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SOLITONS AND DOMAIN-WALL-ARRAY
SOLUTIONS OF THE SCHRÖDINGER FLOW

AND LANDAU-LIFSHITZ EQUATION

Penghong Zhong1, Ye Chen2,†, Song Chen3 and Ganshan Yang4

Abstract We obtained some solitons and domain-wall-array solutions of the
multidimensional Schrödinger flow and the Landau-Lifshitz equation using the
homogeneous balance principle and general Jacobi elliptic-function method.
These solutions include bright solitons and periodic solutions in terms of el-
liptic functions. We excluded several special types of solutions, such as kink
profile solutions and dark solitons. The total phase profile of the solitons have
two components: the kinematic origin, and the self-steepening effect. For the
domain-wall-array solutions, the total phase profile consists of the kinematic
origin, kinematic chirping, and self-steepening effect. In certain parameter
domains, fundamental domain wall-array-solutions are chiral, and the prop-
agation direction is determined by the sign of the self-steepening parameter.
For ODEs deduced from Schrödinger flow that have no analytical solution,
phase analysis is used to identify and classify the typical evolutionary pat-
tern. Furthermore, the existence of limit cycles is verified, and the locations
of singularities are precisely estimated.

Keywords Schrödinger flow, Landau-Lifshitz equation, soliton, domain wall.
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1. Introduction
The nonlinear Schrödinger equation (NLSE) naturally arises in the mathematical
modeling of various fields of physics, such as wave studies [16, 33, 34, 37], super-
conductivity (also known as Josephson effect across a Josephson junction) [24],
quantum graph theory and its applications [4,35], nonlinear optics [11,15,23], Bose-
Einstein condensation (also know as the Gross Pitaevskii equation) [26, 30, 31] and
even in mathematical finance [14,40].

The NLSE has a general form

iut = ±4u+ F (u, ū, ∇u, ∇ū), (1.1)
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where 4 = ∂2
x1

+ · · ·+ ∂2
xN

, ∇u = (ux1
, . . . , uxN

).
According to (1.1), the NLSE has the derivative and non-derivative type. One

famous non-derivative case is the cubic Schrödinger equation arises in nonlinear
optical systems. It is worth noting that some derivative cases have attracted more
attention. For instance, the nonlinear Alfvén waves in space plasma [21]

iut = ux1x1 −
(
|u|2u

)
x1

,

and the sub-picosecond or femtosecond pulses in single mode optical fibers [22]

iut =
1

2
ux1x1

+R|u|2u− iγ
(
|u|2u

)
x1

,

where R and γ are the constant coefficients.
Both Alfvén waves model and femtosecond pulses model can be written as

iut = ±4u+ F (u, ∇u) (1.2)

and this is the first order derivative equation.
Some efforts have been devoted to constructing the soliton of the derivative

NLSE (1.2). In [6,13,38], the exact dynamic solutions which include several different
solitons are discussed. As stated in [38], these solitons appear in quantum field
theory, weakly nonlinear dispersive water waves and nonlinear optics when certain
higher-order nonlinear effects are taken into account [6].

In this paper, we studied a famous derivative case with a special second order
derivative, called Schrödinger flow (see [2, 3, 17,18]) as follows

iut = −4u+
2ū

1 + |u|2
(∇u)2. (1.3)

This is a special case of the flow from one Riemannian manifold to a complex
structure.

In another point of view, Schrödinger flow can be regarded as an equivalent
equation of a spin vector equation called isotropic Landau-Lifshitz equation (ILLE).

St = S ×4S, (1.4)

where S = (S1, S2, S3) is on the ball S2 such that S : R × RN 7→ S2 is a real val-
ued map on (t, x1, . . . , xN ). Spin motions in diverse ferromagnetic structures are
commonly described by the phenomenological Landau-Lifschitz equation (see, for
example, [19]). The flow system (1.3) can be seen by applying the stereographic
projection from S2 to C∞, on the extended complex plane (the stereographic pro-
jection can be found in equation (6.5,6.6)). It describes the system in macroscopic
language, in terms of the magnetization per unit volume S. In other words, in
a classical limit based on a continuum model, Heisenberg model leads to the a
simplest case of the Landau-Lifschitz equation – ILLE.

In the last three decades, a large amount of work has been devoted to the
construction of exact solutions of nonlinear PDE. Various direct methods have been
created to determine the exact solutions of NLSE, such as inverse scattering method
[41], Darboux transformation [42], Hirota bilinear method [28], Jacobian elliptic
function expansion method and the similarity transformation method [7].
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For Ginzberg-Landau equation that is similar to NLSE, some powerful methods
have been developed in finding the explicit solutions. These methods include inverse
scattering transform, (G′/G)-expansion method, Hirota’s bilinear method, exp-
function expansion method, Jacobi elliptic function method, tanh-function method,
extended trial function scheme, integration scheme etc. [5, 29,39,45].

Compare to non-derivative NLSE, little attention has been given to derivative
NLSE. The exact solution of derivative case has not been widely studied compare to
non-derivative case. In contrast to the NLSE without derivative ∇u, solving (1.3)
(or (1.4)) is more opaque. In fact, the exact solutions of these two equations are
rarely discussed in literature. Although the blowup property is confirmed in some
work, such as [10, 20, 25], there is no exact explicit blowup solution of ILLE and
Schrödinger flow presented in the literature. However, if the target S2 is replaced
by the hyperbolic geometric manifold, the solution of the ILLE or Schrödinger flow
can develop some finite time blowup [9]. We refer the readers to [44] for more
detail of the exact finite time blowup and global solution. Till now, the exact
explicit solutions for Schrödinger flow and ILLE are scarce as far as we know.
For one dimensional case, the first general single-soliton solution is obtained by
Tjon and Wright [36]. Similar to the work of Tjon and Wright, Azevedo et al.
obtained a solitary-waves solution in [8]. Many years have passed after the work
[8, 12, 36, 43], little or no result on the exact solution for ILLE or Schrödinger flow
can be found. Hence, our goal in this paper is to obtain some wave solutions and
to better understand the dynamic properties of these two equations.

It is well known that (1.2) admits some traveling wave solutions such as

u(t, x1, . . . , xN ) = e−iω teif(ξ)g (ξ) , (1.5)

where ξ =
N∑
j=1

kjxj − ct. Hence, it is natural to ask whether the equation (1.3) has

some solutions similar to (1.5), or equivalently, whether the equation (1.4) has some
solutions similar to the following

S(t, x1, . . . , xN )=

(
2 cos(−ωt+f (ξ))g(ξ)

1+|g(ξ)|2
,
2 sin(−ωt+f (ξ))g(ξ)

1+|g(ξ)|2
,
1−|g(ξ)|2

1+|g(ξ)|2

)
.

(1.6)
In this paper, we employed (1.5) to construct the explicit solution of the Schrödin-

ger flow (1.3) (and (1.6) for the ILLE (1.4)). Based on the solutions we obtained,
we studied the dynamical property of this system. It is well known that the main
barrier to Schrödinger flow (or ILLE) is that there is no energy monotonicity in-
equality [10] for it. Hence, what solution will evolve after a long time is difficult to
determine. However, the exact structure for the explicit solutions will help us to
conquer this problem and to obtain the well-posedness result.

The paper is organized as follows. In section 2, the bell profile and singular
profile solutions are constructed. In section 3, the exact solutions are obtained by
using the general Jacobi elliptic-function method. In section 4, we studied the phase
and singular point for the ordinary differential equation (ODE) derived from the
Schrödinger flow. The graphs of some solutions and the phase diagram are provided
in section 5. We compared our solutions of this paper with some other solutions in
section 6.
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2. Bell and singular profile solutions
If we set u = v + iw and separate the real and imaginary part of (1.3), then

− wt +

N∑
j=1

vxj xj −
2

N∑
j=1

vvxj
2

(1 + |u|)2
+

2
N∑
j=1

vwxj
2

(1 + |u|)2
−

4
N∑
j=1

wvxjwxj

(1 + |u|)2
= 0, (2.1)

and

vt +

N∑
j=1

wxj xj −
4

N∑
j=1

vvxj
wxj

(1 + |u|)2
+

2
N∑
j=1

wvxj
2

(1 + |u|)2
−

2
N∑
j=1

wwxj
2

(1 + |u|)2
, (2.2)

respectively.
We first looked for the plane wave solutions, both carrier and envelope waves in

the following,
u = e−iω teif(ξ)g (ξ) , (2.3)

where ω is a real constant coefficient, (k1, k2, ..., kN ) is a vector describing the

direction of propagation, f (ξ) and g (ξ) are real function of ξ, and ξ =
N∑
j=1

kjxj − ct

(kj , c are the real constant coefficients) is the traveling variant with the inverse
pulse width (k1, k2, ..., kN ) and the inverse group velocity c.

We started with a new reduction for (2.1)-(2.2) by substituting (2.3) to (2.1)
and (2.2), we obtained the real part and imaginary part equation in the following,
respectively,

k2g3(f ′)
2
+ cg3f ′ + k2g2g′′ − k2g(f ′)

2 − 2 k2g(g′)
2

+ωg3 + cgf ′ + k2g′′ + ωg = 0,
(2.4)

and
k2g3f ′′ − 2 k2g2f ′g′ − cg2g′ + k2f ′′g + 2 k2f ′g′ − cg′ = 0, (2.5)

where k2 =
N∑
j=1

k2j .

It is difficult to determine the general solution of the nonlinear coupled ODEs
(2.4)-(2.5). However, we can construct some special solutions for it. Solving (2.5),
we have

f =

∫ (
1 + g2

) (
2Ck2g2 + 2Ck2 − c

)
2 g2k2

dξ, (2.6)

where C can be an arbitrary complex constant. In this paper, we assume that C is
a real constant. Let 2Ck2 − c = 0. Then (2.6) can be simplified as

f = C

∫ (
1 + g2

)
dξ, (2.7)

which can then be substituted into equation (2.4) to obtain a non-autonomous ODE
in terms of g only

µ7g
7 + µ5g

5 + µ3g
3 + µ1g + g2g′′ − 2 gg′

2
+ g′′ = 0, (2.8)
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where

µ7 = 1, µ5 =
k2 + 2

k2
,

µ3 =
−C2k2 + 4C2 + ω

C2k2
, µ1 =

−C2k2 + 2C2 + ω

C2k2
.

We can reduce the number of parameters in (2.8) by assuming C = 1 and k = 1.
Then (2.8) can be rewritten as

g7 + 3 g5 + (3 + ω) g3 + (1 + ω) g + g2g′′ − 2 gg′
2
+ g′′ = 0. (2.9)

Here we would like to point out that if C = 0, then f = 0 according to (2.7).
If C 6= 1, then (2.8) will degenerate to an equation similar to (2.9) and so results
similar solutions.

In order to solve (2.9), we introduced the auxiliary function

(g
′
)2(ξ) =

6∑
j=0

hjg
j(ξ), (2.10)

where the coefficients hjs’ are to be determined.
By (2.10), the second derivative g is

g
′′
(ξ) =

1

2

6∑
j=1

j hjg
j−1(ξ). (2.11)

Substituting (2.10)-(2.11) to (2.9), we obtained an algebraic equation of g. If we
set the coefficients of this polynomial equation to be 0, then

(g
′
)2 = −g6 + (C1 − 2)g4 + (ω + 2C1 − 1)g2 + (ω + C1) =

6∑
j=0

hjg
j(ξ). (2.12)

According to Theorem 1 in [13], if h0 = h1 = h3 = h5 = 0, h6 < 0, h2
4 − 4h2h6 >

0, h2 > 0 and h4 < 0, then (2.12) has a bell profile solution

g(ξ) =

 2h2 sech
2√h2 (ξ + ξ0)

2
√
h2
4 − 4h2h6 −

(√
h2
4 − 4h2h6 + h4

)
sech2√h2 (ξ + ξ0)


1
2

,

and a singular solution

g(ξ) =

 2h2 csch
2
[
±
√
h2 (ξ + ξ0)

]
2
√
h2
4 − 4h2h6 +

(√
h2
4 − 4h2h6 − h4

)
csch2

[
±
√
h2 (ξ + ξ0)

]


1
2

.

If we let C1 = −ω, then h2
4− 4h2h6 = ω2 > 0. Furthermore, −2 < ω < −1 leads

to h2 > 0 and h4 < 0. So we have the following result.



Schrödinger flow and Landau-Lifshitz equation 1393

Theorem 2.1. If −2 < ω < −1, then there exists some exact solutions of (1.3) as
follows

u = e−iω tei
∫
(1+g(ξ)2) dξg (ξ) , (2.13)

where ξ =
N∑
j=1

kjxj − t
2 , k2 =

N∑
j=1

k2j = 1,

g(ξ) =

{
−2(ω + 1) sech2

√
−(ω + 1) (ξ + ξ0)

2|ω| − (|ω| − ω − 2) sech2
√
−(ω + 1) (ξ + ξ0)

} 1
2

(2.14)

and

g(ξ) =

 −2(ω + 1) csch2
[
±
√

−(ω + 1) (ξ + ξ0)
]

2|ω|+ (|ω|+ ω + 2) csch2
[
±
√
−ω − 1 (ξ + ξ0)

]


1
2

. (2.15)

The corresponding exact solutions of (1.4) are

S =

(
2 cos(G(t, ξ))g(ξ)

1 + |g(ξ)|2
,
2 sin(G(t, ξ))g(ξ)

1 + |g(ξ)|2
,
1− |g(ξ)|2

1 + |g(ξ)|2

)
, (2.16)

where
G(t, ξ) = −ωt+

∫ (
1 + g (ξ)

2
)
dξ.

Remark 2.1. According to Theorem 2 of [13], if h1 = h3 = h5 = 0, h0 = 8h2
2

27h4
and

h6 =
h2
4

4h2
in (2.10), then there are two solutions.

(i) If h2 < 0 and h4 > 0, then (2.10) has a kink solution

g(ξ) =

−
8h2 tanh

2

[
±
√

−h2

3 (ξ + ξ0)

]
3h4

(
3 + tanh2[±

√
−h2

3 (ξ + ξ0)]

)


1
2

(2.17)

and a singular solution

g(ξ) =

−
8h2coth

2

[
±
√
−h2

3 (ξ + ξ0)

]
3h4

(
3 + coth2[±

√
−h2

3 (ξ + ξ0)]

)


1
2

. (2.18)

(ii) If h2 > 0 and h4 < 0, then (2.10) has a triangular periodic solution

g(ξ) =


8h2 tan

2

[
±
√

h2

3 (ξ + ξ0)

]
3h4

(
3− tan2

[
±
√

h2

3 (ξ + ξ0)

])


1
2

(2.19)
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and a singular triangular periodic solution

g(ξ) =


8h2 cot

2

[
±
√

h2

3 (ξ + ξ0)

]
3h4

(
3− cot2

[
±
√

h2

3 (ξ + ξ0)

])


1
3

. (2.20)

However, by (2.12), a calculation indicates h0 = 8h2
2

27h4
, h6 =

h2
4

4h2
, h2 < 0 and

h4 > 0 (or h2 > 0 and h4 < 0) do not hold at the same time. Hence the kink solu-
tion, singular solution, triangular periodic solution, and singular triangular periodic
solution above do not exist.

We can also check that h0 = h1 = h3 = h5 = 0, h6 =
k2
4

4h2 , h2 > 0 and h4 < 0
do not hold at the same time. According to the Theorem 3 of [13], we exclude the
kink solution

g(ξ) =

{
−h2

h4

(
1 + tanh

[
±
√

h2(ξ + ξ0)
])} 1

2

(2.21)

and the singular solution

g(ξ) =

{
−h2

h4
(1 + coth[

√
h2 (ξ + ξ0)])

} 1
2

. (2.22)

With some calculations, we can test that if (2.17 - 2.22) are substituted into the
equation (2.10), then (2.10) holds if and only if the constraints h1 = h3 = h5 = 0,
h0 = 8h2

2

27h4
, h6 =

h2
4

4h2
and h2h4 < 0 (or h0 = h1 = h3 = h5 = 0, h6 =

k2
4

4h2 and
h2h4 < 0) are satisfied. This is why we excluded the solutions (2.17–2.22).

3. Jacobi elliptic function solutions
In this section, Jacobi elliptic function is applied in constructing solutions of (1.3).
Similar to the steps in deriving Theorem 1, we use a 4-th order ODE (see (3.2)) to
construct some other solutions. This method is used in [45] to construct the exact
solutions of the Ginzberg-Landau equation. Substituting (2.6) to equation (2.4),
we obtain an ODE(

k2 − ω
)
g3 −

(
k2 + ω

)
g + 2 g′

2
g + g2g′′ + g′′ = 0. (3.1)

We introduce the 4-th order auxiliary function

(g
′
)2(ξ) =

4∑
j=0

qjg
j(ξ) (3.2)

and its second derivative

g
′′
(ξ) =

4∑
j=1

j qjg
(j−1)(ξ), (3.3)

where the coefficients qj are to be determined.
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Combining (3.2)-(3.3) with (3.1), we obtained a differential equation as follows

(g
′
)2 = C1g

4 +
(
k2 − ω + 2C1

)
g2 − ω + C1 =

4∑
j=0

qjg
j(ξ). (3.4)

Similar to [45], with various q0, q2, q4 in (3.4), we obtained the Jacobi elliptic
function solutions in Table 1 as follows :

(i). If q0 = −(1 − R2), q2 = 2 − R2, q4 = −1 (just need to set C1 = −1,
k = ±

√
−2R2 + 4 and ω = −R2 in (2.12) ), then it follows from Table 1 that

g(ξ) = dn(ξ,R) where ξ =
N∑
j=1

kjxj −ct and k2 =
N∑
j=1

k2j . With R → 1, dn(ξ,R) →

sech(ξ).
(ii). If q0 = (1 − R2), q2 = 2R2 − 1 and q4 = −R2 (here we set k2 = 4R2 − 2,

ω = −1 and C1 = −R2 in (2.12) ), then g(ξ) = cn(ξ,R) where ξ =
N∑
j=1

kjxj − ct

and k2 =
N∑
j=1

k2j . With R → 1, cn(ξ,R) → sech(ξ).

(iii). If q0 = −R2, q2 = 2R2−1 and q4 = 1−R2 (just set k2 = 4R2−2, ω = 1 and
C1 = −R2 + 1 in (2.12) ), then g(ξ) = nc(ξ,R). With R → 1, nc(ξ,R) → ch(ξ).

(iv). If q0 = −1, q2 = 2−R2 and q4 = −1+R2 (just set k2 = −2R2+4, ω = R2

and C1 = R2−1 in (2.12) ), then g(ξ) = nd(ξ,R). With R → 1, nd(ξ,R) → ch(ξ).
The solutions (i)-(iv) are obtained according to Table 1. However, some solutions

are missed. For example, if we suppose q4 = 0, then

(g
′
)2 =

(
k2 − ω

)
g2 − ω,

which includes the solutions

g (ξ) =
eKξ

2 eC2KK
+

eC2Kω

2 eKξK

and

g (ξ) =
eC2K

2 eKξK
+

eKξω

2 eC2KK
,

where K =
√
k2 − ω, C2 is an arbitrary constant.

Based on the above discussion, we obtained the following result.

Theorem 3.1. The exact solutions of (1.3) are as follows

u = e−iω te
i

∫ (
1 + g(ξ)2

) (
2 dk2g(ξ)2 + 2 dk2 − c

)
2 g(ξ)2k2

dξ
g (ξ) , (3.5)

where c and d are constants, ξ =
N∑
j=1

kjxj − ct and k2 =
N∑
j=1

k2j .
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The corresponding exact solutions of (1.4) are


S1

S2

S3

 =



2 cos

(
−ωt+

∫ (
1 + g(ξ)2

) (
2 dk2g(ξ)2 + 2 dk2 − c

)
2 g(ξ)2k2

dξ

)
g(ξ)

1 + |g(ξ)|2

2 sin

(
−ωt+

∫ (
1 + g(ξ)2

) (
2 dk2g(ξ)2 + 2 dk2 − c

)
2 g(ξ)2k2

dξ

)
g(ξ)

1 + |g(ξ)|2

1− |g(ξ)|2

1 + |g(ξ)|2



.

(3.6)
We considered the following relations between k, R and w.

(i) If k2 = −2R2 + 4 and ω = −R2, then

g(ξ) = dn(ξ,R). (3.7)

With R → 1, dn(ξ,R) → sech(ξ).
(ii) If k2 = 4R2 − 2 and ω = −1, then

g(ξ) = cn(ξ,R). (3.8)

With R → 1, cn(ξ,R) → sech(ξ).
(iii) If k2 = 4R2 − 2 and ω = 1, then

g(ξ) = nc(ξ,R). (3.9)

With R → 1, nc(ξ,R) → ch(ξ).
(iv) If k2 = −2R2 + 4 and ω = R2, then

g(ξ) = nd(ξ,R). (3.10)

With R → 1, nd(ξ,R) → ch(ξ).
(v) If K =

√
k2 − ω 6= 0, then

g (ξ) =
eKξ

2 eC2KK
+

eC2Kω

2 eKξK
. (3.11)

and
g (ξ) =

eC2K

2 eKξK
+

eKξω

2 eC2KK
,

where C2 is an arbitrary constant.

Remark 3.1. According to Table 1, we can exclude the solutions in the form of
ns(ξ,R), sc(ξ,R), sd(ξ,R), cs(ξ,R), cd(ξ,R), ds(ξ,R) and dc(ξ,R) for (2.12) as
the restriction on q0 and q2 and q4 can not be satisfied at the same time.

Furthermore, (2.12) has some other special solutions in Jacobi elliptic function.
Without lose generality, we assume C1 = ±1. Then we can rewrite (2.12) as

(g
′
)2 = ϵ(g −A)(g −B)(g − C)(g −D), (3.12)
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Table 1. Solution of (F
′
)2(ξ) =

4∑
j=0

qjF
j(ξ).

F (ξ,R) q0 q2 q4 F (R → 0) F (R → 1)

ns R2 −(1 +R2) 1 csc cth

dn −(1−R2) 2−R2 −1 1 sech

cn 1−R2 2R2 − 1 −R2 cos sech

nc −R2 2R2 − 1 1−R2 sec ch

nd −1 2−R2 −(1−R2) 1 ch

sc 1−R2 2−R2 1 tg sh

sd −R2(1−R2) 2R2 − 1 1 sin sh

cs 1 2−R2 1−R2 ctg ch

cd R2 −(1 +R2) 1 cos 1

ds 1 2R2 − 1 −R2(1−R2) csc csch

dc 1 −(1 +R2) R2 sec 1

where A,B,C,D could have real or complex values.
Similar to [6], the solution of (3.12) has the following two cases.
(i) If ϵ = +1, because A, B, C, D may not be all real, we can fix k and choose

a large ω to get the real A and B as follows,

A =
1

2

√
−2 k2 + 2ω − 4 + 2

√
k4 − 2 k2ω + 4 k2 + ω2 and B = −A. (3.13)

At the same time, the complex C and D of (3.12) are

C =
1

2

√
−2 k2 + 2ω − 4− 2

√
k4 − 2 k2ω + 4 k2 + ω2 and D = −C. (3.14)

respectively.
(ii) If ϵ = −1, then D < C < B < A. Furthermore, if −1 < ω < 0 and

k2 > ω + 2 + 2
√
ω + 1 (or ω > 0 and k2 > ω + 2 + 2

√
ω + 1), then

A =
1

2

√
2 k2 − 2ω − 4 + 2

√
k4 − 2 k2ω − 4 k2 + ω2, D = −A. (3.15)

B =
1

2

√
2 k2 − 2ω − 4− 2

√
k4 − 2 k2ω − 4 k2 + ω2 and C = −B. (3.16)

Therefore, we obtain the following theorem.

Theorem 3.2. In solution (3.5) and (3.6), we have the following additional cases.
(i) If −1 < ω < 0, k2 > ω+2+2

√
ω + 1 (or ω > 0 and k2 > ω+2+2

√
ω + 1),

and A, B, C, D are defined in (3.15) and (3.16), then g(ξ) can be the solutions (I)
to (IV) in the Table 3.

(ii) If B < A < g(ξ), C and D are complex numbers with

(g
′
)2 = (g −A)(g −B)(g − C)(g −D),
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where A, B, C and D are defined in (3.13) and (3.14), then

g(ξ) =
(Aβ −Bα) + (Aβ +Bα) cn(ξ/G;K)

(β − α) + (α+ β) cn(ξ/G;K)

with α2 = A2 + (ImC)2, β2 = B2 + (ImC)2, G = (αβ)−1/2 and K2 = [(α + β)2 −
(A−B)2]/(4αβ).

Table 2. Solutions of (F
′
)2(ξ) = (F (ξ) − A)(F (ξ) − B)(F (ξ) − C)(F (ξ) − D).

F (ξ) Relationships

(I) D(A− C)− C(A−D) sn2(ξ/G;K)

(A− C)− (A−D) sn2(ξ/G;K)
, F (ξ) < D < C < B < A

G = 2√
(A−C)(B−D)

,

K2 = (A−D)(B−C)
(A−C)(B−D)

(II) C(B −D)−D(B − C) sn2(ξ/G;K)

(B −D)− (B − C) sn2(ξ/G;K)
, D < C < F (ξ) ≤ B < A

G = 2√
(A−C)(B−D)

,

K2 = (A−D)(B−C)
(A−C)(B−D)

(III) B(A− C)−A(B − C) sn2(ξ/G;K)

A− C)− (B − C) sn2(ξ/G;K)
, D < C ≤ F (ξ) < B < A,

G = 2√
(A−C)(B−D)

,

K2 = (A−D)(B−C)
(A−C)(B−D)

(IV) A(B −D)−B(A−D) sn2(ξ/G;K)

(B −D)− (A−D) sn2(ξ/G;K)
, D < C < B < A < F (ξ)

G = 2√
(A−C)(B−D)

,

K2 = (A−D)(B−C)
(A−C)(B−D)

(V) (Aβ −Bα) + (Aβ +Bα) cn(ξ/G;K)

(β − α) + (α+ β) cn(ξ/G;K)
, B < A < F (ξ)

α2 = (A− ReC)2 + (ImC)2,
β2 = (B − ReC)2 + (ImC)2,
G = (αβ)−1/2,
K2 = (α+β)2−(A−B)2

4αβ

Remark 3.2. If ϵ = +1, then D < C < B < A does not hold for (3.12). Further-
more, if B < A, C and D are complex numbers, then D = −C̄ does not hold at
the same time. Hence, the solutions of the type (I) to (IV) do not exist according
to Table 2.
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Table 3. Solutions of (F
′
)2(ξ) = −(F (ξ) − A)(F (ξ) − B)(F (ξ) − C)(F (ξ) − D).

F (ξ) Relationships

(I) D(A− C) +A(C −D) sn2(ξ/G;K)

(A− C) + (C −D) sn2(ξ/G;K)
, D < F (ξ) ≤ C < B < A

G = 2√
(A−C)(B−D)

,

K2 = (A−B)(C−D)
(A−C)(B−D)

(II) C(B −D)−B(C −D) sn2(ξ/G;K)

(B −D)− (C −D) sn2(ξ/G;K)
, D ≤ F (ξ) < C < B < A

G = 2√
(A−C)(B−D)

,

K2 = (A−B)(C−D)
(A−C)(B−D)

(III) B(A− C)− C(A−B) sn2(ξ/G;K)

(A− C)− (A−B) sn2(ξ/G;K)
, D < C < B < F (ξ) ≤ A

G = 2√
(A−C)(B−D)

,

K2 = (A−B)(C−D)
(A−C)(B−D)

(IV) A(B −D) +D(A−B) sn2(ξ/G;K)

(B −D) + (A−B) sn2(ξ/G;K)
, D < C < B ≤ F (ξ) < A

G = 2√
(A−C)(B−D)

,

K2 = (A−B)(C−D)
(A−C)(B−D)

(V) Aβ +Bα+ (Bα−Aβ) cn(ξ/G;K)

α+ β + (α− β) cn(ξ/G;K)
, B < A C,D = −C̄

α2 = (A− ReC)2 + (ImC)2,
β2 = (B− ReC)2 + (ImC)2,
G = (αβ)−1/2,
K2 = (A−B)2−(α−β)2

4αβ

Remark 3.3. To compare the solutions obtained in the theorems (2.1)-(3.2) con-
veniently, they are summarized in Table 4.

4. Phase and singular point

In the previous two sections, we solved the ODEs with specific coefficients. There
are many other cases that cannot be solved explicitly. In this section, we analyze
the limit cycle and the singular points, and the direction field. Further analysis will
be given in the next section.
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Table 4. Three different types of solutions in Theorems (2.1)-(3.2).

Solutions I-III g (ξ)

u = e−iω te
i

∫
Θ1 dξ

g (ξ) , g(ξ) =

{
−2(ω+1) sech2

√
−(ω+1)(ξ+ξ0)

2|ω|−(|ω|−ω−2) sech2
√

−(ω+1)(ξ+ξ0)

} 1
2

,

Θ1 = 1 + g (ξ)
2, ξ =

N∑
j=1

kjxj − t
2 ,

k2 =
N∑
j=1

k2j = 1 and −2 < ω < −1 g(ξ) =

{
−2(ω+1) csch2

[
±
√

−(ω+1)(ξ+ξ0)
]

2|ω|+(|ω|+ω+2) csch2[±
√
−ω−1(ξ+ξ0)]

} 1
2

g(ξ) = dn(ξ,R), k2 = −2R2 + 4 and ω = −R2

u = e−iω te
i

∫
Θ2 dξ

g (ξ), g(ξ) = cn(ξ,R), k2 = 4R2 − 2 and ω = −1

Θ2 =
(1+g(ξ)2)(2 dk2g(ξ)2+2 dk2−c)

2 g(ξ)2k2 , g(ξ) = nc(ξ,R), k2 = 4R2 − 2 and ω = 1

ξ =
N∑
j=1

kjxj − ct and k2 =
N∑
j=1

k2j g(ξ) = nd(ξ,R), k2 = −2R2 + 4 and ω = R2

g (ξ) = eKξ

2 eC2KK
+ eC2Kω

2 eKξK
, K =

√
k2 − ω 6= 0

g (ξ) = eC2K

2 eKξK
+ eKξω

2 eC2KK
, K =

√
k2 − ω 6= 0

g(ξ) = D(A−C)+A(C−D) sn2(ξ/G;K)
(A−C)+(C−D) sn2(ξ/G;K) ,

D < g(ξ) ≤ C < B < A

u = e−iω te
i

∫
Θ2 dξ

g (ξ), g(ξ) = C(B−D)−B(C−D) sn2(ξ/G;K)
(B−D)−(C−D) sn2(ξ/G;K) ,

D ≤ g(ξ) < C < B < A

Θ2 =
(1+g(ξ)2)(2 dk2g(ξ)2+2 dk2−c)

2 g(ξ)2k2 , g(ξ) = B(A−C)−C(A−B) sn2(ξ/G;K)
(A−C)−(A−B) sn2(ξ/G;K) ,

D < C < B < g(ξ) ≤ A

ξ =
N∑
j=1

kjxj − ct and k2 =
N∑
j=1

k2j g(ξ) = A(B−D)+D(A−B) sn2(ξ/G;K)
(B−D)+(A−B) sn2(ξ/G;K) ,

D < C < B ≤ g(ξ) < A

g(ξ) = (Aβ−Bα)+(Aβ+Bα) cn(ξ/G;K)
(β−α)+(α+β) cn(ξ/G;K) ,

B < A < g(ξ)

In (2.8), let C = 1. Then

g7 + λ5g
5 + λ3g

3 + λ1g + g2g′′ − 2 gg′
2
+ g′′ = 0, (4.1)

where
λ1 =

−k2 + 2 + ω

k2
, λ3 =

−k2 + 4 + ω

k2
, λ5 =

k2 + 2

k2
.

And let g(ξ) = y(ξ). Then (4.1) can be converted to a system of first order differ-
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ential equations
y′ = z ≜ X1(y, z),

z′ = −y7 + λ5y
5 + λ3y

3 − 2 z2y + λ1y

y2 + 1
≜ Y1(y, z),

(4.2)

where ≜ means ’is defined to be’.

Theorem 4.1. If D∗
i is any connected sub-domain of Di in the quadrant i (i =

1, 2, 3, 4), then the system (4.2) satisfies the following properties.
(i) There is no periodic solution and limit cycle in D∗

i .
(ii) If the limit cycle of (4.2) exists in yz-plan, then it oscillates around y axis.

Proof. We prove by way of contradiction. Assume that there exists a periodic
solution in the i-th quadrant Di with period T , and the closed curve

Γi : y = y(ξ), z = z(ξ), 0 ⩽ ξ ⩽ T,

has the closed region DΓi contained in Di, and Γi is the boundary of DΓi .
By Green’s function, we have∫∫

DΓi

(
∂X1

∂y
+

∂Y1

∂z

)
dydz =

∫
Γi

(X1dz − Y1dy)

=

∫ T

0

(
X1

dz

dξ
− Y1

dy

dξ

)
dξ =

∫ T

0

(X1Y1 − Y1X1)dξ = 0. (4.3)

As
∂X1

∂y
+

∂Y1

∂z
=

4 zy

y2 + 1

we then have that ∫∫
Γi

(
∂X1

∂y
+

∂Y1

∂z

)
dydz 6= 0, (4.4)

and so (4.3) contradicts to (4.4). Therefore, There is no periodic solution and limit
cycle in Di.

If the limit cycle of (4.2) exists in yz-plan, then it oscillates around a singular
point on y axis.

Similarly, in (3.1), we let g(ξ) = y(ξ). Then it can be converted to a system of
first order differential equations

y′ = z ≜ X2(y, z),

z′ = −
(
k2 − ω

)
y3 −

(
k2 + ω

)
y + 2 z2y

y2 + 1
≜ Y2(y, z).

(4.5)

Similar to Theorem (4.1), we have the following result.

Theorem 4.2. If D∗
i is any connected sub-domain of Di in the quadrant i (i =

1, 2, 3, 4), then the system (4.5) satisfies the following properties.
(i) There is no periodic solution and limit cycle in D∗

i .
(ii) If the limit cycle of (4.5) exists in yz-plan, then it oscillates around y axis.
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The equation (4.2) and (4.5) can not be converted to a Hamiltonian system on
y and z as the function on the right hand side of (4.5) has a non-linear term z2y,
i.e., the function Hj(y, z) (j = 1, 2) does not exist such that

∂

∂y
Hj (y, z) = Xj ,

∂

∂z
Hj (y, z) = Yj .

So (4.2) and (4.5) have no Hamiltonian function Hj(y, z).
By (4.2), the singular points could be

(0, 0), or (±

√
−1 +

√
k4 − k2ω − 2 k2 + 1

k2
, 0).

Similarly, the singular points of (4.5) are as follows

(0, 0), (±
√

k2 + ω

k2 − ω
, 0).

As a summary, the center of the limit cycle of Theorem 4.1 and 4.2 is overlap
with the above singular points. In the next section, we are to combine the phase
diagram of (4.2),(4.5) and discuss the solution. We will also categorize the singular
points and study how they transform to each other.

5. Geometric properties of the Solutions
In this section, we are to discuss the phase and singularity described in section

4 and characterize the geometry properties of the solutions obtained in sections 2
and 3.

5.1. Direction field of the (4.2) and (4.5)
We can see that the singular points presented in Figure 1 - 4 are centers and

saddle points. We substituted specific values of k, w to see how the direction
field of (4.2) changes, and the discussion is in the following. (i) If ω = k2 − 2,
then −1 +

√
k4 − k2ω − 2 k2 + 1 = 0, and the singular point of (4.2) is there-

fore (0, 0). We let k = −1 and ω = −1, then the singular point of (4.2) is
(0, 0). To observe the change of the singular point, we fix ω = −1 and shift k
such that −1 +

√
k4 − k2ω − 2 k2 + 1 6= 0. Here, k is selected from the values

{−1,−9/8,−3/2,−10}. As we can see in the Figure 1, only the subplot (a) has one
singular point which is also a central singularity, and (b,c,d) have three singular
points where one in the origin and the other two are on the y-axis. With k decreas-
ing from -1 to -10, the distance between the two singular points is increasing, we
can also verify this by computing the corresponding y-coordinates of singular points
from

√
(−1 +

√
k4 − k2ω − 2k2 + 1)/k2, which gives us {0, 0.35, 0.65, 1.01}.

(ii) If k =
√
3 and ω = 1, then the singular point of (4.2) is (0, 0). Similar to

(i), we fix ω = 1, and select k from {
√
3,

√
3 + 1/8,

√
3 + 1/2,

√
3 + 9}, (4.2). By

Figure 2, all the singular points are on the y-axis. With k increasing from
√
3 to
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(a) k = −1 and w = −1
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(b) k = −9/8 and w = −1
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(c) k = −3/2 and w = −1
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(d) k = −10 and w = −1

Figure 1. The direction field of (4.2) with different values of k and the same w.

√
3 + 9, the distance between the two singular points is increasing. We can also

verify this by computing the corresponding y-coordinates of singular points from√
(−1 +

√
k4 − k2ω − 2k2 + 1)/k2, which gives us {0, 0.42, 0.68, 0.99}. Moreover,

with k increasing from
√
3 to

√
3 + 1/8, the only central singularity in the subplot

(a) splits into two central singularities on the y-axis, and leaving the origin as a
saddle points in (b). With k increasing from

√
3+1/8 to

√
3+9, the central saddle

point in (b) becomes a central singularity in (c,d), and the two central singularities
in (b) on the y-axis became saddle points in (c,d).

(iii) We now look at the singular points of (4.5) in the following,

(0, 0), (±
√

k2 + ω

k2 − ω
, 0).

With k = 1, w = −1, the equation (4.5) has only one singular point in the origin.
We fix ω = −1, and select k from {1, 9/8, 3/2, 10}. As we can see in Figure 3, when
k is increasing from 1 to 10, the central singularity in (a) splits into two central
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(d) k =
√
3 + 9 and w = 1

Figure 2. The direction field of (4.2) with different values of k and the same w.

singularities on the y-axis in (b,c,d), and leaving the origin as a saddle point in
(b,c,d). Moreover, the solutions become more vertical from (a) to (d).

(iv) In Figure 4, we fix ω = 1, and select k from {1, 9/8, 3/2, 10}. As w = 1,
the denominator k2 − ω can be 0, and therefore, there are horizontal solutions in
(a). When k is increasing from 1 to 10, the central singularity stays the same as
a saddle point. Similar to the Figure 3, the solution curves are more vertical from
(a) to (d).

5.2. Bright soliton and Jacobi elliptic function solution
The figures of two different kinds of solution which include bright soliton and Jacobi
elliptic function solution are presented in this section. Based on these figures, the
properties of these solutions are summarized in the following.

(i) We can see the evolution of |u| for the bright solution (2.13)-(2.14) in Figure
5 (a). The evolution of u for the solution (2.13)-(2.15) is similar to Figure 5 (a).
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(c) k = 3/2 and w = −1
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(d) k = 10 and w = −1

Figure 3. The direction field of (4.5) with different values of k and the same w.

The value of ω determines the magnitude of the domain wall array. The value of
ξ0 determines the center of the peak, and different ξ0 does not change the shape of
the solution. (ii) The phase profile of Figure 5 (a) is ploted in Figure 5 (b). The
phase derivative changes simultaneously with the bright soliton, and it is computed
by 1 + |u|2 for the solution (2.13)-(2.14). The constant 1 is the kinematic origin,
the second term |u|2 comes from the self-steepening effect. From the Figure 5
(b), the phase is similar to the module |u|, i.e., the phase is similar to its solution
(2.13)-(2.14).

(iii) For the solution (3.5) in Figure 6 (a), with R approaching 1 from the left,
the amplitude and the intensity of the solution are increasing.

Each curve in Figure 6 (b) can be decomposed into three sections. In fact, the
phase 2− 1/2 k−2 + g−2 − 1/2 k−2g−2 + g2 can be split into three parts: the term
2−1/2 k−2 is of kinematic origin, the term g−2−1/2 k−2g−2 leads to the kinematic
chirping (see Figure 6 (a)), and the term g2 comes from the self-steepening effect
(see Figure 6 (b)). The contribution of the higher-order chirping (Figure 7(b))
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(d) k = 10 and w = 1

Figure 4. The direction field of (4.5) with different values of k and the same w.

partially offset that of the kinematic chirping (Figure 7(a)), and thus the range of
the total phase is smaller than that of the kinematic chirping. (iv) Figure 8 (a)
and (b) are contour curves of the real part of the bright soliton (2.13)-(2.14), each
curve with a value in the set {−1,−0.9,−0.8,−0.7, 0.6,−0.5,−0.4, 0.3,−0.2,−0.1, 0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. We set t, ξ to be variables, and ω = −3/2,
ξ0 = 0, t ∈ [0, 4π], ξ ∈ [−4π, 4π] in Figure 8 (a). Base on the figure, the solution
is periodic on time t, and there are two parallel solutions with the same period and

different amplitude at the peaks. When ξ (ξ =
N∑
j=1

kjxj − ct can be interpreted as a

space variable) is increasing, the solution decays, and the amplitude decreases and
vanishes.

We set t, X to be variables, and ω = −3/2, ξ0 = 0, t ∈ [0, 4π], X ∈ [−4π, 4π]
in Figure 8 (b). Base on the figure, (b) is a shift and rotation of (a). And sim-
ilar to (a), the solution is periodic on time t. Moreover, close to the wave with
the highest peaks, there are waves with the same period and smaller amplitude.
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(a) |u| (b) derivative of phase of u

Figure 5. (a) |u| of the bright soliton (2.13)-(2.14): blue curve for ω = −3/2, ξ0 = 0; yellow curve for
ω = −3/2, ξ0 = −2; red curve for ω = −5/4, ξ0 = 0; green curve for ω = −5/4, ξ0 = 2. (b) The phase
profile of (a).

(a) |u| (b) phase of u

Figure 6. (a) The solution |u| of (3.5), g(ξ) = dn(ξ, R). R = 9/10, R = 99/100 and R = 1 are for the
red, yellow and green curves respectively. (b) The total phase profile of 2−1/2 k−2+g−2−1/2 k−2g−2+g2

for the solution (3.5) where g(ξ) = sn(ξ, R)) with R = 1/2(red), R = 2/3(yellow), R = 3/4(green) and
R = 4/5(blue) respectively.

When X is increasing, the amplitude decreased and vanished. (v) For the solu-
tion (3.5), we set t and ξ to be variables, and plot contour curves of the 21 values
{−1,−0.9,−0.8,−0.7, 0.6,−0.5,−0.4, 0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1}. In Figure 9 (a), g(ξ) = dn(ξ,R), R = 9/10, t ∈ [0, 4π] and ξ ∈
[−2π, 2π]. In Figure 9 (b), g(ξ) = cn(ξ,R), R = 3

√
2

5 , t ∈ [0, 3π], ξ ∈ [−2π, 2π].
As we can see from the two figures, the solutions are periodic on time t, and some
solutions are parallel. The solution is not decaying when ξ is increasing.

The solutions in Figure 8 and 9 are periodic as the corresponding solution has
the factor e−iω t. And they have different decay rates because of the different phases
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(a) kinematic (b) higher-order

Figure 7. Phase with the chirping reversal. R = 1/2(the red curve), R = 2/3(the yellow curve),
R = 3/4(the green curve) and R = 4/5(the blue curve) respectively.

(a) solution (b) phase

Figure 8. (a) Contours of the real part of the bright soliton (2.13)-(2.14) depend on t and ξ (b) Contours
of the real part of the bright soliton (2.13)-(2.14) depend on t and X (ξ = X − t

2 ).

in the corresponding solution. In (2.13)-(2.14), the phase factor is

Θ1 = 1 + g (ξ)
2
,

which leads to the decay along ξ (or X) . The solution (3.5) has the phase factor

Θ2 =

(
1 + g(ξ)2

) (
2 dk2g(ξ)2 + 2 dk2 − c

)
2 g(ξ)2k2

,

and that g2 and g−2 (this means there is kinematic chirping) canceled leads to no
decay.

(vi) Choosing the same parameters as Figure 8 and Figure 9, we present the
3-dimensional real part of the solution (3.5) in Figure 10 and Figure 11. The real
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(a) solution (b) phase

Figure 9. (a) Contours of the real part of (3.5) with g(ξ) = dn(ξ, R) (b) Contours of the real part of
(3.5) with g(ξ) = cn(ξ, R).

part of the soliton type solution (2.13) can be seen in Figure 10. In addition, the
dn(ξ,R) type and the cn(ξ,R) type solution can be seen in Figure 11(a) and Figure
11(b) respectively. It is clear that the figures of these 3-dimensional solutions match
their 2-dimensional contour map in Figure 8 and 9.

(a) solution 2.13 in ξ (b) solution 2.13 in x

Figure 10. (a) Figure of the solution 2.13 in terms of ξ. (b) Figure of the solution 2.13 in terms of x,
where ξ = x − t

2 . Note that this substitution shifts the peaks centered at ξ = −π
4 to different x.

(vii) Moreover, the g(ξ) in (3.5) can be any of the following functions, nc(ξ,R)(see
(3.9)), nd(ξ,R) (see (3.10)) and eKξ

2 eC2KK
+ eC2Kω

2 eKξK
(see (3.11)). In Figure 12, we let

g(ξ) = nd(ξ,R). Figure 12(a) shows the real part of the solution with R = 3/5
√
2,

t ∈ [0, 4π], ξ ∈ [−2π, 2π]. For a fixed ξ, the real part of the solution can be large
(in fact, arbitrarily large), and this is determined by nd(ξ,R). In Figure 12(b), |u|
has the periodic singularities, In Figure 13, we let g(ξ) = nd(ξ,R). Figure 13(a)
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(a) solution 2.13 in ξ (b) solution 2.13 in x

Figure 11. (a) The real part of (3.5) with g(ξ) = dn(ξ, R). (b) The real part of (3.5) with g(ξ) =
cn(ξ, R).

(a) solution 2.13 in ξ (b) solution 2.13 in x

Figure 12. (a) The real part of (3.5) with g(ξ) = nc(ξ, R). (b) |u| of the solution (3.5) with g(ξ) =
nc(ξ, R)

shows the real part of the solution with R = 3/4, t ∈ [0, 6π], ξ ∈ [−2π, 2π]. The
solution is periodic on time, t. On the ξ direction, the solution decays which is
similar to the case g(ξ) = cn(ξ,R). Figure 13(b) shows that |u| is a periodic and
bounded function. In Figure 14, we let g(ξ) = eKξ

2 eC2KK
+ eC2Kω

2 eKξK
. Figure 14(a)

shows the real part of the solution with k = 2, ω = 1, C2 = 1, c = 1, t ∈ [0, 4π],
ξ ∈ [−3/4π, 3/2π]. The solution is periodic on the time t, and not periodic on ξ.
Instead, when ξ is increasing, |u| goes to infinity at an exponential rate, as we can
see in Figure 14(b).

(viii) Figure 15 plots the solution of (2.16) and (3.6) with different g(ξ). In Figure
15(a), the solution is given in (2.16), g(ξ) is defined in ( 2.14). We set ω = −3/2,
ξ0 = 0, t = 5 (the curves are similar even with different t), ξ ∈ [−5π, 5π]. In Figure
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(a) solution 2.13 in ξ (b) solution 2.13 in x

Figure 13. (a) The real part of (3.5) with g(ξ) = nd(ξ, R). (b) |u| of the solution (3.5) with g(ξ) =
nd(ξ, R).

(a) solution 2.13 in ξ (b) solution 2.13 in x

Figure 14. (a) The real part of (3.5) with g(ξ) in the form of (3.11. (b) |u| of the solution (3.5) with
g(ξ) in the form of (3.11

15(a), the solution is plotted on various ξ. As we can see that when |ξ| is increasing,
the solution converges to the north pole of the sphere.

The solution (3.6) with g(ξ) defined in (3.11) is shown in Figure 15(b). Here,
we use the same parameters defined in the Figure 14, and let t = 5, ξ ∈ [−5π, 5π].
The solution is in the south hemisphere, and when |ξ| is increasing, the solution
converges to the south pole.

Note that whether the solution converges to the south or north pole is determined
by S3. In the solutions of (2.16) (or (3.6)) mentioned above, when |ξ| → +∞ (or
|ξ| → C), if

1− |u|2

1 + |u|2
→ 1,
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then the solution converges to the north pole, and if

1− |u|2

1 + |u|2
→ −1,

then the solution converges to the south pole.

(a) solution (2.16) in ξ (b) solution (2.16) in X

Figure 15. (a) Solution (2.16) with g(ξ) in the form of (2.14). (b) Solution (3.6) with g(ξ) in the form
of (3.11).

(ix) Figure 16 shows the four types of solution of Theorem 3.1 as defined in
(2.16). The parameters are selected in accordance with those used in Figures 11-
13, the difference is that we set t = 5 in Figure 16(a)(d) (as other values t results
similar curves), and ξ ∈ [−5π, 5π]. Figure 16(a) is the case g(ξ) = dn(ξ,R). In
this case, the solution is no longer converging monotonous to either the north pole
or the south pole. When |ξ| is increasing, the solution spirals up and down on the
sphere. Similarly, Figure 16(d), where g(ξ) = nd(ξ,R), is similar to Figure 16(a)
except that the solution is bounded on the south hemisphere.

The solution for g(ξ) = cn(ξ,R) is shown in Figure 16(b), and it spirals up
and down in the north hemisphere, it overlaps with north pole and equator. And
the solution for g(ξ) = nc(ξ,R) in Figure 16(c) is similar to (b) except that the
solutions are in the south hemisphere.

6. Comparison of the different solutions
In this section, we compare our solution with some other solutions of the equivalent
equations of the LL equation. The ILLE in (1.4) can also be reduced to another
complex NLSE without the derivative term. If we define the curvature κ (it can be
regarded as a gradient flow) and the torsion τ to be

κ = (Sx1 · Sx1)
1
2 , and τ =

S · (Sx1
×Sx1x1

)

κ2
, (6.1)
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Figure 16. (a) Solution 3.6 with with g(ξ) in the form of (3.7. (b) Solution 3.6 with with g(ξ) in the
form of (3.8. (c) Solution 3.6 with with g(ξ) in the form of (3.9. (d) Solution 3.6 with with g(ξ) in the
form of (3.10.

then by applying the Hasimoto transformation in [27],

u = κ exp

(
i

∫ x1

−∞
τ (t, x′) dx′

)
.

the equation (1.4) can be converted to the following NLSE,

iut + ux1 x1 +
1

2
u |u|2 = 0. (6.2)

To solve (6.2) one can assume a solution

u(t, x1) = φ(t, x1)e
iθ̂(t, x1) (6.3)

where φ(t, x1) = φ(ξ) and θ̂(t, x1) = θ(ξ) + Ωt, and these are real functions with
ξ = x1 − vt, where v and Ω are arbitrary parameters, and Ω is the propagation
velocity of the non-linear excitation. In [1], the authors use the ansatz (6.3) to



1414 P. Zhong, Y. Chen, S. Chen & G. Yang

construct the solution of (6.2) and obtain the following,

φ(ξ) = (γ/8δ)
1
2 sech ((γ/4δ)ξ) (6.4)

and

θ(ξ) =
V ξ

2
+ tan−1

{(
β2

1− β2

) 1
2

tanh
(
βγ

1
2 .ξ
)}

.

where γ, δ, β and V are some constant coefficients.
As we can see from expression (6.4) this solitary wave (6.3) has the property

that as we increase γ the amplitude of the envelope function φ becomes larger. In
this way, the solution (6.3) indicates that the classical envelope soliton represents
the magnon-bound state which pointed out by Schneider and Stoll [32].

Comparing solution (6.3) and solution (1.5), we can see that the solution has
a similar structure of traveling wave solution. But we also see that the solution
we present in this paper contains some more subtype solutions. These sub cases
include soliton type solutions, periodic solutions (such as dn(ξ,R), cn(ξ,R), etc.)
and double exponential solutions. Specifically, the envelope soliton (6.3) and the
associated phenomena represent merely the classical limit of magnon bound states
and their effect on properties of interest. According to (1.5), the state of the solution
is not only this magnon state, but also contains more ground states that is not time
dependent.

It is worth noting that, the solution of (1.4) can be transformed into the solution
of (6.2) easily. However, to obtain the solution of (1.4) from the solution of (6.2),
solving an additional nonlinear partial differential equation is needed. If we use (1.3)
to study (1.4), the transformation between the solutions of these two equations is
very easy.

Indeed, the ILLE is equivalent to Schrödinger flow under a complex transfor-
mation. If S satisfies (1.4), then we define u as the stereographic projection of S
by

u =
S1 + iS2

1− S3
. (6.5)

It is easy to verify that u is the solution of (1.3). Conversely, let S be

S =

(
±2Reu

1 + |u|2
,
±2Imu

1 + |u|2
,
1− |u|2

1 + |u|2

)
, (6.6)

where Reu and Imu is the real and imaginary parts of complex function u respec-
tively. Then (1.4) reduces to (1.3). Furthermore, there exits some connections
between |∇u| and |∇S|. We can estimate |∇S| using |∇u|. With S being

S1 =
2Reu

1 + |u|2
, S2 =

2Imu

1 + |u|2
, and S3 =

1− |u|2

1 + |u|2
,

we compute the gradient

∇S1 =
2Re (∇u)

1 + |u|2
− 4ReuRe (ū∇u)

(1 + |u|2)2
,

∇S2 =
2Im (∇u)

1 + |u|2
− 4ImuRe (ū∇u)

(1 + |u|2)2
,
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and
∇S3 = −4Re (ū∇u)

(1 + |u|2)2
.

As
2

1 + a2
≤ 2 and 4a

(1 + a2)
2 ≤ 1 (a ≥ 0),

we have that√
|∇S1|2 + |∇S2|2 = |∇S1 + i∇S2|

≤ |∇u|

(
2

1 + |u|2
+

∣∣∣∣∣2u (ū∇u+ u∇ū)

(1 + |u|2)2

∣∣∣∣∣
)

≤ 3|∇u|,

|∇S3| ≤

∣∣∣∣∣2 (ū∇u+ u∇ū)

(1 + |u|2)2

∣∣∣∣∣ ≤ 2|∇u|.

Therefore,
|∇S| =

√
|∇S1|2 + |∇S2|2 + |∇S3|2 ≤

√
13|∇u|. (6.7)

In addition, for the solution u (t, ξ) = e−iω teif(ξ)g (ξ), we have

d

dξ
u (t, ξ) = ei(−ω t+f(ξ))

(
i

(
d

dξ
f (ξ)

)
g (ξ) +

d

dξ
g (ξ)

)
. (6.8)

Combine (6.7) and (6.8), we have that

|∇S| ≤ C

(∣∣∣∣( d

dξ
f (ξ)

)
g (ξ)

∣∣∣∣+ ∣∣∣∣ ddξ g (ξ)
∣∣∣∣) ,

further combine the three definitions of g(ξ) and f(ξ) in Table (4), we obtain that
|∇S| < +∞. This property can also be verified in Figure 15 and 16, the gradients
of all the solutions are infinity.

In other words, |∇u| can be estimated by |∇S|. As

u =
S1 + iS2

1 + S3
,

with the direct computation,

|∇u| ≤ | (1 + S3)
−1 | (|∇S1|+ |∇S2|) + |∇S3|| (1 + S3)

−2 | (|S1|+ |S2|) .

Assume that inf S3 ≥ −1 + δ, δ ∈ (0, 2], with |S| = 1, we have that

|∇u| ≤ δ−2 (|∇S1|+ |∇S2|+ |∇S3|) .

Therefore, if δ is fixed and |∇S| is finite, then |∇u| is also finite.
As we can see in Figure 16 (a) and (d), δ and |∇S| are finite, within the range

of the parameters we defined, |∇u| is not singular.
In [43], the authors constructed several types of exact solutions of (1.4) which

include the standing wave solution represented in polar coordinates (r, χ) as follows

S(t, r) = (sin (ϕ (r)) cos (mχ+ ω t+ ζ) , sin (ϕ (r)) sin (mχ+ ω t+ ζ) , cos (ϕ (r))) ,
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and the equivalent solution of (1.3) as

u(t, r, χ) =
sin (ϕ (r))

1 + cos (ϕ (r))
ei(mχ+ω t+ζ) (6.9)

where m is a vortex degree, ω is the angular velocity (frequency) and ζ is the initial
phase.

Similarly, the authors also established the solution for ILLE as

S(t, x1, x2) = (cos(ωt+ ζ) sinΘ, sin(ωt+ ζ) sinΘ, cosΘ) ,

where Θ = θ (x1, x2). Then the equivalent solution of (1.3) is

u(t, x1, x2) =
sinΘ

1 + cosΘ
ei(ωt+ζ) (6.10)

where Θ = ±2 arctan(f(ξ1)g(ξ2)), ξ1 = ax1 + b, ξ2 = cx2 + d. In fact, the two
dimensional case u(t, x1, x2) can be extended to the three dimensional solution
(see [43])

u(t, x1, x2, x3) =
sin (θ (x1, x2, x3))

1 + cos (θ (x1, x2, x3))
ei(ωt+ζ), (6.11)

where θ (x1, x2, x3) = arctan(f(ξ1)g(ξ2)q(ξ3)), ξ1 = ax1 + b, ξ2 = cx2 + d, ξ3 =
kx3 +m.

Specifically, the above solutions (6.9) and (6.10) (or (6.11)) are vorticity type
solution and traveling wave type solution respectively. These two kinds of solutions
are very different from the solutions (1.5) we construct in this paper. Firstly, the
solution of vorticity type is in polar coordinates, with cylindrical symmetry variable
r. Hence, r can not be transformed into traveling wave variable, and this solution
does not belong to traveling wave type solution. Secondly, the traveling wave solu-
tion (6.10) (or (6.11)) is a variable separated traveling wave solution, in which there
are two (ξ1 and ξ2) or three traveling wave variables (ξ1, ξ2 and ξ3). This indicates
that in addition to the multiple traveling wave variables solutions, there also exists
many single travelling wave variable solutions.

For convenience, we listed various solutions of the equivalent equation of (1.4)
in Table 5.

7. Conclusions
In summary, Schrödinger flow (at the same time for ILLE) is studied and some

solutions are given in this paper. These solutions include domain wall arrays and
bright solitons. We also exclude several special types of solutions, such as the kink
profile solution, singular solution, triangular periodic solution, singular triangular
periodic solution, fronts, and dark solitons. As we know, various modern methods
were proposed to obtain the exact solutions of the systems arising in mathematical
physics. However, in order to better understand the dynamic characteristics of this
equation, it needs to be solved more accurately. Therefore, we use the homogeneous
balance principle and general Jacobi elliptic-function method to obtain the exact
solutions. These explicit traveling wave solutions (in the form of e−iω teif(ξ)g (ξ))
of the Schrödinger flow are based on the different ODEs given. These are powerful
methods in solving the PDE.
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Table 5. Solutions of the equivalent equation of (1.4).

Equations I-V u

iut + ux1 x1 + 1
2u |u|

2
= 0 u(t, x) = φ(ξ)eiθ(ξ)eiΩt,

ξ = x1 − vt

iut = −4(r,χ)u u(t, r, χ) = sin(ϕ(r))
1+cos(ϕ(r))e

i(mχ+ω t+ζ)

+ 2ū
1+|u|2 (∇(r,χ)u)

2

iut = −4(x1,x2)u u(t, x1, x2) =
sin(θ(x1, x2))

1+cos(θ(x1, x2))
ei(ωt+ζ)

+ 2ū
1+|u|2 (∇(x1,x2)u)

2 θ(x1, x2) = ±2 arctan(f(ξ1)g(ξ2)),
ξ1 = ax1 + b, ξ2 = cx2 + d

iut = −4(x1,x2,x3)u u(t, x1, x2, x3) =
sin(θ(x1, x2, x3))

1+cos(θ(x1, x2, x3))
ei(ωt+ζ),

+ 2ū
1+|u|2 (∇(x1,x2,x3)u)

2 θ (x1, x2, x3) = arctan(f(ξ1)g(ξ2)q(ξ3)),
ξ1 = ax1 + b, ξ2 = cx2 + d, ξ3 = kx3 +m

iut = −4(x1,...,xn)u u(t, x1, . . . , xN ) = e−iω teif(ξ)g (ξ),

+ 2ū
1+|u|2 (∇(x1,...,xn)u)

2 ξ =
N∑
j=1

kjxj − ct

It is interesting that the traveling solutions of the Schrödinger flow change with
respect to the different ODEs. These equations (some of these ODEs can be solved
exactly) can not be converted to the Hamiltonian systems. Hence, we analyze the
phase and singular point of the equivalent equations derived from these ODEs. The
phase portraits change with respect to the changes of the parameters. Moreover,
the coordinates of the possible center point of the limit cycle are computed.

The exact solutions we obtained are all periodic in time t while the solutions
are not periodic in ξ due to the phase Θ1 (or Θ2). Because Θ2 has both g2 and
g−2 (meaning the kinematic chirping term exists), the Jacobi elliptic function type
solution does not decay to 0 as ξ → ∞. However, the bright soliton will decay to 0
due to the single factor g2 in the phase Θ1.
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