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EVOLUTIONARY BEHAVIOR OF THE
INTERACTION SOLUTIONS FOR A

(3+1)-DIMENSIONAL GENERALIZED
BREAKING SOLITON EQUATION∗
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Abstract The interaction solutions have attracted the attention of many
scholars because of they are valuable in analyzing the nonlinear dynamics of
waves in shallow water and can be used for forecasting the appearance of rogue
waves. In this paper, we investigate the interaction and rational solutions of a
(3+1)-dimensional generalized breaking soliton equation by employing the Hi-
rota bilinear and parameter limit methods along with symbolic computations.
By studying the Hirota bilinear form of the equation, abundant interaction
and rational solutions are derived by choosing appropriate parameters of the
test function. The evolutionary behavior of the interaction solutions is also an-
alyzed theoretically and graphically. Compare with the published literatures,
we get some completely new results of the equation in this paper.
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1. Introduction
Recently, the interaction, the lump-type and the rational solutions of nonlinear
evolution equations (NLEEs) have attracted the attention of many researchers
[1–3,8–20,22–29,32,33,35]. For examples, Liu et al. [12] got the bi-soliton, breather
and rogue wave solutions of the (2+1)-dimensional nonlinear Schrödinger equation
using Exp-function method. Through the Hirota bilinear method, Ma [17] for-
mulated lump solutions for a combined fourth-order nonlinear equation in (2+1)-
dimensions. Utilizing the linear superposition method, Hosseini et al. [8] constructed
the rational wave solutions of the (4+1)-dimensional Boiti-Leon-Manna-Pempinelli
(4D-BLMP) equation. The dynamical behavior of the solutions to the 4D-BLMP
equation was also analyzed graphically in [8] by considering the special values of the
involved parameters. By employing the parameter limit method [26] and symbolic
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computation, Tan et al. [27] studied some nonlinear phenomena such as the local
oscillations and degeneration behavior of double breather solutions for a (2+1)-
dimensional KdV system, and got a new lump solution from the double breather
solutions. He and Meng [9] obtained new interaction solutions for the sixth-order
Ramani equation via the three wave method, Shen et al. [25] derived the lump and its
interaction solutions of the generalized (3+1)-dimensional nonlinear wave equation.
Multiple soliton solutions for the generalized (2+1)-dimensional Camassa-Holm-
Kadomtsev-Petviashvili equation were presented in [23] employing the multiple-
order line rogue wave solutions method. Variety interaction between k-lump and
k-kink solutions for the generalized Burgers equation with variable coefficients were
dived in [16] by the bilinear analysis. Abundant exact lump and interaction lump
with two types of typical local excitations for a third-order evolution equation were
found in [18]. Ilhan et al. [10], Manafian and Lakestani [19] obtained some lump
and interaction solutions of a variable-coefficient Kadomtsev-Petviashvili equation
and a (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada
equation, respectively, by using the Hirota bilinear method and so on.

A (3+1)-dimensional generalized breaking soliton equation is given as{
ωt + αuxxx + βuxxy + γuux + λuuy + δuxv = 0,

ωx = ux + uy + uz, uy = vx,
(1.1)

which is proposed by Gai et al. in [4], where u = u(x, y, z, t), v = v(x, y, z, t)
and ω = ω(x, y, z, t) are real functions of x, y, z and t, α, β, γ, λ and δ are the
relevant parameters. Eq. (1.1) is a generalization of the following (2+1)-dimensional
generalized breaking soliton equation [5, 21,30,31,34,36]:{

ut + αuxxx + βuxxy + γuux + λuuy + δuxv = 0,

uy = vx,
(1.2)

which has been investigated via different techniques such as the singularity analysis
[31], the simplified Hirotas method [30], the bilinear Bäcklund transformation [36],
the Bell’s polynomials and the Hirota’s bilinear method [5, 21,34].

When γ = 6α and λ = δ = 3β, Eq. (1.1) becomes the following (3+1)-
dimensional generalized breaking soliton equation [4, 6]:{

ωt + αuxxx + βuxxy + 6αuux + 3βuuy + 3βuxv = 0,

ωx = ux + uy + uz, uy = vx.
(1.3)

Gai et al. [4] got the following Hirota bilinear form of Eq. (1.3):(
DxDt +DyDt +DzDt + αD4

x + βD3
xDy

)
(f · f) = 0, (1.4)

under the second-order logarithmic derivative transformation

u = 2 (ln f)xx , v = 2 (ln f)xy , (1.5)

where D4
x, D

3
x, Dx, Dy, Dz and Dt are the Hirota’s bilinear differential operators [7],

f is a real function of x, y, z and t. Based on the (1.4), abundant lump-type solutions,
rogue wave type solutions, breather lump wave solutions and interaction solutions
of Eq. (1.3) were constructed in [4]. The multiwave, multicomplexiton and positive
multicomplexiton solutions of Eq. (1.3) were dived in [6].
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It should be pointed out that the authors [4–6,21,30,31,34,36] have given some
interaction and rational solutions to Eqs. (1.2) and (1.3), however, they have not
obtained the relevant results of Eq. (1.1). In this paper, we derive new interaction
solutions of Eq. (1.1) and investigate the evolutionary behavior of the interaction
solutions to get the rational solutions of the equation.

2. Bilinear form of Eq. (1.1)
Eq. (1.1) can be rewritten as

∂−1
x (uxt + uyt + uzt) + αuxxx + βuxxy + γuux + λuuy + δux∂

−1
x uy = 0. (2.1)

Let δ = λ = βγ
2α and u = u0 + ϕx, then Eq. (2.1) becomes

ϕxt + ϕyt + ϕzt + αϕxxxx + βϕxxxy + γu0ϕxx +
γ

2

(
(ϕx)

2
)
x

+
βγ

2α
u0ϕxy +

βγ

2α
(ϕxϕy)x = 0.

(2.2)

Using transformation ϕ = 12α
γ (lnf)x , i.e.

u = u0 +
12α

γ
(lnf)xx , (2.3)

where f = f(x, y, z, t) is a real function of x, y, z and t, Eq. (2.2) becomes

(lnf)xxt + (lnf)xyt + (lnf)xzt + α (lnf)xxxxx + β (lnf)xxxxy + γu0 (lnf)xxx

+ 6α
(
((lnf)xx)

2
)
x
+

βγ

2α
u0 (lnf)xxy + 6β

(
(lnf)xx (lnf)xy

)
x
= 0.

(2.4)

Integrating (2.4) once with respect to x, we have

(lnf)xt + (lnf)yt + (lnf)zt + α (lnf)xxxx + β (lnf)xxxy + γu0 (lnf)xx

+ 6α ((lnf)xx)
2
+

βγ

2α
u0 (lnf)xy + 6β (lnf)xx (lnf)xy = 0.

(2.5)

From (2.5), we obtain the Hirota bilinear form of Eq. (1.1) as follows:(
γu0D

2
x +

βγ

2α
u0DxDy +DxDt +DyDt +DzDt + αD4

x + βD3
xDy

)
(f · f) = 0.

(2.6)

Remark 2.1. The (1.4) is a special case of the (2.6) as u0 = 0 and γ = 6α.

3. Interaction solutions and their evolutionary be-
havior for Eq. (1.1)

In order to search the interaction solutions of Eq. (1.1), we take

f = a0 + a1eξ1 + a2 cos (ξ2) + a3 cosh (ξ3) , (3.1)
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where ξi = pi(bi1x+bi2y+bi3z+bi4t+bi5), p1 is a real number, p2, p3 are real numbers
or pure imaginary numbers, bij (i = 1, 2, 3, j = 1, 2, 3, 4, 5) and ak (k = 0, 1, 2, 3)
are are real numbers to be determined later.

Substituting (3.1) into (2.6) and equating all coefficients of sin(ξ2)eξ1 , cos(ξ2)eξ1 ,
sinh(ξ3)eξ1 , cosh(ξ3)eξ1 , eξ1 , sin(ξ2) sinh(ξ3), cos(ξ2) cosh(ξ3), cos(ξ2), cosh(ξ3) and
the constant term to zero, we obtain

a3 = 0, b12 = −αb11
β

, b13 = −b11(−2αb24 + 2βb24 + βγu0b21)

2βb24
, b14 =

b11b24
b21

,

b22 = −αb21
β

, b23 = −b21(−2αb24 + 2βb24 + βγu0b21)

2βb24
,


(3.2)

with βb21b24 ̸= 0.
a3 = 0, b14 =

p2b24
√
2

p1
, b21 = −βb22

α
, b23 = −b22(2α

2b24 + β2γu0b22 − 2αβb24)

2α2b24
,

b11 = −p2βb22
√
2

p1α
, b12 =

p2b22
√
2

p1
, b13 =

p2b22(2α
2b24 + β2γu0b22 − 2αβb24)

√
2

2p1α2b24
,


(3.3)

with p1αb24 ̸= 0.{
a1=0, b22=−αb21

β
, b23=

(α− β)b21
β

, b32=−αb31
β

, b33=
(α− β)b31

β
, u0=0,

}
(3.4)

with β ̸= 0.
a1 = 0, b22 = −αb21

β
, b23 = −b21(−2αb24 + 2βb24 + βγu0b21)

2βb24
, b32 = −αb31

β
,

b33 = −b31(−2αb24 + 2βb24 + βγu0b21)

2βb24
, b34 =

b24b31
b21

,


(3.5)

with βb21b24 ̸= 0.
a0 = 0, b12 = −αb11

β
, b13 =

(α− β)b11
β

, b22 = −αb21
β

, b23 =
(α− β)b21

β
,

b32 = −αb31
β

, b33 =
(α− β)b31

β
, u0 = 0,


(3.6)

with β ̸= 0.
Case 1.

Let p1 and p2 ∈ R, then using (2.3), (3.1) and (3.2), we obtain a interaction
solution of Eq. (1.1) as follows:

u = u0 +
12α

γ

(
p21a1b

2
11eη1 − p22a2b

2
21 cos(η2)

a0 + a1eη1 + a2 cos(η2)
−
(
p1a1b11eη1 − p2a2b21 sin(η2)

a0 + a1eη1 + a2 cos(η2)

)2
)
,

(3.7)
where

η1 = p1

(
b11x− αb11

β
y − b11(−2αb24 + 2βb24 + βγu0b21)

2βb24
z +

b11b24
b21

t+ b15

)
,
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η2 = p2

(
b21x− αb21

β
y − b21(−2αb24 + 2βb24 + βγu0b21)

2βb24
z + b24t+ b25

)
,

α, β(̸= 0), γ(̸= 0), u0, a0, a1, a2, b11, b15, b21(̸= 0), b24(̸= 0) and b25 ∈ R.

To emerge rational solution from (3.7), the parameters ai (i = 0, 1, 2) need
satisfy [27]:

lim
pj→0

(a0 + a1 + a2) = 0, j = 1, 2.

Therefore, if taking p2 = p1, a0 = −2, a1 = 1, a2 = cos(p2) and p1 → 0 in (3.7),
then solution (3.7) emerges the following second-order rational solution:

u = u0 −
12α

γ

(
G1

H1

)2

, (3.8)

where G1 = 2βb11b21b24, H1 = −2βb11b21b24x + 2αb11b21b24y + b11b21(−2αb24 +
2βb24 + βγu0b21)z − 2βb11b

2
24t− 2βb15b21b24.

Selecting α = 1, β = 1, γ = 1, u0 = 1, b11 = 1, b15 = 1, b21 = 2, b24 = −1, z = 1
and t = 1, three-dimensional and contour plots of (3.8) are shown in Figure 1.
Selecting α = 1, β = 1, γ = 1, u0 = 1, a0 = −2, a1 = 1, b11 = 1, b15 = 1, b21 =
2, b24 = −1, b25 = 1, z = 1 and t = 1, the limiting process of (3.7) is similar to that
in Figure 2.

Figure 1. Three-dimensional and contour plots of (3.8).

Let p1 ∈ R and p2 = p̄2I, here p̄2 ∈ R, I =
√
−1, then using (2.3), (3.1) and

(3.2), we obtain a interaction solution of Eq. (1.1) as follows:

u=u0+
12α

γ

(
p21a1b

2
11eη1+p̄22a2b

2
21 cosh(η3)

a0+a1eη1+a2 cosh(η3)
−
(
p1a1b11eη1+p̄2a2b21 sinh(η3)

a0 + a1eη1 + a2 cosh(η3)

)2
)
,

(3.9)
where η3 = p̄2

(
b21x− αb21

β y − b21(−2αb24+2βb24+βγu0b21)
2βb24

z + b24t+ b25

)
and η1 is

given in (3.7). Moreover, if taking p̄2 = p1, a0 = −2, a1 = 1, a2 = cosh(p̄2) and
p1 → 0 in (3.9), then solution (3.9) emerges the second-order rational solution
(3.8).

Selecting α = 1, β = 1, γ = 1, u0 = 1, a0 = −2, a1 = 1, b11 = 1, b15 = 1, b21 =
2, b24 = −1, b25 = 1, z = 1 and t = 1, the limiting process of (3.9) is similar to that
in Figure 3.

Case 2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. The limiting precess of (3.7) tends to (3.8) when p1 → 0. Parameters: p1 = 1, p2 = 1, a2 =
cos(1) in (a) and (e), p1 = 0.6, p2 = 0.6, a2 = cos(0.6) in (b) and (f), p1 = 0.3, p2 = 0.3, a2 = cos(0.3)
in (c) and (g), p1 = 0.01, p2 = 0.01, a2 = cos(0.01) in (d) and (h), respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. The limiting precess of (3.9) tends to (3.8) when p1 → 0. Parameters: p1 = 0.6, p̄2 = 0.6, a2 =
cosh(0.6) in (a) and (e), p1 = 0.2, p̄2 = 0.2, a2 = cosh(0.2) in (b) and (f), p1 = 0.07, p̄2 = 0.07, a2 =
cosh(0.07) in (c) and (g), p1 = 0.001, p̄2 = 0.001, a2 = cosh(0.001) in (d) and (h), respectively.

Let p1(̸= 0) and p2 ∈ R, then using (2.3), (3.1) and (3.3), we obtain a interaction
solution of Eq. (1.1) as follows:

u = u0 +
12p22β

2b222
αγ

 2a1eη4 − a2 cos(η5)

a0 + a1eη4 + a2 cos(η5)
−

(
a1
√
2eη4 − a2 sin(η5)

a0 + a1eη4 + a2 cos(η5)

)2
 ,

(3.10)
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where

η4 = p1

(
−p2βb22

√
2

p1α
x+ p2b22

√
2

p1
y + p2b22(2α

2b24+β2γu0b22−2αβb24)
√
2

2p1α2b24
z + p2b24

√
2

p1
t+ b15

)
,

η5 = p2

(
−βb22

α
x+ b22y −

b22(2α
2b24 + β2γu0b22 − 2αβb24)

2α2b24
z + b24t+ b25

)
,

α(̸= 0), β, γ(̸= 0), u0, a0, a1, a2, b15, b22, b24(̸= 0) and b25 ∈ R.

Moreover, if taking p2 = p1, a0 = −2, a1 = 1, a2 = cos(p2) and p1 → 0 in (3.10),
then solution (3.10) emerges the following second-order rational solution:

u = u0 −
12α

γ

(
G2

H2

)2

, (3.11)

where G2 = 2αβb22b24, H2 = −2αβb22b24x + 2α2b22b24y + b22(2α
2b24 − 2αβb24 +

β2γu0b22)z + 2α2b224t+ α2b15b24
√
2.

Selecting α = 1, β = 1, γ = 1, u0 = 1, b15 = 1, b22 = 1, b24 = 1, z = 1 and
t = 9, three-dimensional and contour plots of (3.11) are shown in Figure 4. Selecting
α = 1, β = 1, γ = 1, u0 = 1, a0 = −2, a1 = 1, b15 = 1, b22 = 1, b24 = 1, b25 = 1, z = 1
and t = 9, the limiting process of (3.10) is similar to that in Figure 5.

Figure 4. Three-dimensional and contour plots of (3.11).

Case 3.
Let p2 and p3 ∈ R, then using (2.3), (3.1) and (3.4), we obtain a interaction

solution of Eq. (1.1) as follows:

u = − 12α
γ

(
p2
2a2b

2
21 cos(η6)−p2

3a3b
2
31 cosh(η7)

a0+a2 cos(η6)+a3 cosh(η7)
+
(

p2a2b21 sin(η6)−p3a3b31 sinh(η7)
a0+a2 cos(η6)+a3 cosh(η7)

)2)
,

(3.12)
where η6 = p2

(
b21x− αb21

β y + (α−β)b21
β z + b24t+ b25

)
, η7 = p3

(
b31x− αb31

β y+

(α−β)b31
β z + b34t+ b35

)
, α, β(̸= 0), γ(̸= 0), a0, a2, a3, b21, b24, b25, b31, b34 and b35 ∈

R. Moreover, if taking p3 = p2, a0 = −2, a2 = cos(p2), a3 = cosh(p3) and p2 → 0 in
(3.12), then solution (3.12) emerges the following fourth-order rational solution:

u =
12α

γ

(
G31

H3
−
(
G32

H3

)2
)
, (3.13)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. The limiting precess of (3.10) tends to (3.11) when p1 → 0. Parameters: p1 = 1, p2 = 1, a2 =
cos(1) in (a) and (e), p1 = 0.7, p2 = 0.7, a2 = cos(0.7) in (b) and (f), p1 = 0.5, p2 = 0.5, a2 = cos(0.5)
in (c) and (g), p1 = 0.05, p2 = 0.05, a2 = cos(0.05) in (d) and (h), respectively.

Figure 6. Three-dimensional and contour plots of (3.13).

where G31 = 2β2(b221− b231), G32 = 2β((b221− b231)(βx−αy+(α−β)z)+β((b21b24−
b31b34)t+ b21b25− b31b35)), H3 = ((b21+ b31)(βx−αy+(α−β)z)+β((b24+ b34)t+
b25 + b35))× ((b21 − b31)(βx− αy + (α− β)z) + β((b24 − b34)t+ b25 − b35)).

Selecting α = 1, β = 1, γ = 1, b21 = 1, b24 = 1, b25 = 1, b31 = −2, b34 = 1, b35 =
1, z = 1 and t = 7, three-dimensional and contour plots of (3.13) are shown in
Figure 6. Selecting α = 1, β = 1, γ = 1, a0 = −2, b21 = 1, b24 = 1, b25 = 1, b31 =
−2, b34 = 1, b35 = 1, z = 1, and t = 7, the limiting process of (3.12) is similar to
that in Figure 7.

Let p3 ∈ R and p2 = p̄2I, here p̄2 ∈ R, I =
√
−1, then using (2.3), (3.1) and

(3.4), we obtain a interaction solution of Eq. (1.1) as follows:

u =
12α

γ

(
p̄22a2b

2
21 cosh(η8) + p23a3b

2
31 cosh(η7)

a0 + a2 cosh(η8) + a3 cosh(η7)
−
(
p̄2a2b21 sinh(η8) + p3a3b31 sinh(η7)

a0 + a2 cosh(η8) + a3 cosh(η7)

)2
)
,

(3.14)
where η8 = p̄2

(
b21x− αb21

β y + (α−β)b21
β z + b24t+ b25

)
and η7 is given in (3.12).

Moreover, if taking p3 = p̄2, a0 = −2, a2 = cosh(p̄2), a3 = cosh(p3) and p̄2 → 0 in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. The limiting precess of (3.12) tends to (3.13) when p2 → 0. Parameters: p2 = 0.35, p3 =
0.35, a2 = cos(0.35), a3 = cosh(0.35) in (a) and (e), p2 = 0.22, p3 = 0.22, a2 = cos(0.22), a3 = cosh(0.22)
in (b) and (f), p2 = 0.12, p3 = 0.12, a2 = cos(0.12), a3 = cosh(0.12) in (c) and (g), p2 = 0.01, p3 =
0.01, a2 = cos(0.01), a3 = cosh(0.01) in (d) and (h), respectively.

Figure 8. Three-dimensional and contour plots of (3.15).

(3.14), then solution (3.14) emerges the following fourth-order rational solution:

u =
12α

γ

(
Ḡ31

H̄3
−
(
Ḡ32

H̄3

)2
)
, (3.15)

where Ḡ31 = 2β2(b221+b231), Ḡ32 = (2β((b221+b231)(βx−αy+(α−β)z)+β((b21b24+
b31b34)t+b21b25+b31b35)))

2, H̄3 = β2(b221+b231)x
2+2β((b221+b231)(−αy+(α−β)z)+

β((b21b24+ b31b34)t+ b21b25+ b31b35))x+α2(b221+ b231)y
2− 2α((α−β)(b221+ b231)z+

β((b21b24+b31b34)t+b21b25+b31b35))y+(α−β)2(b221+b231)z
2+(2β(α−β)((b21b24+

b31b34)t+ b21b25 + b31b35))z + β2((b224 + b234)t
2 + 2(b24b25 + b34b35)t+ b225 + b235).

Selecting α = 1, β = 1, γ = 1, b21 = 1, b24 = 1, b25 = 1, b31 = −2, b34 = 1, b35 =
1, z = 1 and t = 1, three-dimensional and contour plots of (3.15) are shown in
Figure 8. Selecting α = 1, β = 1, γ = 1, a0 = −2, b21 = 1, b24 = 1, b25 = 1, b31 =
−2, b34 = 1, b35 = 1, z = 1 and t = 1, the limiting process of (3.14) is similar to that
in Figure 9.

Let p2 ∈ R and p3 = p̄3I, here p̄3 ∈ R, I =
√
−1, then using (2.3), (3.1) and



1438 H. Yang, W. Liu & B. He

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. The limiting precess of (3.14) tends to (3.15) when p̄2 → 0. Parameters: p̄2 = 0.77, p3 =
0.77, a2 = cosh(0.77), a3 = cosh(0.77) in (a) and (e), p̄2 = 0.6, p3 = 0.6, a2 = cosh(0.6), a3 = cosh(0.6)
in (b) and (f), p̄2 = 0.4, p3 = 0.4, a2 = cosh(0.4), a3 = cosh(0.4) in (c) and (g), p̄2 = 0.02, p3 =
0.02, a2 = cosh(0.02), a3 = cosh(0.02) in (d) and (h), respectively.

(3.4), we obtain a interaction solution of Eq. (1.1) as follows:

u = − 12α
γ

(
p2
2a2b

2
21 cos(η6)+p̄2

3a3b
2
31 cos(η9)

a0+a2 cos(η6)+a3 cos(η9)
+
(

p2a2b21 sin(η6)+p̄3a3b31 sin(η9)
a0+a2 cos(η6)+a3 cos(η9)

)2)
,

(3.16)
where η9 = p̄3

(
b31x− αb31

β y + (α−β)b31
β z + b34t+ b35

)
and η6 is given in (3.12).

Moreover, if taking p̄3 = p2, a0 = −2, a2 = cos(p2), a3 = cos(p̄3) and p2 → 0 in
(3.16), then solution (3.16) emerges the fourth-order rational solution (3.15).

Selecting α = 1, β = 1, γ = 1, a0 = −2, b21 = 1, b24 = 1, b25 = 1, b31 = −2, b34 =
1, b35 = 1, z = 1 and t = 1, the limiting process of (3.16) is similar to that in Figure
10.

Case 4.
Let p2 and p3 ∈ R, then using (2.3), (3.1) and (3.5), we obtain a interaction

solution of Eq. (1.1) as follows:

u =u0 −
12α

γ

(
p22a2b

2
21 cos(η10)− p23a3b

2
31 cosh(η11)

a0 + a2 cos(η10) + a3 cosh(η11)

+

(
p2a2b21 sin(η10)− p3a3b31 sinh(η11)

a0 + a2 cos(η10) + a3 cosh(η11)

)2
)
, (3.17)

where

η10 = p2

(
b21x− αb21

β
y − b21(−2αb24 + 2βb24 + βγu0b21)

2βb24
z + b24t+ b25

)
,

η11 = p3

(
b31x− αb31

β
y − b31(−2αb24 + 2βb24 + βγu0b21)

2βb24
z +

b24b31
b21

t+ b35

)
,



Interaction and rational solutions. . . 1439

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. The limiting precess of (3.16) tends to (3.15) when p2 → 0. Parameters: p2 = 0.7, p̄3 =
0.7, a2 = cos(0.7), a3 = cos(0.7) in (a) and (e), p2 = 0.4, p̄3 = 0.4, a2 = cos(0.4), a3 = cos(0.4) in (b)
and (f), p2 = 0.12, p̄3 = 0.12, a2 = cos(0.12), a3 = cos(0.12) in (c) and (g), p2 = 0.02, p̄3 = 0.02, a2 =
cos(0.02), a3 = cos(0.02) in (d) and (h), respectively.

α, β( ̸= 0), γ( ̸= 0), u0, a0, a2, a3, b21, b24, b25, b31 and b35 ∈ R. Moreover, if taking
p3 = p2, a0 = −2, a2 = cos(p2), a3 = cosh(p3) and p2 → 0 in (3.17), then solution
(3.17) emerges the following fourth-order rational solution:

u = u0 +
12α

γ

(
G41

H4
−
(
G42

H4

)2
)
, (3.18)

where G41 = 8β2b221b
2
24(b

2
21 − b231), G42 = −4βb21b24((b

2
21 − b231)(−2βb21b24x +

2αb21b24y+ (−2αb24 +2βb24 + βγu0b21)b21z− 2βb224t)− 2βb21b24(b21b25 − b31b35)),
H4 = ((b21 + b31)(−2βb21b24x + 2αb21b24y + (−2αb24 + 2βb24 + βγu0b21)b21z −
2βb224t) − 2βb21b24(b25 + b35)) × ((b21 − b31)(−2βb21b24x + 2αb21b24y + (−2αb24 +
2βb24 + βγu0b21)b21z − 2βb224t)− 2βb21b24(b25 − b35)).

Selecting α = 1, β = 1, γ = 1, u0 = 1, b21 = 1, b24 = 1, b25 = 1, b31 = −2, b35 =
1, z = 1 and t = 15, three-dimensional and contour plots of (3.18) are shown in
Figure 11. Selecting α = 1, β = 1, γ = 1, u0 = 1, a0 = −2, b21 = 1, b24 = 1, b25 =
1, b31 = −2, b35 = 1, z = 1 and t = 15, the limiting process of (3.17) is similar to
that in Figure 12.

Let p3 ∈ R and p2 = p̄2I, here p̄2 ∈ R, I =
√
−1, then using (2.3), (3.1) and

(3.5), we obtain a interaction solution of Eq. (1.1) as follows:

u =u0 +
12α

γ

(
p̄22a2b

2
21 cosh(η12) + p23a3b

2
31 cosh(η11)

a0 + a2 cosh(η12) + a3 cosh(η11)

−
(
p̄2a2b21 sinh(η12) + p3a3b31 sinh(η11)

a0 + a2 cosh(η12) + a3 cosh(η11)

)2)
,

(3.19)

where η12 = p̄2

(
b21x− αb21

β y − b21(−2αb24+2βb24+βγu0b21)
2βb24

z + b24t+ b25

)
, η11 is given

in (3.17). Moreover, if taking p3 = p̄2, a0 = −2, a2 = cosh(p̄2), a3 = cosh(p3) and
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Figure 11. Three-dimensional and contour plots of (3.18).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. The limiting precess of (3.17) tends to (3.18) when p2 → 0. Parameters: p2 = 1, p3 =
1, a2 = cos(1), a3 = cosh(1) in (a) and (e), p2 = 0.6, p3 = 0.6, a2 = cos(0.6), a3 = cosh(0.6) in (b)
and (f), p2 = 0.4, p3 = 0.4, a2 = cos(0.4), a3 = cosh(0.4) in (c) and (g), p2 = 0.04, p3 = 0.04, a2 =
cos(0.04), a3 = cosh(0.04) in (d) and (h), respectively.

p̄2 → 0 in (3.19), then solution (3.19) emerges the following fourth-order rational
solution:

u = u0 +
12α

γ

(
Ḡ41

H̄4
−
(
Ḡ42

H̄4

)2
)
, (3.20)

where Ḡ41 = 8β2b221b
2
24(b

2
21 + b231), Ḡ42 = −4βb21b24((b

2
21 + b231)(−2βb21b24x +

2αb21b24y+ (−2αb24 +2βb24 + βγu0b21)b21z− 2βb224t)− 2βb21b24(b21b25 + b31b35)),
H̄4 = 4β2b221b

2
24(b

2
21 + b231)x

2 + 4βb21b24((b
2
21 + b231)(−2αb21b24y − b21(−2αb24 +

2βb24+βγu0b21)z+2βb224t)+2βb21b24(b21b25+ b31b35))x+4α2b221b
2
24(b

2
21+ b231)y

2+
4αb21b24((b

2
21 + b231)(b21(−2αb24 + 2βb24 + βγu0b21)z − 2βb224t)− 2βb21b24(b21b25 +

b31b35))y+b221(b
2
21+b231)(−2αb24+2βb24+βγu0b21)

2z2−4βb21b24(−2αb24+2βb24+
βγu0b21)(b24(b

2
21+b231)t+b21(b21b25+b31b35))z+4β2b224(b

2
21+b231)t

2+8β2b21b
3
24(b21b25+

b31b35)t+4β2b221b
2
24(b

2
25 + b235).

Selecting α = 1, β = 1, γ = 1, u0 = 1, b21 = 1, b24 = 1, b25 = 1, b31 = −2, b35 =
1, z = 1 and t = −5, three-dimensional and contour plots of (3.20) are shown in
Figure 13. Selecting α = 1, β = 1, γ = 1, u0 = 1, a0 = −2, b21 = 1, b24 = 1, b25 =
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Figure 13. Three-dimensional and contour plots of (3.20).

1, b31 = −2, b35 = 1, z = 1 and t = −5, the limiting process of (3.19) is similar to
that in Figure 14.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. The limiting precess of (3.19) tends to (3.20) when p̄2 → 0. Parameters: p̄2 = 1, p3 =
1, a2 = cosh(1), a3 = cosh(1) in (a) and (e), p̄2 = 0.6, p3 = 0.6, a2 = cosh(0.6), a3 = cosh(0.6) in (b)
and (f), p̄2 = 0.45, p3 = 0.45, a2 = cosh(0.45), a3 = cosh(0.45) in (c) and (g), p̄2 = 0.05, p3 = 0.05, a2 =
cosh(0.05), a3 = cosh(0.05) in (d) and (h), respectively.

Let p2 ∈ R and p3 = p̄3I, here p̄3 ∈ R, I =
√
−1, then using (2.3), (3.1) and

(3.5), we obtain a interaction solution of Eq. (1.1) as follows:

u =u0 −
12α

γ

(
p22a2b

2
21 cos(η10) + p̄23a3b

2
31 cos(η13)

a0 + a2 cos(η10) + a3 cos(η13)

+

(
p2a2b21 sin(η10) + p̄3a3b31 sin(η13)

a0 + a2 cos(η10) + a3 cos(η13)

)2)
,

(3.21)

where η13 = p̄3

(
b31x− αb31

β y − b31(−2αb24+2βb24+βγu0b21)
2βb24

z + b24b31
b21

t+ b35

)
, η10 is

given in (3.17). Moreover, if taking p̄3 = p2, a0 = −2, a2 = cos(p2), a3 = cos(p̄3)
and p2 → 0 in (3.21), then solution (3.21) emerges the fourth-order rational solution
(3.20).



1442 H. Yang, W. Liu & B. He

Selecting α = 1, β = 1, γ = 1, u0 = 1, a0 = −2, b21 = 1, b24 = 1, b25 = 1, b31 =
−2, b35 = 1, z = 1 and t = −5, the limiting process of (3.21) is similar to that in
Figure 15.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. The limiting precess of (3.21) tends to (3.20) when p2 → 0. Parameters: p2 = 1, p̄3 =
1, a2 = cos(1), a3 = cos(1) in (a) and (e), p2 = 0.6, p̄3 = 0.6, a2 = cos(0.6), a3 = cos(0.6) in (b) and (f),
p2 = 0.3, p̄3 = 0.3, a2 = cos(0.3), a3 = cos(0.3) in (c) and (g), p2 = 0.05, p̄3 = 0.05, a2 = cos(0.05), a3 =
cos(0.05) in (d) and (h), respectively.

Case 5.
Let p1, p2 and p3 ∈ R, then using (2.3), (3.1) and (3.6), we obtain a interaction

solution of Eq. (1.1) as follows:

u =
12α

γ

(
p21a1b

2
11eη14 − p22a2b

2
21 cos(η15) + p23a3b

2
31 cosh(η16)

a1eη14 + a2 cos(η15) + a3 cosh(η16)

−
(
p1a1b11eη14 − p2a2b21 sin(η15) + p3a3b31 sinh(η16)

a1eη14 + a2 cos(η15) + a3 cosh(η16)

)2)
,

(3.22)

where

η14 = p1

(
b11x− αb11

β
y +

(α− β)b11
β

z + b14t+ b15

)
,

η15 = p2

(
b21x− αb21

β
y +

(α− β)b21
β

z + b24t+ b25

)
,

η16 = p3

(
b31x− αb31

β
y +

(α− β)b31
β

z + b34t+ b35

)
,

α, β( ̸= 0), γ( ̸= 0), a1, a2, a3, b11, b14, b15, b21, b24, b25, b31, b34 and b35 ∈ R. Moreover,
if taking p2 = p1, p3 = p1, a1 = −2, a2 = cos(p2), a3 = cosh(p3) and p1 → 0 in
(3.22), then solution (3.22) emerges the following second-order rational solution:

u = −12α

γ

(
G5

H5

)2

, (3.23)
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Figure 16. Three-dimensional and contour plots of (3.23).

where G5 = βb11, H5 = βb11x− αb11y + (α− β)b11z + βb14t+ βb15.
Selecting α = 2, β = 1, γ = 1, b11 = 1, b14 = 1, b15 = 1, z = 1 and t = −5,

three-dimensional and contour plots of (3.23) are shown in Figure 16. Selecting
α = 2, β = 1, γ = 1, a1 = −2, b11 = 1, b14 = 1, b15 = 1, b21 = 2, b24 = 1, b25 = 1,
b31 = 3, b34 = 1, b35 = 1, z = 1 and t = −5, the limiting process of (3.22) is similar
to that in Figure 17.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17. The limiting precess of (3.22) tends to (3.23) when p1 → 0. Parameters: p1 = 0.15, p2 =
0.15, p3 = 0.15, a2 = cos(0.15), a3 = cosh(0.15) in (a) and (e), p1 = 0.1, p2 = 0.1, p3 = 0.1, a2 =
cos(0.1), a3 = cosh(0.1) in (b) and (f), p1 = 0.05, p2 = 0.05, p3 = 0.05, a2 = cos(0.05), a3 = cosh(0.05)
in (c) and (g), p1 = 0.001, p2 = 0.001, p3 = 0.001, a2 = cos(0.001), a3 = cosh(0.001) in (d) and (h),
respectively.

Let p1, p3 ∈ R and p2 = p̄2I, here p̄2 ∈ R, I =
√
−1, then using (2.3), (3.1) and

(3.6), we obtain a interaction solution of Eq. (1.1) as follows:

u =
12α

γ

(
p21a1b

2
11eη14 + p̄22a2b

2
21 cosh(η17) + p23a3b

2
31 cosh(η16)

a1eη14 + a2 cosh(η17) + a3 cosh(η16)

−
(
p1a1b11eη14 + p̄2a2b21 sinh(η17) + p3a3b31 sinh(η16)

a1eη14 + a2 cosh(η17) + a3 cosh(η16)

)2)
, (3.24)

where η17 = p̄2

(
b21x− αb21

β y + (α−β)b21
β z + b24t+ b25

)
, η14 and η16 are given in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18. The limiting precess of (3.24) tends to (3.23) when p1 → 0. Parameters: p1 = 0.7, p̄2 =
0.7, p3 = 0.7, a2 = cosh(0.7), a3 = cosh(0.7) in (a) and (e), p1 = 0.2, p̄2 = 0.2, p3 = 0.2, a2 =
cosh(0.2), a3 = cosh(0.2) in (b) and (f), p1 = 0.02, p̄2 = 0.02, p3 = 0.02, a2 = cosh(0.02), a3 = cosh(0.02)
in (c) and (g), p1 = 0.001, p̄2 = 0.001, p3 = 0.001, a2 = cosh(0.001), a3 = cosh(0.001) in (d) and (h),
respectively.

(3.22). Moreover, if taking p̄2 = p1, p3 = p1, a1 = −2, a2 = cosh(p̄2), a3 = cosh(p3)
and p1 → 0 in (3.24), then solution (3.24) emerges the second-order rational solution
(3.23).

Selecting α = 2, β = 1, γ = 1, a1 = −2, b11 = 1, b14 = 1, b15 = 1, b21 = 2, b24 =
1, b25 = 1, b31 = 3, b34 = 1, b35 = 1, z = 1 and t = −5, the limiting process of (3.24)
is similar to that in Figure 18.

Let p1, p2 ∈ R and p3 = p̄3I, here p̄3 ∈ R, I =
√
−1, then using (2.3), (3.1) and

(3.6), we obtain a interaction solution of Eq. (1.1) as follows:

u =
12α

γ

(
p21a1b

2
11eη14 − p22a2b

2
21 cos(η15)− p̄23a3b

2
31 cos(η18)

a1eη14 + a2 cos(η15) + a3 cos(η18)

−
(
p1a1b11eη14 − p2a2b21 sin(η15)− p̄3a3b31 sin(η18)

a1eη14 + a2 cos(η15) + a3 cos(η18)

)2
)
,

(3.25)

where η18 = p̄3

(
b31x− αb31

β y + (α−β)b31
β z + b34t+ b35

)
, η14 and η15 are given in

(3.22). Moreover, if taking p2 = p1, p̄3 = p1, a1 = −2, a2 = cos(p2), a3 = cos(p̄3)
and p1 → 0 in (3.25), then solution (3.25) emerges the second-order rational solution
(3.23).

Selecting α = 2, β = 1, γ = 1, a1 = −2, b11 = 1, b14 = 1, b15 = 1, b21 = 2, b24 =
1, b25 = 1, b31 = 3, b34 = 1, b35 = 1, z = 1 and t = −5, the limiting process of (3.25)
is similar to that in Figure 19.

4. Conclusion
In this paper, we first obtain Hirota bilinear form (2.6) of Eq. (1.1) by using the
Hirota bilinear method. Based on the (2.6), we second formulate some interaction
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19. The limiting precess of (3.25) tends to (3.23) when p1 → 0. Parameters: p1 = 0.3, p2 =
0.3, p̄3 = 0.3, a2 = cos(0.3), a3 = cos(0.3) in (a) and (e), p1 = 0.1, p2 = 0.1, p̄3 = 0.1, a2 = cos(0.1), a3 =
cos(0.1) in (b) and (f), p1 = 0.02, p2 = 0.02, p̄3 = 0.02, a2 = cos(0.02), a3 = cos(0.02) in (c) and (g),
p1 = 0.001, p2 = 0.001, p̄3 = 0.001, a2 = cos(0.001), a3 = cos(0.001) in (d) and (h), respectively.

solutions of Eq. (1.1) by choosing appropriate test function and the parameters.
Utilizing the parameter limit method along with symbolic computations, we third
dive the rational solutions of Eq. (1.1) from the formulated interaction solutions
in this paper. We last illustrate the correctness of the theoretical results through
image simulations. Compare with the published literatures [4–6,21,30,31,34,36], we
obtain some completely new results of Eq. (1.1) which include new Hirota bilinear
form, new interaction and rational solutions etc. In fact, we only take the test
function as (3.1) in this paper, other test functions may be selected. We believe
that more and more new interaction and rational solutions of Eq. (1.1) will be
presented in the future.
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[33] Y. Yin, W. Ma, J. Liu and X. Lü, Diversity of exact solutions to a (3+1)-
dimensional nonlinear evolution equation and its reduction, Comput. Math.
Appl., 2018, 76(6), 1275–1283.

[34] X. Yan, S. Tian, M. Dong, L. Zhou and T. Zhang,Characteristics of soli-
tary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-
dimensional generalized breaking soliton equation, Comput. Math. Appl., 2018,
76(1), 179–186.

[35] Y. Zhou, S. Manukure and W. Ma, Lump and lump-soliton solutions to the
Hirota-Satsuma-Ito equation, Commun. Nonlinear Sci. Numer. Simulat., 2019,
68, 56–62.

[36] Z. Zhao and B. Han, Quasiperiodic wave solutions of a (2+1)-dimensional
generalized breaking soliton equation via bilinear Bäcklund transformation, Eur.
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