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ANOTHER IMPROVEMENT ON
OSCILLATION CRITERIA FOR FIRST-ORDER
DELAY DIFFERENTIAL EQUATIONS

Julio G. Dix" and Hongwu Wu?

Abstract This article studies the oscillation of solutions to the delay differ-
ential equation

@'(t) + p(t)x(7(t)) = 0.
We improve the existing oscillation criteria, by lowering the existing bounds on

lim sup f: p that provide sufficient conditions for the oscillation of all solutions.
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1. Introduction
This article concerns the oscillation of solutions to the delay differential equation
a'(t) +pt)a(r(t) =0, t=to, (1.1)

where p, 7 € C([to, 00),[0,00)), the delay argument 7 is non-decreasing, 7(t) < ¢,
and lim; o, 7(t) = oco. Establishing oscillation criteria for solutions to (1.1) has
been the object of many studies, see for example the books [1,9,12] and the references
cited therein.

By a solution, we mean a continuously differentiable function that satisfies (1.1).
A solution is called oscillatory if it has arbitrarily large zeros, and otherwise it is
called non-oscillatory.

Throughout this article we use the notation

¢ ¢
a = liminf p(s)ds, and [ =Ilim sup/ p(s)ds. (1.2)

7o Jr t=oo Jr(t)

Composition of the function 7 with itself is denoted by 7" *1(¢) = (7 (¢)), 71(¢) =
7(t), and 7°(t) = t. The solutions of the equation

A= e
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play an important role in the statement of oscillation criteria. So we consider the
following cases: If o = 0, then there is only one solution, A = 1. If 0 < o < 1/e,
then there are two solutions, A1 < Ae; in this case A; is a continuous and increasing
function of a. If @ = 1/e, then there is only one solution Ay = Ay =e. If @ > 1/e,
there is no solution.

A well known criterion for the oscillation of solutions to (1.1) states that if

1
a>— or g>1, (1.3)

then every solution is oscillatory, see for example [1,6,12]. On the other hand if
f:( " p(s) ds < 1/e for all sufficiently large ¢, then there is a non-oscillatory solution,
see [6, Corollary 2.1.1]. We are interested in the case o < . Stavroulakis [14]
presented a summary of existing conditions and a table of bounds for §, in terms
of a. Our goal is to improve the existing lower bounds for 3; see Table 1 toward
the end of this article.

Garab et al [7, Theorem 4] obtained the following result for the constant delay
case, 7(t) = t — 79. Let p be a non-negative, bounded and uniformly continuous
function, 0 < «, 1/e < B, and the mapping ¢ — f:(t)p(s) ds be slowly varying at
infinity. Then all solutions of (1.1) are oscillatory.

2. Results

We use additive and multiplicative estimates of solutions. Additive estimates are
obtained by integrating (1.1) from 7(¢) to ¢,

w(r(t) = a(t) + / | P ds. (2.1)

Then using this equality in the integrand we obtain an iterated integral. Repeating
this process n times we have

t 7(t)
£(r(t)) = a(t) + (v (1)) / Lo / | Plon)dssds

t 7(¢)
—s—x(T?(t))/(t)p(sﬂ/( )p(32)d32 ds; + ... )

+ar() [ tt) ) [ " s / T ) dsn

T( T(Sl) (Snfl)
+Rn+1(t)7
where
t 7(t) 7" (t)
Rasr®) = [ plon) [ psal [ plsaalr(nn)) s ds.
7(t) 7(s1) T(8n)

Multiplicative estimates are obtained for positive solutions. Dividing (1.1) by
z(t) and then integrating yields

2 [
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The integral on the left-hand side is In(z), so that

z(u) = z(v) exp (/U p(s)x(T(S)) ds) . (2.3)

u a(s)

This estimate has been used by many authors for estimating x(7(t))/x(t); see for
example [1] and [6, Lemma 2.1].

Note that if x is an eventually positive solution of (1.1), then there exists ¢;
such that both z(t) and z(7(t)) are positive for all ¢ > ¢;. In this case, from (1.1)
it follows that 2’(¢) < 0, hence z is non-increasing. Applying (2.3) to R,,4+1(t) with
u=7(sp41) and v = 7"1(¢), and assuming that x(7"*2(¢)) is positive, we obtain

t 7(t) 7" (t)
R (t) =2 (71 (1)) / o) / p(s2) dsa - / P(5n41)

T,;(l(t) (Sl)( i) Tlen) (2.4)
X exp ( p(anrg)m dsn+2) dSp41 ... dsy .
T(Sni1) z(Sn+2)

In particular
¢ (®) z(7(s
Ri(t) = 2(r(t)) / p(s1) exp ( / p(se) 2T (52) d32) dsy . (2.5)
7(t) 7(s1) z(s2)
To abbreviate notation, we introduce the functions

t t 7(t)
p1(t) :/ p(s1)dsi, p2(t) :/ P(Sl)/ ,p(s2)dsadsy, ...,
7(t) 7(t) T(s1)

t 7(t) ()
on(t) = / p(s1) / p(s2) - / p(sn)dsy ... dsy,
7(t) 7(s1) 7(Sn—1)

so that (2.2) becomes
o(7(t) = 2(t) + 2 (r()p1(t) + 2(r()p2(t) + - + (7" (1) pa(t) + Rusa () . (2.7)

This expression, without R,,+1(t), yields an inequality used in [4,15] for establishing
oscillation criteria. Next we estimate x(7(¢))/xz(t) using the roots Ay < Az of A =
exp(al).

Lemma 2.1 ( [11, Lemma 1]). Let 0 < o and x be an eventually positive solution
of (1.1). Then0 < a<1/e and

A < liminf 200 o (2.8)
t—o0 ;z:(t)
Let .
0<a<a=-. (2.9)

Then the smaller solution A of A = exp(&\) satisfies the following: A depends
continuously on &, and A approaches )\; (the smaller solution of A = e*}) as &
approaches a.
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From Lemma 2.1, there exists to > t; such that
c_a(r@t) o _ ()
GRRTO R 0)
Furthermore assuming x(7%(t)) is positive for t large enough,
a(t'(t)) _ a(r'(t) (M) ax(r() _ g
o) e @) e 0) el S 210

To estimate R,y; from below we use the following assumption: There exists
w > 0 such that for all u < v,

vt >ty (2.10)

7(v) v
/T(u) p(s)ds > w/u p(s)ds. (2.12)

This assumption was also used in [2,11].

Remark 2.1. (1) If w > 1, then lim;_, f:(t)p = 0. In which case f:(t)p < 1/e for

t large enough, then there exists a non-oscillatory solution, see [6, Corollary 3.11].
To prove that the limit is zero, for each t large enough, we define n as the largest
integer such that to < 7"(¢) =: t;. Then by (2.12),

t1 () () T2(1) t
/ p=/ pzw/ pzwz/ p2~--2w”/ D
T(t1) Tntl(t) 77 (t) Tn—1(t) 7(t)

Note that n — oo as t — oo, and that w™ — oco. Meanwhile the left-hand side
of the above inequality remains bounded. Therefore th( Y must approach zero as
t — 0.

(2) If w = 1, then the mapping ¢t — f:(t) p is non-increasing and non-negative;
therefore it converges as t — co. When f:( # P converges to a value greater than
1/e, every solution is oscillatory, see (1.3). When f:( p P converges to a value less
than 1/e, there is a non-oscillatory solution, see [6, Corollary 3.11]. When f:(t) P
converges to 1/e, assuming that 0 < f:(t) p(s)ds — 1/e and that it decays to 0, it
can be shown that every solution is oscillatory. However the assumptions for [5,
Lemma 2], and the assumptions for [10, [Lemma 2.1] seem to be insufficient for
their conclusions.

That f(t) = f:( 4 P is non-increasing can be shown as follows: For w = 1, and
u < v, we have

f(v)—f(U)=/T?u)p—/7:v)p=/uvp—/T::)pSO.

This proof was suggested by the anonymous referee.
(3) We are interested in the oscillation of solutions, so we restrict our attention
to the case 0 < w < 1.

Lemma 2.2. Let & and \ be as defined above, and x be a solution of (1.1). If
(2.12) holds and x(72(t)) is positive for all t large enough, then

t

Rult) > a(r (1) = [exp <;\w /

o T(t)p(s)ds> - 1}. (2.13)



Oscillation criteria for delay equations 1425

Proof. Inequalities (2.10) and (2.12) provide the following lower bound for the
inner-most integral in Ry (t),

®) x(7(s2 <t
/ p(Sz)M dsy > )\w/ p(s2)dss . (2.14)

(Sl) x(SQ) S1
Then
Ri(t) > a(7(t)) / p(si)e Pl bz g,

Integrating by substitution with u(s1) = Aw fstl p(s2) dsy and ' (s1) = —Awp(s1) we
obtain (2.13). O

Lemma 2.3 ( [4, Lemma 2.4]). Let 0 < o < 1/e, and x be an eventually positive
solution of (1.1). Then

lminf —20_ > 1_q- L (2.15)
t=oe z(7(t)) A1
The proof of [4, Lemma 2.4] uses the inequality obtained from (2.2) by omitting
the remainder R,,4+1(t). This does not affect the result because as t — oo, we have
that n — oo and Ry,41(t) — 0. We omit the proof of the lemma here. Lemma 2.3
was also proved in [11, Lemma 2] and [14, Remark 2.3] under assumption (2.12).
From (2.2) with n =0, and (2.13), we have

t

2(r(t)) = x(t)+m(7(t)); [exp (xw/T

)

o p(s) ds) — 1] .

Assuming that x(7(t)) is positive for ¢ large enough, we can divide the above in-
equality by x(7(t)) and obtain

LII(t) 1 Awf—rt P _
O [e)‘ ® 1] (2.16)

Then taking limits as ¢ — oo, using that limsup,_, f:(t)p(s) ds = f, and (2.15),
we have

t 1 S [t
1 > liminf Lg + lim sup - [em e — 1]

t—oo x(7(t)) t—oo AW
1 1 5, n+1
>l—a—— 4+ — e P -1].
A1 )\w[ )

Note that as & — «, we have that A — A1, and
1
B<—In(l+wlar +1)). (2.17)
)\1&)
Theorem 2.1. Assume 0 < o < 1/e, (2.12) holds with 0 < w < 1, and
1
B>—In(l+w(ar +1)). (2.18)
)\1(,{]

Then every solution of (1.1) is oscillatory.
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Proof. To obtain a contradiction, we assume that z is a non-oscillatory solution of
(1.1). First assume that x is eventually positive so that (2.17) holds for ¢ sufficiently
large which contradicts (2.18). Therefore  cannot be eventually positive. Now if y
is a eventually negative solution, by the linearity of (1.1), we see that x(t) = —y(t) is
a positive solution. Then we can use the above argument to obtain a contradiction.
This completes the proof. O

Remark 2.2. Certainly w cannot equal 1, because by Remark 2.3(2), w = 1 makes
« = . In turn, this equality makes the following oscillation criteria not satisfiable,
for the typical case o = 1/e and A\ = e: inequality (2.18) above, inequality L >
V7 —2e/e in [13, Remark 3], inequality (12) in [11, Remark 2], and inequality (3.8)
in [4].

Table 1 shows lower bounds for 8 = limsup,_, ., f:( D as w approaches 1 from

below. Note that the bound in Theorem 2.1 is slightly lower than the previous
bounds.

Table 1. Oscillation criteria, in [4,11,13] and Theorem 2.1 with w = 0.9999

Ref. a=1/e,\1 =e | a=2In(e/2)/e, \y =¢/2 a=0,A=1

[11] B > 0.471518 B > 0.923057 g>1

[13] B > 0.459987 B > 0.741974 B >3 —1=~0.732750
[4] B > 0.459188 B > 0.716267 B8 > In(2) =~ 0.693147
Thm. 2.1 B > 0.404157 B > 0.615009 B > 1n(2) ~ 0.693147

Example 2.1. We consider the equation
o' (t) + z(t — (a+ bsin(yt)) =0, ¢t>0, (2.19)

where p =1, a = 5+ 5, b= 5 — 5, 7(t) = t — (a + bsin(yt), w = 0.999, and

v = (1—w)/b. Note that 7(t) < ¢ because a + bsin(yt) > 0. We also have
' 1
a = liminf 1ds = liminf (a + bsin(’yt)) = -,
e

t—o00 (t) t—o0

B = limsup (a + bsin(vt)) =a+b=0.45.
t—o0

Using the mean value theorem, with £ € (yu,yv), we show that (2.12) is satisfied.

(v)
/( : p=7(v)—7(u) =v—u+b(sin(yv) — sin(yu))

sin(yv) — sin(vyu)
e |

v

=1 —l—b*ycos({)]/ P

u

2[1—bv][p=w/:p-

Then S satisfies (2.18), and does not satisfy the other inequalities on the second
column of Table 1. Therefore the oscillation criteria in the references do not apply
to this example.

=[1+by v —u)



Oscillation criteria for delay equations 1427

Remark 2.3. With the intent of improving bound (2.18), we extended Lemma 2.2
for n > 1, and obtained

Ry (t)

sa(rO) tJexp (Wt [ po)ds) —1] - — L)

=N Sz (P [P otz ) (9 90)
5\ j\n—l

~ a2 = w(l)@)/ap"(t)}

However this expression does not lead to an explicit bound for 5.
Also note that the optimal bound 8 > 1/e has not been reached yet; it remains
an open question.
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