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ANOTHER IMPROVEMENT ON
OSCILLATION CRITERIA FOR FIRST-ORDER

DELAY DIFFERENTIAL EQUATIONS

Julio G. Dix1,† and Hongwu Wu2

Abstract This article studies the oscillation of solutions to the delay differ-
ential equation

x′(t) + p(t)x(τ(t)) = 0.

We improve the existing oscillation criteria, by lowering the existing bounds on
lim sup

∫ t

τ
p that provide sufficient conditions for the oscillation of all solutions.
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eventually positive solution.
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1. Introduction
This article concerns the oscillation of solutions to the delay differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0 , (1.1)

where p, τ ∈ C([t0,∞), [0,∞)), the delay argument τ is non-decreasing, τ(t) ≤ t,
and limt→∞ τ(t) = ∞. Establishing oscillation criteria for solutions to (1.1) has
been the object of many studies, see for example the books [1,9,12] and the references
cited therein.

By a solution, we mean a continuously differentiable function that satisfies (1.1).
A solution is called oscillatory if it has arbitrarily large zeros, and otherwise it is
called non-oscillatory.

Throughout this article we use the notation

α = lim inf
t→∞

∫ t

τ(t)

p(s) ds, and β = lim sup
t→∞

∫ t

τ(t)

p(s) ds . (1.2)

Composition of the function τ with itself is denoted by τn+1(t) = τn(τ(t)), τ1(t) =
τ(t), and τ0(t) = t. The solutions of the equation

λ = eαλ
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play an important role in the statement of oscillation criteria. So we consider the
following cases: If α = 0, then there is only one solution, λ = 1. If 0 < α < 1/e,
then there are two solutions, λ1 < λ2; in this case λ1 is a continuous and increasing
function of α. If α = 1/e, then there is only one solution λ1 = λ2 = e. If α > 1/e,
there is no solution.

A well known criterion for the oscillation of solutions to (1.1) states that if

α >
1

e
or β > 1 , (1.3)

then every solution is oscillatory, see for example [1, 6, 12]. On the other hand if∫ t

τ(t)
p(s) ds ≤ 1/e for all sufficiently large t, then there is a non-oscillatory solution,

see [6, Corollary 2.1.1]. We are interested in the case α < β. Stavroulakis [14]
presented a summary of existing conditions and a table of bounds for β, in terms
of α. Our goal is to improve the existing lower bounds for β; see Table 1 toward
the end of this article.

Garab et al [7, Theorem 4] obtained the following result for the constant delay
case, τ(t) = t − τ0. Let p be a non-negative, bounded and uniformly continuous
function, 0 < α, 1/e < β, and the mapping t 7→

∫ t

τ(t)
p(s) ds be slowly varying at

infinity. Then all solutions of (1.1) are oscillatory.

2. Results
We use additive and multiplicative estimates of solutions. Additive estimates are
obtained by integrating (1.1) from τ(t) to t,

x(τ(t)) = x(t) +

∫ t

τ(t)

p(s)x(τ(s)) ds . (2.1)

Then using this equality in the integrand we obtain an iterated integral. Repeating
this process n times we have

x(τ(t)) = x(t) + x(τ(t))

∫ t

τ(t)

p(s1)

∫ τ(t)

τ(s1)

p(s2) ds2 ds1

+ x(τ2(t))

∫ t

τ(t)

p(s1)

∫ τ(t)

τ(s1)

p(s2) ds2 ds1 + . . .

+ x(τn(t))

∫ t

τ(t)

p(s1)

∫ τ(t)

τ(s1)

p(s2)· · ·
∫ τn−1(t)

τ(sn−1)

p(sn) dsn . . . ds1

+Rn+1(t) ,

(2.2)

where

Rn+1(t) =

∫ t

τ(t)

p(s1)

∫ τ(t)

τ(s1)

p(s2)· · ·
∫ τn(t)

τ(sn)

p(sn+1)x(τ(sn+1)) dsn+1 . . . ds1 .

Multiplicative estimates are obtained for positive solutions. Dividing (1.1) by
x(t) and then integrating yields

−
∫ v

u

x′(s)

x(s)
ds =

∫ v

u

p(s)
x(τ(s))

x(s)
ds .
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The integral on the left-hand side is ln(x), so that

x(u) = x(v) exp
(∫ v

u

p(s)
x(τ(s))

x(s)
ds
)
. (2.3)

This estimate has been used by many authors for estimating x(τ(t))/x(t); see for
example [1] and [6, Lemma 2.1].

Note that if x is an eventually positive solution of (1.1), then there exists t1
such that both x(t) and x(τ(t)) are positive for all t ≥ t1. In this case, from (1.1)
it follows that x′(t) ≤ 0, hence x is non-increasing. Applying (2.3) to Rn+1(t) with
u = τ(sn+1) and v = τn+1(t), and assuming that x(τn+2(t)) is positive, we obtain

Rn+1(t) :=x(τn+1(t))

∫ t

τ(t)

p(s1)

∫ τ(t)

τ(s1)

p(s2) ds2· · ·
∫ τn(t)

τ(sn)

p(sn+1)

× exp
(∫ τn+1(t)

τ(sn+1)

p(sn+2)
x(τ(sn+2))

x(sn+2)
dsn+2

)
dsn+1 . . . ds1 .

(2.4)

In particular

R1(t) = x(τ(t))

∫ t

τ(t)

p(s1) exp
(∫ τ(t)

τ(s1)

p(s2)
x(τ(s2))

x(s2)
ds2

)
ds1 . (2.5)

To abbreviate notation, we introduce the functions

ρ1(t) =

∫ t

τ(t)

p(s1) ds1, ρ2(t) =

∫ t

τ(t)

p(s1)

∫ τ(t)

τ(s1)

, p(s2) ds2 ds1, . . . ,

ρn(t) =

∫ t

τ(t)

p(s1)

∫ τ(t)

τ(s1)

p(s2)· · ·
∫ τn−1(t)

τ(sn−1)

p(sn) dsn . . . ds1 ,

(2.6)

so that (2.2) becomes

x(τ(t)) = x(t)+x(τ(t))ρ1(t)+x(τ2(t))ρ2(t)+ · · ·+x(τn(t))ρn(t)+Rn+1(t) . (2.7)

This expression, without Rn+1(t), yields an inequality used in [4,15] for establishing
oscillation criteria. Next we estimate x(τ(t))/x(t) using the roots λ1 < λ2 of λ =
exp(αλ).

Lemma 2.1 ( [11, Lemma 1]). Let 0 < α and x be an eventually positive solution
of (1.1). Then 0 < α ≤ 1/e and

λ1 ≤ lim inf
t→∞

x(τ(t))

x(t)
≤ λ2 . (2.8)

Let
0 < α̂ ≤ α =

1

e
. (2.9)

Then the smaller solution λ̂ of λ = exp(α̂λ) satisfies the following: λ̂ depends
continuously on α̂, and λ̂ approaches λ1 (the smaller solution of λ = eαλ) as α̂
approaches α.
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From Lemma 2.1, there exists t2 ≥ t1 such that

λ̂ ≤ x(τ(t))

x(t)
, λ̂ ≤ x(τ2(t))

x(τ(t))
, . . . ∀t ≥ t2 . (2.10)

Furthermore assuming x(τ i(t)) is positive for t large enough,

x(τ i(t))

x(t)
=

x(τ i(t))

x(τ i−1(t))

x(τ i−1(t))

x(τ i−2(t))
· · · x(τ(t))

x(t)
≥ λ̂i . (2.11)

To estimate Rn+1 from below we use the following assumption: There exists
ω > 0 such that for all u ≤ v,∫ τ(v)

τ(u)

p(s) ds ≥ ω

∫ v

u

p(s) ds . (2.12)

This assumption was also used in [2, 11].

Remark 2.1. (1) If ω > 1, then limt→∞
∫ t

τ(t)
p = 0. In which case

∫ t

τ(t)
p ≤ 1/e for

t large enough, then there exists a non-oscillatory solution, see [6, Corollary 3.11].
To prove that the limit is zero, for each t large enough, we define n as the largest

integer such that t0 ≤ τn(t) =: t1. Then by (2.12),∫ t1

τ(t1)

p =

∫ τn(t)

τn+1(t)

p ≥ ω

∫ τn−1(t)

τn(t)

p ≥ ω2

∫ τn−2(t)

τn−1(t)

p ≥ · · · ≥ ωn

∫ t

τ(t)

p .

Note that n → ∞ as t → ∞, and that ωn → ∞. Meanwhile the left-hand side
of the above inequality remains bounded. Therefore

∫ t

τ(t)
p must approach zero as

t → ∞.
(2) If ω = 1, then the mapping t 7→

∫ t

τ(t)
p is non-increasing and non-negative;

therefore it converges as t → ∞. When
∫ t

τ(t)
p converges to a value greater than

1/e, every solution is oscillatory, see (1.3). When
∫ t

τ(t)
p converges to a value less

than 1/e, there is a non-oscillatory solution, see [6, Corollary 3.11]. When
∫ t

τ(t)
p

converges to 1/e, assuming that 0 ≤
∫ t

τ(t)
p(s) ds − 1/e and that it decays to 0, it

can be shown that every solution is oscillatory. However the assumptions for [5,
Lemma 2], and the assumptions for [10, [Lemma 2.1] seem to be insufficient for
their conclusions.

That f(t) =
∫ t

τ(t)
p is non-increasing can be shown as follows: For ω = 1, and

u ≤ v, we have

f(v)− f(u) =

∫ u

τ(u)

p−
∫ v

τ(v)

p =

∫ v

u

p−
∫ τ(v)

τ(u)

p ≤ 0 .

This proof was suggested by the anonymous referee.
(3) We are interested in the oscillation of solutions, so we restrict our attention

to the case 0 < ω < 1.

Lemma 2.2. Let α̂ and λ̂ be as defined above, and x be a solution of (1.1). If
(2.12) holds and x(τ2(t)) is positive for all t large enough, then

R1(t) ≥ x(τ(t))
1

λ̂ω

[
exp

(
λ̂ω

∫ t

τ(t)

p(s) ds
)
− 1

]
. (2.13)
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Proof. Inequalities (2.10) and (2.12) provide the following lower bound for the
inner-most integral in R1(t),∫ τ(t)

τ(s1)

p(s2)
x(τ(s2))

x(s2)
ds2 ≥ λ̂ω

∫ t

s1

p(s2) ds2 . (2.14)

Then
R1(t) ≥ x(τ(t))

∫ t

τ(t)

p(s1)e
λ̂ω

∫ t
s1

p(s2) ds2 ds1.

Integrating by substitution with u(s1) = λ̂ω
∫ t

s1
p(s2) ds2 and u′(s1) = −λ̂ωp(s1) we

obtain (2.13).

Lemma 2.3 ( [4, Lemma 2.4]). Let 0 < α ≤ 1/e, and x be an eventually positive
solution of (1.1). Then

lim inf
t→∞

x(t)

x(τ(t))
≥ 1− α− 1

λ1
. (2.15)

The proof of [4, Lemma 2.4] uses the inequality obtained from (2.2) by omitting
the remainder Rn+1(t). This does not affect the result because as t → ∞, we have
that n → ∞ and Rn+1(t) → 0. We omit the proof of the lemma here. Lemma 2.3
was also proved in [11, Lemma 2] and [14, Remark 2.3] under assumption (2.12).

From (2.2) with n = 0, and (2.13), we have

x(τ(t)) ≥ x(t) + x(τ(t))
1

λ̂ω

[
exp

(
λ̂ω

∫ t

τ(t)

p(s) ds
)
− 1

]
.

Assuming that x(τ(t)) is positive for t large enough, we can divide the above in-
equality by x(τ(t)) and obtain

1 ≥ x(t)

x(τ(t))
+

1

λ̂ω

[
eλ̂ω

∫ t
τ(t)

p − 1
]
. (2.16)

Then taking limits as t → ∞, using that lim supt→∞
∫ t

τ(t)
p(s) ds = β, and (2.15),

we have

1 ≥ lim inf
t→∞

x(t)

x(τ(t))
+ lim sup

t→∞

1

λ̂ω

[
eλ̂ω

∫ t
τ(t)

p − 1
]

≥ 1− α− 1

λ1
+

1

λ̂ω

[
eλ̂ω

n+1β − 1
]
.

Note that as α̂ → α, we have that λ̂ → λ1, and

β ≤ 1

λ1ω
ln

(
1 + ω(αλ1 + 1)

)
. (2.17)

Theorem 2.1. Assume 0 < α ≤ 1/e, (2.12) holds with 0 < ω < 1, and

β >
1

λ1ω
ln

(
1 + ω(αλ1 + 1)

)
. (2.18)

Then every solution of (1.1) is oscillatory.



1426 J. G. Dix & H. Wu

Proof. To obtain a contradiction, we assume that x is a non-oscillatory solution of
(1.1). First assume that x is eventually positive so that (2.17) holds for t sufficiently
large which contradicts (2.18). Therefore x cannot be eventually positive. Now if y
is a eventually negative solution, by the linearity of (1.1), we see that x(t) = −y(t) is
a positive solution. Then we can use the above argument to obtain a contradiction.
This completes the proof.

Remark 2.2. Certainly ω cannot equal 1, because by Remark 2.3(2), ω = 1 makes
α = β. In turn, this equality makes the following oscillation criteria not satisfiable,
for the typical case α = 1/e and λ1 = e: inequality (2.18) above, inequality L >√
7− 2e/e in [13, Remark 3], inequality (12) in [11, Remark 2], and inequality (3.8)

in [4].

Table 1 shows lower bounds for β = lim supt→∞
∫ t

τ(t)
p, as ω approaches 1 from

below. Note that the bound in Theorem 2.1 is slightly lower than the previous
bounds.

Table 1. Oscillation criteria, in [4,11,13] and Theorem 2.1 with ω = 0.9999

Ref. α = 1/e, λ1 = e α = 2 ln(e/2)/e, λ1 = e/2 α = 0, λ1 = 1

[11] β > 0.471518 β > 0.923057 β > 1

[13] β > 0.459987 β > 0.741974 β >
√
3− 1 ≈ 0.732750

[4] β > 0.459188 β > 0.716267 β > ln(2) ≈ 0.693147

Thm. 2.1 β > 0.404157 β > 0.615009 β > ln(2) ≈ 0.693147

Example 2.1. We consider the equation

x′(t) + x
(
t− (a+ b sin(γt)

)
= 0, t ≥ 0 , (2.19)

where p = 1, a = 9
40 + 1

2e , b = 9
40 − 1

2e , τ(t) = t − (a + b sin(γt), ω = 0.999, and
γ = (1− ω)/b. Note that τ(t) ≤ t because a+ b sin(γt) ≥ 0. We also have

α = lim inf
t→∞

∫ t

τ(t)

1 ds = lim inf
t→∞

(
a+ b sin(γt)

)
=

1

e
,

β = lim sup
t→∞

(
a+ b sin(γt)

)
= a+ b = 0.45 .

Using the mean value theorem, with ξ ∈ (γu, γv), we show that (2.12) is satisfied.∫ τ(v)

τ(u)

p = τ(v)− τ(u) = v − u+ b
(
sin(γv)− sin(γu)

)
=

[
1 + bγ

sin(γv)− sin(γu)

γv − γu

]
(v − u)

=
[
1 + bγ cos(ξ)

] ∫ v

u

p

≥ [1− bγ]

∫ v

u

p = ω

∫ v

u

p .

Then β satisfies (2.18), and does not satisfy the other inequalities on the second
column of Table 1. Therefore the oscillation criteria in the references do not apply
to this example.
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Remark 2.3. With the intent of improving bound (2.18), we extended Lemma 2.2
for n ≥ 1, and obtained

Rn+1(t)

≥x(τ(t))
{ 1

λ̂ω(n+1)(n+2)/2

[
exp

(
λ̂ωn+1

∫ t

τ(t)

p(s) ds
)
− 1

]
− 1

ωn(n+1)/2
ρ1(t)

− λ̂

ω(n−1)n/2
ρ2(t)− · · · − λ̂n−1

ω(1)(2)/2
ρn(t)

}
.

(2.20)

However this expression does not lead to an explicit bound for β.
Also note that the optimal bound β > 1/e has not been reached yet; it remains

an open question.
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