(Tv A)))“Ll(Ig)

Also

1
- A

d\ = [1—6'"7] < b< oo (3.13)

glf%v (26777 + (b5 + b6 7)
=05t ). (3.14)
With the help of estimate (3.14), estimate (3.11) can be written as
W7, s(7,.),u(s(7,.))) = vrll Lo 1
<Cy sup [[W(r,s(m, A+ 6), u(s(1,A +6))) = W(7, (7, A), u(s(7, M)l L1 (1)

0<6<h
(3.15)
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<C; sup [51*7] < ORI = O(RY).

0<8<h
Thus, this proves the anticipated result. O
Note:
A—/lld/\—1< (3.16)
Tl T |

Lemma 3.5. Suppose the unique solutionug € C"(0, 1], » > 1 and a linear operator
K (ug) be the Fréchet derivative of a monlinear operator KC at ug then the following
hold:

(i) H/C’(Pnuo)—/c’(uo)HLm 50 as n— oo
(ii) H/c’(uo)m—/c’(uo)”m 50 as n— oo
Proof. (i) Now for any y € L*>°[0, 1],

‘Kf(?%luo)y(T)-—>Kf(u0)y(7)

/0 (1- )\)_"fcu (7, 8(1, N), Pruo(s(m, X)) y(s(m, X)) dA

—/O (1-— A)_Wl%u(r,s(r,)\),uo(s(T,)\)))y(s(T, )\))d)\‘

1
/0 (1= ) (e (7, 57, A), Ptio(s(r, A))

- ku(Ta 8(7’ )‘)7 uO(S(T’ )‘))))y(S(T7 /\)) dA

On using estimates (2.11), (3.16), and (3.3), we can write
K (Pa)y(r) = K (wo)y(r)|
<o [ 10027 1(Pato — w0 st ) 7 )] 03
a5 1P ~ Dol D= oot Dl [ 10277

<azAsbn™" |ly(s(T,.)|| foo - (3.17)

Hence, with the help of estimates (3.1) and (3.17), we have
H’CI (Pruo) — K (uo)HL <azAxbn™" — 0 as n — oo. (3.18)

(ii) Next, for any y € L°°[0, 1], by using Holder’s inequality, Lemma 3.3, Theo-
rem 3.2, estimates (2.11), (2.20), and (2.22):

[ (0P = K (10) ()
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= /0 (1= Nk (1, 8(7, A), u0(5(7, M) Pry(s(t,A)) dA
—/0 (1-— A)‘”%U(T,S(T,)\),uo(s(T,)\)))y(s(T, )\))d)\‘

= /0 (1- )\)_"fcu (1,8(1, N), up(s(1, N))) (Pr — Dy(s(1,A)) d/\’

= /0 W (r, s(m, A), uo(s(m, A))(Pr. — Dy(s(m, X)) dA

<IW(r,s(r,.),uo(s(7,-)) = vrllpy, N (Po = Dy(s(7,)llzeg.

1) H )

+ i 1(Pr = DW (T, 5(7,.), wo(s(7, DDz, (P = Dy(s(m; )z

(Ag)
W50, wols(r, )~ vl g, 0P = Das(r, Dl (319)
<IIW(r,s(r,.),u0(s(7,)) = wrlipy,  I1(Pa = Dy(s(7, )l

(A1)

n—1
+hi Y N(Pu = D)W (r,s(7,.), uo(s(r, I g 7 1P = Dy(s(rs )l
=2

(A)

L?/o\q‘,))

n—1
_ "W (r,s(r,.), -
<B4 )yl + O3 R (H (757, ) o (5(7:.)) )
L?Xi)

OA"
=2
L?&'))

HIW (T, s(7,.), uo(s(7, ) = wrllpy, N (Pa = Dy(s(r,))ll

(An)

"W (r, s(7,.), uo(s(r,.)))
O™

=2

n—1
<Cy (L4 p) lyll = +C Y hiRE (’

B 1P = Dy(s(r, Dl g | +Cr b (14 9) [yl

(P = Dyls(r, Dl | +Cr WAL+ 9) gl

n—1
. _(r O"W (r,s(t,.), ug(s(r,.
<Oy (14 p) [yl + O n D (H (807 ), ofo(r, )
i=2

1+ lyllp~ +Crn™" (1 +p) [yl

<b "yl (3.20)
Hence,

HIC/(UO)’P,L—ICl(uO)HL <bn™ = 0 as n— oo. (3.21)

O

4. Convergence Analysis

The convergence results of the approximate solutions of Galerkin and iterated
Galerkin methods are examined in this section.

The following theorem helps to establish the existence and uniqueness of the
approximate solution of iterated Galerkin method.
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Theorem 4.1. Suppose a linear operator ’C,(UO) be the Fréchet derivative of a
nonlinear operator IC at ug and 1 is not an eigenvalue of K (ug). Then the inverse
of integral operator (I — S, (ug)) exists in the uniform norm i.e. there exists a

positive constant V < oo and ng € N such that H(I — S;L(uo))*”L <VVn>ng.

Proof. Here we use a result from Ahues et al. [1] i.e. let X be a Banach space
and T (ug), S, (up) € BL(X). If S, (ug) is norm convergent to T (ug) and (I —
T (1)) ™" exists and bounded on X, then for sufficiently large value of n, 3V > 0
st. (I — S, (ug))! exists and uniformly bounded on X

ie.

H(I — S;L(uo))*lHLw <Y< .

So, here we only need to show that ‘

S (ug) =T’ (uO)HLm — 0 asn — oo.

S;L(Uo) -7 (UO)HLOO

= ||k’ (Ppuo) P, — zc’(uo)H

Lo

= K (Patio) P — K (10)Pr + K (uo)Pp — K’ (uO)H

Lo

K (Ppuo)Pn — K (10)Pn

IN

ot H/c (o) Pr — IC,(uO)HLW

<K Purio) = K wo) |, 1Pall e + || (w0)Po =K o)+ (41)

On combining Lemma 3.5 with Eq. (4.1), we get

Hence the theorem is proved. O
In the forthcoming Theorem, the existence and uniqueness of the estimated
solution of iterated Galerkin method is established.

’

S (uo) =T (uO)HLOO — 0asn — oo. (4.2)

Theorem 4.2. Suppose ug be the unique solution of the Eq. (2.8) in C"(0, 1],
r > 1. For sufficiently large n, there exists a positive constant q lying in the open
interval (0,1), and unique solution @, of equation u = S,(u) lying in an open ball
Bl(ug, 6) with centre ug and radius § > 0 such that

Kn
ol
T+g = ol < T

where Kk, = H(I — S (u0)) (S (ug) — T(uo))HLw .

Proof. Now using estimates (2.11), (3.16) and Lemma 3.1 for any w € B(uy, 9),
we have

’ ’

Su(w) = Sy w)|| = |[K'Puw)Pu = K (Pao)Pu||

K (Ppw)Ppy — K (Puo)Pry

/1(1 = )7 (7,5, X), P (s, )
0
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— Rl 5(7, \), Prio(s(7, A)))} Poy(s(7,\)) dA

< a; / (1= 2] [Po (0 — o) (s(r, A))| [P (s(r, A))| dA

< azAsz [|Pr(w —uo)|| poo | Pryll oo
< agAap” [[(w — uo) | oo [l oo
< azA2p?8 [yl L - (4.3)

So, with the help of the foregoing Theorem 4.1 and estimate (4.3), we can write

sup (= 8, (0)) (5, (w) = S, (o) | < VasAzp®5 < g (say).
weB(uo,0) Lee

In this case, we choose 0 such that ¢ € (0,1) which satisfy Eq. (3.5).
i = || (1 = 0, (u0)) 7 (S (o) = T(wo))||, <V IK(Patto) = K(uo) | o - (4:4)
Using assumption (ii), estimates (3.16) and (3.3), we obtain
| [’C(Pnuo) - ’C(Uo)]y(T”

1
/O (1= 27 [ (7, 5(7, A), Patio(s(7, \)))

= R(7. (7, A), o (s(m, M) y(s(7, A)) dA

<ay / (1= 27| [(Patto — o) (s(7, A [y(s(m, A))] dA
<ay Ay |[Paio — woll e 1950, )

<arAsbn™" [ly(s(7; )|l o - (4.5)

Thus,
IIC(Pruo) — K(uo)|| oo < a1A2bn™ — 0asn — oo. (4.6)

Thus, by choosing n large enough such that x,, < §(1 — ¢) and using Theorem
3.1, we get

s < i — ol e <
S (W (') o ,
I+g =" T (-9
where k, = ||(I — S, (1))~ (S, (ug) — T(uo))H , which implies @,, uniquely exist

in an open ball B(ug,9).

This completes the proof. O
In the next theorem, we discuss the convergence result for the iterated Galerkin

approximate solution 1i,,.

Theorem 4.3. Suppose the unique solution ug € C"(0, 1] and the source function
g € C"[0,1], r > 1. 4, is the approzimated iterated Galerkin solution defined by
Eq. (2.28), then it holds

Iin = uollo = O(n™2").
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Proof. It follows from the Theorem 4.2 that
B g — o]y <
(I+g " U= (1—g)
where k,, = H(I — S;L(uo))_l(Sn(uo) — T(uo))HL

Hence using Theorem 4.1, we get

Kn 1

i ol < 77 < 1 (T = S0 (u0)) (S o) = Twa))|,_
< 7 @ = suwon ||, 1Sntu) = Two)) o~
< o (Sn(w) = 7o)~
— | [K(Pata) ~ Kwo)] . (@)

On applying Mean value theorem and definition of projection operator in estimate
(4.7), we have

| [K(Pauo) — K(uo)]y(7)]

/O(1_A)—v[12(T,s(r,A),Pnuo(s(f,A)))—k(r,s(T,A),uo(s(T,A)))]y(s(T,A))dA

/O 1= [’Eu (7, 5(7; A); {uo + C(Puuo — u0) }(s(7,A))) (uo — Pruo)(s(7, /\))]

x y(s(m, A)) dA

<

/ (1= 27 (Rulrs(r ) {0+ CPoto — )} (5( )
0

—ku(7, 5(7, A), uo(s(T, A)))) (uo = Pruo)(s(7, A)) |y(s(T, X)) dA

1
/0 (1- )\)*Vl;:u (1,8(1, \), ug(s(1,N))) (ug — Pruo)(s(1, A))y(s(r, A)) dA

+

)

(4.8)

where 0 < ( < 1.
By using estimates (2.11), (3.3), (3.16) and definition of projection operator, we
evaluate the first term of the above estimate (4.8),

007 [R50+ CPatt w0, )
0

— Fu(7, (7, X), uo(s(7, A))) ) (10 — Ptio) (7, A)) | y(s(7, X)) dA

Sass/o [(1 = XN [(Pauo = uo) (s(r, M) [(uo = Prio) (s(7, X)) ly(s(r, X))| dA
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2
<azAsz ||(Pnuo — uo)|| 7o 1Yl o
<azgAsbn " 91l 7,0 - (4.9)

By applying Lemma 3.3, second term of the estimate (4.8) is as follows:

/0 (1= Nk (7, 8(7, A), uo(s(7, M) (uo — Pruo)(s(1, A)) dA

/0 W(r, s(1, A), uo(s(1, X)) (Pr, — Dug(s(m, ) dA

<IW(r,s(r,.),u0(s(7,.))) = vellpy, N(Pa = Duo(s(7,))lleg

(A1)

3 NPa — D, 807, w7, Mgz, 1P — Dot

)
HIW(r,s(7,.),uo(s(r, ) = vellpy  N(Pn = Duo(s(r, )l - (4.10)
Using estimate (3.3) and Theorem 3.2 in the sub-interval A; = [0, 71], we have
(lW (7, s(r,.),uo(s(7,.))) — 1/7—||L(1A1) <Chy T <dyn, (4.11)
and
(Po — Tyuo(s(r. )l < don™. (4.12)

In the sub-intervals A; = [r;_1,7], | = 2,3,...,n — 1, using the estimates (2.22)
and Lemma 3.1, we obtain

|(Po = W (7. (7, ) uos(m, D)z,

<hZ ||(Pn, — D)W (7, s(1,.), uo(s(T, )))”Lfﬁ,)
8TW(T, S(T, -), UO(S(Ta )))
ONT
"W (1, s(1,.),uo(s(,.)))
OA" L?/C\i)
O"W (7, 5(7, ), uo(s(7, .)))
ONT

)

Nl= —~

1

<ChIh?

L(O/o\i)

1
<Ch;"?

Scn—(rﬁ‘%)

7 (4.13)

L(()Xi)

and
(P = Dol Do, < b 1P~ Dol s
0"ug(s(7,.))
ON"
9 ug(s(r,.))
aAT L?/O\i)
" ug(s(t,.))
ON"

1

< Chrh?

L(o/o\z')

1
< Chjte

< Cn~(rt2) (4.14)

L((D;j\i)
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In the sub-intervals A, = [7,—1, 1], using the estimates (2.20) and Lemma 3.1 and
Theorem 3.2, we obtain

WA, s(7,.), uo(s(7,.))) = vellpy < Cihy, ™" <dsn™", (4.15)
and

[(Pn = Duo(s(7, )L < Chy,

)

0" ug(s(T,.))
o L
9"uo(s(7,.))
ON"

< Cn~(rd)

[°

(An)
9" uo(s(T,.))
ON"

T‘2
< con =) (4.16)

L)

Fori=2,3,...,n, set

1:

i HaTW(T,S(T7.)7UQ(S(T,.)))
OA"

L?/C\i)

and
9"ug(s(r,.))
O™

< 00.

|

L?/o\i)

Then using estimates from (4.9)—(4.16) in (4.7), we obtain

IK(Pato) — Kluo) |~
n—1 o . i
SagAani%ﬂ + d1d2n72r + C? Z n*(27'+1)Q11Q22 + Cfdgn—(r-',-ﬁ)Qg
1=2
n—1 o . i
=i 0Oy T Qi@+ Cdan” ()
=2

2

<bn~? max(1,n"!,n" 3= ")
<bn=*",

. 2
where dy = azAsb + dyda, and b= bmax(1,n~1,n~ (7= ")
Thus,

IC(Patuo) = K(uo) || o = O(n ™). (4.17)
By (4.7) and (4.17), we can conclude

- 1%
[in — uoll o < T4 | [K(Pruo) — K(uo)]

=0(n%). (4.18)

[P

Thus, this proves the anticipated result. O
The following theorem concerns the convergence result for the approximate
Galerkin solution.
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Theorem 4.4. Suppose the unique solution ug € C"(0, 1] and the source function
g € C"[0, 1], r > 1. uy, is the Galerkin approzimate solution of (2.24), then it holds

[tn = uoll e = O(n™").
Proof. By using P,u, = u,, we obtain

Up, — Uy = Up — Pplo + Pruo — U
= Ppiy, — Pnug + Prug — ug
= Pp(tn, — ug) + (P, — Iuyp.
[un = uoll oo < | Paltin — o)l poo + [(Pn — Duoll oo

< p i — ol + (P~ Dol . )
By applying Theorem 4.3 and estimate (3.3)
[t — w0l oo < bp ™" +bn "
=0(n™"). (4.20)
Thus, this proves the anticipated result. O

Remark 4.1. The Galerkin method provides optimal order of convergence in The-
orem 4.4 whereas iterated Galerkin method provides superconvergence that can be
seen by Theorem 4.3.

In the next section, we discuss the multi-Galerkin and iterated multi-Galerkin
methods.

5. Multi-Galerkin Method

In this part, we obtain approximate solution for the non-linear weakly singular
Volterra-Urysohn integral equation using the multi-Galerkin and iterated multi-
Galerkin methods and also achieve superconvergence results. Following that, we
show that the iterated multi-Galerkin approach achieves a better superconvergence
rate.

The multi projection operator on X is defined by

’Cﬁ[(u) = PnK(u) + K(Pru) — PrK(Pru)
= PoK(u) + (I —Pn)K(Pru). (5.1)

For Eq. (2.8), the multi-Galerkin approach seeks an approximate solution v € X
such that

up' = K3 (uy') = g. (5-2)
Let the operator
TH(w) = g+ KM (W), ueX,
then Eq. (5.2) becomes

T (up!) =y
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For a more precise approximation solution, we define
it = Kud) +g. (5.3)

This is called iterated multi-Galerkin approximate solution.
The linear operator T (u) at ug is defined by:

’

T (ug) = KM (uo)
=P (o) + K (Ppuo)Pr — Pk (Ppuig)Pr
= Pk (u0) + (I = Pu)K (Potig)Py.

Here, we provide a theorem that helps us to prove the existence and uniqueness
of a multi-Galerkin solution.

Theorem 5.1. Suppose a linear operator IC,(uo) be the Fréchet derivative of a
nonlinear operator IC at ug and 1 is not an eigenvalue of K (ug). Then the inverse
of the integral operator (I —TM (ug)) exists in the uniform norm i.e. there exists a
positive constant V1 < oo and ng € N such that H(I —-T™ (uo))_lHL <V Vn>

no.

Proof. Using Theorem 4.1, we get

’ ’

T2 (o) = 7' (o) | = ||Puk (o) + (1 = P (Patio) P = K (wo)|

- H(Pn — DK (u) — (P — DK (Ppig) Py )

‘LOO

(P = DK (w0) = K (Putio)Pu]

IN

(1+p) H/c’(uo) K (Pauo)Pa|

—0 as n— oo.

(5.4)

This implies TM , (up) is norm convergent to T (up) in uniform norm.

Using a result from Ahues et al. [1], 3 a positive constant V; < oo and ng € N
s.t. H(I - Té‘/[l (uo))_lHLx <V ¥V n>ng.

This establishes the anticipated result. O

Next, we discuss the existence and uniqueness of the multi-Galerkin solution in
the following theorem.

Theorem 5.2. Suppose ug be the unique solution of the Eq. (2.8) in C7(0, 1].
Then for sufficiently large n, there exists a positive constant q lying in the open
interval (0,1), and unique solution u} of equation u = T (u) lying in an B(ug,?)
open ball with centre ug and radius 6 > 0 such that

(1+4q)

< [lun = wol| o <

(1-gq)’
where

= |1 = T (o) M (T (o) = )|

Further, we achieve
Hui\f — UOHLoo = O(n_QT).
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Proof. It follows from Theorem 5.1, 3 a positive constant V; such that
|a-m o =<

Now, for any w € B(up, ), we can write

’ ’

T (uo) = T (w)

n

1o°

PRK/(UO) + (I — Pn)K/(PnUO)Pn - Pnlcl (w) = (I - /Pn)lc/ (Pnw)Pp L

< ‘ PolK (1) — K (w)] HLOO n H(I = Pu)K (Patio)Po = (1 = Pa)K (Puw)Pu| |

On simplifying first term with the estimates (2.11) and (3.16), we get

From the estimates (2.11), (3.16) and Lemma 3.1, the second term can be written
as

’

PulK (o) = K' @)y < 1Pall o | (o) = €' ()| _ Iyl

< pazAsz |[ug — w|| oo [|Y]] oo -

H(I —Pn) [K,(PnUO)Pn - K (in)Pn]yHLm

< (1+ pag || [K' (Patio) P = K (Paw)Puly|
(1+ plazAsz [Pn(uo — w)l oo IPryll
(

<
< (1+ p)asAzp? || (uo — )| Iyl
Thus,
|72 (o) = T2 ()| < [+ (1 + )pPlas Az l(wo = w)]
< [p+ (1 + p)p*azAsd.

So, we can write

sup |7 = T (o) HEY (o) =T (@)}, _< Wl (tn)p?las dzd < lsay)
weB(uo,

In this case, we choose 0 such that ¢ € (0,1) which satisfying equation (3.5).
We use the Theorem 5.1 and estimate (4.6) to compute

o = || (1 =T () (T (o) — T(wo))|

< V1 [[PaK(uo) + (I — Pp)K(Pruo) — K(UO)HLOO
= V1 [|[(Pn — DK(uo) + (I — Pn)IC(PnUO)HLOO
= V1 ||(Pn — I)[K(uo) — K(Pruo)] ||
< Vi1 +p) [K(uo) — K(Pruo)ll
<Vi(1+p)agAsbn™"
— 0 as n — oo.
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The equation (3.7) is satisfied by choosing n large enough such that a,, < §(1—gq).
As a result, by applying Theorem 3.1, we get

Qp M Qp
g < ~woll < 72550
which implies 4} exists uniquely in an open ball B(ug, ).
Now,
! = ol < 72 < = z 2 () (T (o) = T(wo)) |
<{= qu (T3 (uo) = T(uo)) ||
1
<1 qvl (N = K)uo| o - (5.5)

Combining Eqgs. (3.1) and (4.17),

(KN = K)uol| oo = 1(PrKuo + (I = Pn)K(Pruo) — Kug|
< (14 p) IK(Pruo) — Kugl| 0
<bn~. (5.6)

The estimates (5.5) and (5.6) lead to the conclusion
" —uol = O(n™>").
This completes the proof. O

Lemma 5.1. Suppose ug € C"(0, 1] be the unique solution of the Eq. (2.8) and a
linear operator IC (ug) be the Fréchet derivative of a nonlinear operator K(u) at ug
then

| (o) = Pu)(K(Paio) = K(wo))|| . = O~™).

Proof. For 7 € [0, 1], we have
| o)z = Po) (e (Pao) — Kwo))|
= sup K (u0) (I = Pu) (K(Puuo) — K(uo))|.
7, A€[0,1]

Now for any v, € X, (v, (Pn — Iuo(s(7,.))) = 0, by using Theorem 3.2, and
Eq. (4.17), we get

]/c’(uo)(f — Po)(K(Pauo) — K(ug))

/0 (1- /\)77/;;71 (1, 8(7, N, u0(s(7,N)) (I — Pr)(K(Prug) — K(ug)) dX

=[(W(,s(7,.), u(s(,.))), (I = Pn)(K(Pruo) — K(uo)))|
=[(W(r,s(7,.),u(s(7,.))) = vr, (I = Pn) (K(Pruo) = K(uo)))|
<[W (T, s(7,.), uls(7,.))) = vell o [|(F = Pu) (K(Pruo) = K(uo))ll o
< W, s(7, ), uls(7,))) = vell o (14 ) [(K(Pruo) = K(uo))ll
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<bn~"(1+ p)n 2" = b(1 + p)n=>". (5.7)
Therefore,
| o) (2 = Pu)(K(Pao) = K(w))|| | = =),
This establishes the anticipated result. O

Now, we analyze the superconvergence result for the iterated multi-Galerkin
approximate solution in the following theorem.

Theorem 5.3. Suppose the unique solution ug € C"(0, 1] and the source function

g € CT[0,1], » > 1. @M is the approvimated iterated multi-Galerkin solution
described by (5.3), then it holds

~M

lan" = wo| o = O ).

Proof. With a Lemma 6 from Mandal [20], we have

In" = o)
<(doCa + MyMy) |[udf = o [ + K (o) (I = Pu) (C(Patio) = Kiwo))|| _

sk s PP ],

< (doCa-My Ma) [l = [} +(1+M1p) [ K (o) (=P (K (Prto) =K o) | _ -

(5.8)

Combining results of Theorem 5.2 and Lemma 5.1 with Eq. (5.8), we obtain
[|lant — uol| e = O(n=3"). (5.9)
Hence the proof follows. O

Remark 5.1. Both the multi-Galerkin method and the iterated multi-Galerkin
method achieve superconvergence, although the iterated multi-Galerkin method
converges faster than the multi-Galerkin method, as shown in Theorem 5.2 and
Theorem 5.3.

6. Numerical results

In this part, we provide two numerical examples to demonstrate the efficacy of the
proposed theoretical results. For the subspaces X,,, piecewise polynomials are con-
sidered as the basis functions with respect to the graded mesh described by Egs.
(2.16) and (2.17). For both examples, we choose r = 1, implying that piecewise
constants are chosen as the basis function. Afterward, the error bounds and order
of convergence are discussed for the approximated solutions of Galerkin, multi-
Galerkin, and their iterated versions in Table 1, Table 2, Table 3, and Table 4.
The error bounds for Galerkin, iterated Galerkin, multi Galerkin, and iterated
multi Galerkin methods are denoted by ||u — uy||r~ = O(n™7), |Ju — ||z~ =
On=), |lu—uM||p~ = O(n~%), and ||u — @M ||z~ = O(n~") respectively, where
B, «, d and n are the order of convergence for respective methods.
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Example 6.1. Consider the following second kind weakly singular Urysohn VIE
as:

65536 17 T 1
=7t = —s) 20 1
u(r) =1 1093957 2 —|—/0 (t—s)"2u”(s)ds, s€][0,1], (6.1)

where the exact solution is u(7) = 7%.

With the transformation s = 7\ the transformed integral equation as follows:

65536 17 vour
=74 - El ————u?(1)d\, A€ [0,1].
U =T 003057 +/0 T 0.1
Now, for r = 1, v = %, and ¢ = ﬁ the expected order of convergence are

=1, a=2 §=2and n=3.

In the following, Table 1 presents errors bounds and convergence rates for
Galerkin and iterated Galerkin methods, and Table 2 presents the errors bounds
and convergence rates for multi-Galerkin and iterated multi-Galerkin methods.

Table 1. Galerkin and iterated Galerkin methods

n [[u = unllz= B [ a

2 7.5204523625 x10~!  0.99  5.6939337958 x10~1  1.95
4 4.3315186164 x10~' 1.01 1.75152298646 x10~! 2.10
8 2.2561647472x1071  1.02  5.2240878745x1072  2.03
16 1.2452631362 x10~1  0.98  1.2414505961 x10=2  2.07
32 7.444760575 x1072  0.93  2.8952980356 x107%  2.09
64  5.4521010902x1072  1.04  2.4274747067x1073  2.15
128 1.2911593372x1072  1.04  2.1570795669x10~%  2.02

Table 2. Multi Galerkin and iterated multi Galerkin methods

n llu — up! || o~ g lu — @y || o~ n
2 5.64830289512x10~' 1.98 4.312128602 x10~1  2.92
4 1.87685840862 x10~! 2.02  8.62670201 x10=2  2.96
8 5.5736068337x1072  1.98 1.5230867832 x10=2 2.88
16 1.34979966662x1072  2.03 1.7841305556 x10~3 2.99
32 2.5933896965 x1072  2.13 2.3318538260 x10~% 2.99
64  1.4201784830x10~3  1.88 2.4455217002 x10~° 3.05
128 2.8074204795x107%  1.96  3.4557854730x1076  3.02
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From Table 1, one may observe that for all the values of n the order of con-
vergence for Galerkin and iterated Galerkin methods are approximately 1 and 2
respectively. In addition, the order of convergence for multi-Galerkin and iterated
multi-Galerkin methods are approximately 2 and 3, respectively, as shown in Table
2. Thus, obtained convergence rates for all the methods are similar to the proposed
theoretical results.

0.8

0.7 \ —+—Galerkin Method

Iterated Galerkin Method
0.6 Multi-Galerkin Method
Iterated Multi-Galerkin Method

0.5

0.4

ERROR BOUNDS

0.3
0.2

0.1

2 4 8 16 32 64 128
NUMBER OF PARTITIONS

Figure 1. Comparison of error bounds among all the proposed methods

Figure 1 depicts a comparison of error bounds for all of the proposed methods,
demonstrating that when the number of partitions increases, the associated error
bounds decrease. Because of its linear convergence rate for piecewise constant,
the Galerkin method provides a slightly higher error bound (i.e., 0.01291159, when
n = 128), whereas the iterated multi-Galerkin method provides very lesser error
bound (i.e. 0.0000034558, when n = 128). As a result, we may conclude that
the iterated multi-Galerkin method has the best convergence rate among all other
methods.

Example 6.2. Consider the following second kind weakly singular Urysohn VIE
as:

u(T 2—7r7' T — TT—S*%sizﬁs s, S8
M) =Vagrt+vi- [ b sepal (62

where the exact solution of the given integral equation (6.2) is u(7) = /7.
Now, by using transformation s = 7A, we obtain the following transformed
integral equation as:

21 vouT
u(x)—\[§7r7 +VT - o (- ) — V" _Avdddr, Aelo,1].

Forr =1, v = 2, and ¢ = ﬁ the expected order of convergence are § =
1, a=2,d=2and n=3.

Table 3 provides error bounds and convergence rates for Galerkin and iterated
Galerkin methods, whereas Table 4 provides error bounds and convergence rates
for multi-Galerkin and iterated multi-Galerkin methods.
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Table 3. Galerkin and iterated Galerkin methods

n [[u = upl Lo B [u = G| Lo o
2 7.5824601737 x10~! 0.96  5.6548431370 x10~'  1.98
4 44767919716 x10~1  0.97 1.79294994754 x10~' 2.07
8  1.9850372001 x10~! 1.11  4.4529009089 x10~2 2.14
16 1.1444003538 x10~! 1.02 1.24778799718 x10~2 2.07
32 4.9736026522 x1072  1.07  3.1265205569 x10~%  2.06
64  3.1011753053 x1072 0.99  2.5458996071 x10~*  1.98
128 7.9523821572 x1073 1.16  3.2705312910 x10~*  1.92

Table 4. Multi Galerkin and iterated multi Galerkin methods

n llu = up! | oo 4 llu — @) oo n
2 5.71263064562x1071  1.94 3.9654850110 x10~! 3.21
4 2.0252939941 x10~! 1.93 8.1773416735 x10~2  3.02
8  3.9113556511 x1072 2.23 1.2318774076 x10~2 3.03
16  1.5210251041 x1072 1.98 2.1362333595 x10~3 2.99
32 4.2395115410 x10=3  1.95 1.8999708727 x10~* 3.07
64  7.8727848300 <103 2.05 3.1565217002 x10~° 2.98
128  2.5154204795 x10™* 1.99  3.2163854730x10~¢  3.03

Similar to Example 6.1, order of convergence for Galerkin and iterated Galerkin
methods are approximately 1 and 2, respectively, for all values of n, as shown in
Table 3. According to Table 4, the order of convergence for multi-Galerkin and
iterated multi-Galerkin methods are approximately 2 and 3, respectively.

0.8

07 \ —+Galerkin Method
=-Iterated Galerkin Method
06 ‘ Multi-Galerkin Method
| Iterated Multi-Galerkin Method
05

ERROR BOUNDS

0.4
03
0.2 A > -
0.1

0 —y
2 4 8 16 32 64 128

NUMBER OF PARTITIONS

Figure 2. Comparison of error bounds among all the proposed methods

Figure 2 shows the comparison between errors bounds for all the proposed meth-
ods, in which one can easily say that when the number of partitions increases then
corresponding errors bounds decrease. In this example also, among all these meth-
ods, the Galerkin method provides a slightly higher error bound (i.e., 0.00795238,
when n = 128) whereas iterated multi-Galerkin method provides lesser error bound
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(i.e., 0.000003216, when n = 128). Therefore, we can say that iterated multi-
Galerkin method provides the best solution in terms of convergence as well as error
bounds.

6.1. Conclusion

In this work, we proposed Galerkin and multi-Galerkin methods for solving the
second kind Volterra Urysohn integral equation with a weakly singular kernel, as
well as iterated versions of these methods. We established error estimates for all
these methods in L* norm. Moreover, we also obtained the order of convergence
for all the proposed methods and showed optimal order of convergence is achieved
for Galerkin method while the rest of the methods obtain superconvergence rates.
Approximate solutions of iterated Galerkin and multi-Galerkin methods converge
with the same order. But in comparison to the iterated Galerkin method and
multi-Galerkin method, the iterated multi-Galerkin method gives a better conver-
gence result. Eventually, with the help of numerical examples theoretical results
are verified and also demonstrated that as the number of partitions of an interval
increases, the error bounds fall.
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