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A RELIABLE APPROACH FOR ANALYSING
THE NONLINEAR KDV EQUATION OF

FRACTIONAL ORDER

N. Ghanbari1, K. Sayevand1,† and I. Masti1

Abstract Its applications in many domains, along with its challenging an-
alytical solution, have led to several studies of the Korteweg-de Vries (KdV)
equation over the past decade. Due to difficulties or impossibility with the
analytical solution to this equation, the paper presents a numerical solution
using the Crank-Nicolson difference method. A study of the stability and sol-
vency of this method has been undertaken. In this paper, we prove that the
scheme is first order convergent in space and min{2− ν, rν} order convergent
in time, where r refers to a gradation parameter and ν represents the fractional
derivative. The results are then presented in numerical applications, looking
at how it compares with other sophisticated schemes in the literature. The
main benefit of the proposed scheme is the efficiency with regard to accuracy
as compared to other available schemes.

Keywords Korteweg-de Vries fractional time equation, Crank-Nicolson dif-
ference method, Caputo fractional derivative.
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1. Background and introduction
Researchers are able to greatly benefit from mathematical models. In order to
investigate how infectious diseases are transmitted, many researchers have been
used theoretical frameworks and numerical simulations. In [4], a stochastic seiaqhr
model is examined for the transmission of Coronavirus 2019, which has been a major
problem for a number of communities recently. The mathematics model of a brain
tumor is introduced in [13]. Modeling glioma growth and diffusion using simple
two-dimensional math is an extension of an earlier two-dimensional model.

The mathematical model of nonlinear waves in shallow water has also been stud-
ied by many scientists because of its importance and its ability to describe numerous
physical phenomena in the fields of physics, math, and engineering. Mathematical
models are developed by Korteweg and de Vries to study these nonlinear waves. A
well-known equation of this type is KdV [10,15].

This equation can simulate red spots on the surface of Jupiter. In addition, it
describes non-linear waves in rotating fluids as well as other aspects of single waves
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in plasma. Due to temperature differences in the ocean, there are sometimes gigantic
waves that can destroy sea ships. These waves can also be described by the KdV
equation. In addition, destructive ocean waves (tsunamis) are also described by
the KdV equation. Pulse waves propagating through blood vessels provide another
example for this equation. This equation is solved by the soliton after its discovery
[21].

However, in all these modelings, the KdV equation with derivatives of the order
is correct. In recent years, numerous partial derivative equations have been revised
by changing their classical derivatives to fractional derivatives.

Integrals and derivatives in fractional calculation can have arbitrary orders be-
cause fractional calculus is a specialty of pure mathematics. Differential calculus
and fractional integral tools have been applied to model many phenomena in eco-
nomics, physics, chemistry, engineering, and other applied sciences. Mathematics
has developed numerous definitions to fit the idea of incorrect integrals and deriva-
tives through the years, using its own symbolism and approach. Riemann-Liouville,
Grunwald-Letnikov, and Caputo are the most commonly formulations which were
from fractional derivatives [5, 6, 16,22–24].

In such a context, the fractional KdV equation, as well as many other fractional
PBDEs, have been also investigated by different methods, either analytic or nu-
merical. In [19], the adomian decomposition method is employed to resolve the
fractional equation of KdV with the Caputo derivative. In [31], the same method
is expanded to derive explicitly and numerically solutions from the KdV-Burgers
fraction equations. In [11], a numerical method based on the Taylor series formula
for explicit and approximate solution of the nonlinear equation of the KdV-Burgers
fraction with time -place fraction derivatives was proposed and discussed. Since
most of the work is super-analytical or semi-analytical, in the present work, we pro-
pose to solve the fractional KdV equation numerically, utilizing a finite difference
method, and to examine some special properties of this solution.

Presenting a finite difference scheme for the solution of nonlinear Caputo time-
fractional derivative equations is the purpose of this paper. Occasionally, fractional
equations inherit the weak singularity kernel introduced in fractional derivative def-
initions. Here we consider a finite difference scheme on graded meshes and consider
the singularity of solution in the initial layer. Moreover, the scheme is examined for
stability and convergence. The well known L1 scheme on graded meshes has been
used for time discretization to reduce the problem of weak singularities caused by
fractional derivatives in the initial layer. we prove that the scheme is first order
convergent in space and min{2− ν, rν} order convergent in time. As well, the opti-
mization of the computation of the presented scheme has been considered in order
to increase its computational efficiency.

In light of the above statements the Korteweg–de Vries equation (KdV) is known
to be useful. Briefly for the study of the time-evolution of long, unidirectional,
weakly nonlinear waves over shallow fluid surfaces; long internal waves within
densely laminated oceans; the motion of waves on crystal networks; or ionic acous-
tic waves in plasma dynamics. An approach to solving nonlinear KdV equations is
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developed in this work
c
0D

ν
t ψ(x, t)− λψ(x, t) + θψ(x, t)ψx(x, t) + ψxxx(x, t) = f(x, t), x ∈ (0, L), t ∈ (0, T ],

ψ(x, 0) = ϑ(x), x ∈ [0, L],

ψ(0, t) = 0, ψ(L, t) = 0, ψx(L, t) = 0, t ∈ (0, T ],

(1.1)
where for 0 < ν < 1, ϑ(0) = ϑ(L) = ϑ′(L) = 0, c0Dν

t ψ(x, t) is Caputo’s fractional
derivative of order ν, and constants λ and θ are provided.

This paper has the following organization. Section 2 represents implement
the method and outline. In Section 3, the existence of numerical solution of the
proposed method is proved. In Sections 4,5 stability and convergence analysis are
discussed, respectively. In Section 6 , we consider the optimizing the computation
of the presented scheme. Section 7 illustrates the performance of the method for
various examples. Finally, Section 8 presents the main conclusions.

2. Implement the method and outline
The nonlinear difference scheme is introduced in this section. Think of M and N
as two positive integers. In this case, we assume that:{

xj = jh j = 0, 1, · · · ,M,

tn =
( n
N

)r
T n = 0, 1, ...,N ,

(2.1)

where h =
L

M
is the uniform space step size. Also, r ≥ 1. Note that a quasi-

uniform mesh pattern is applied at r = 1. Furthermore, the temporal meshes are
graded while r increasing. That shows smaller initial step sizes compared to those
with uniform step sizes.

Define τn = tn − tn−1, Ωh = {xj |j = 0, 1, ...,M} and Ωτ = {tn|n = 0, 1, ...,N},
Ψ̃h = {ψ |ψ = (ψ0, ψ1, ..., ψM)} , Ψ̃0

h = {ψ |ψ = (ψ0, ψ1, ..., ψM), ψ0 = ψM = 0} .
Below, we discuss the Caputo fractional derivative approximation that is neces-

sary for our analysis.

Definition 2.1 ( [12]). A left-sided and right-sided Caputo derivative of order
ν > 0 can be defined as follows:

Dν
a,tf(t) =

1

Γ(n− ν)

∫ t

a

f (n)(s)

(t− s)
ν−1+n ds, t > a,

Dν
t,bf(t) =

(−1)
n

Γ(n− ν)

∫ b

u

f (n)(s)

(s− t)
ν−1+n ds, t < b,

(2.2)

n is a positive integer and holds in n− 1 < ν < n, n ∈ N.

Definition 2.2 ( [27]). According to Caputo’s fractional derivative of order ν,
bivariate functions have the following formula:

Dν
uf(u, t) =

1

Γ(n− ν)

∫ u

0

f (n)(s, t)

(u− s)ν−1+n
ds, n− 1 < ν < n, n ∈ N. (2.3)
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Theorem 2.1 ( [30]). Assume n − 1 < ν ≤ n. If f(t) has an (n + 1)th order
derivative, then

lim
ν→n−

Dν
a,tf(t) = f (n)(t), (2.4)

while
lim

ν→(n−1)+
Dν
a,tf(t) = f (n−1)(t)− f (n−1)(a). (2.5)

Theorem 2.2 ( [3]). Suppose n− 1 < ν < n ∈ N and ν̃ > 0. Then

Dν
a,t(x− a)ν̃−1 =

Γ(ν̃)

Γ(ν̃ − ν)
(x− a)ν̃−ν−1, ν̃ > n,

Dν
t,b(b− x)ν̃−1 =

Γ(ν̃)

Γ(ν̃ − ν)
(b− x)ν̃−ν−1, ν̃ > n.

(2.6)

In addition

Dν
a,t(x− a)k = 0 and Dν

t,b(b− x)k = 0, k = 0, 1, · · · , n− 1. (2.7)

Based on the known L1 scheme, the Caputo fractional derivative can be approx-
imated by the following lemma.

Lemma 2.1 ( [2]). Let 0 < ν < 1, f(t) ∈ C2[0, tn], it holds that∣∣∣∣∣ 1

Γ(1−ν)

∫ tn

0

f ′(s)ds

(tn − s)
ν −

1

µn

[
aν0f(tn)−

n−1∑
k=1

(aνn−k−1−aνn−k)f(tk)−aνn−1f(t0)

]∣∣∣∣∣
(2.8)

≤ 1

Γ(2− ν)

[
1− ν

12
+

22 − ν

2− ν
− (1 + 2−ν)

]
max

0≤t≤tn
|f ′′(t)| τ2−ν ,

where 
τn = tn − tn−1,

µn = Γ(2− ν)τνn ,

aνk = (k + 1)1−ν − k1−ν , k = 0, 1, · · · , n− 1.

(2.9)

Due to the Lemma 2.1, consider the definition of a fractional derivative as follows:

Dν
t f(tn) =

1

µn

[
aν0

(
f(tn) + f(tn−1)

2

)
−
n−1∑
k=1

(
aνn−k−1 − aνn−k

)(f(tk) + f(tk−1)

2

)
− aνn−1f(t0)

]
. (2.10)

Theorem 2.3. Suppose f ∈ C[0, T ] ∩ C2(0, T ], the constant γ is such that

|f
′
(t)| ≤ γtν−1, |f

′′
(t)| ≤ γtν−2, t ∈ (0, T ]. (2.11)

Thus there is a constant η that can be written as follows

|c0Dν
t f(tn)−Dν

t f(tn)| ≤
η

nmin{rν,2−ν}
, n = 1, 2, · · · ,N . (2.12)
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Proof. See [28].
We place points (xj , tn) in Eq. (1.1). So we will have:

c
0D

ν
t ψ(xj , tn)− λψ(xj , tn) + θψ(xj , tn)ψx(xj , tn) + ψxxx(xj , tn)

=f(xj , tn), 1 ≤ j ≤ M− 1, 1 ≤ n ≤ N . (2.13)

Using Eqs. (2.9-2.10) to approximate the time-fractional derivative, we now
derive the Crank-Nicolson difference scheme for the problem (1.1).

1

µn

[
aν0

(
ψ(xj , tn)+ψ(xj , tn−1)

2

)
−
n−1∑
k=1

(
aνn−k−1−aνn−k

)(ψ(xj , tk)+ψ(xj , tk−1)

2

)
− aνn−1ψ(xj , t0)

]
− λ

(
ψ(xj , tn) + ψ(xj , tn−1)

2

)
+ θ

(
ψ(xj , tn) + ψ(xj , tn−1)

2

)
× ψx

(
ψ(xj , tn) + ψ(xj , tn−1)

2

)
+ ψxxx

(
ψ(xj , tn) + ψ(xj , tn−1)

2

)
=f(xj , tn), 1 ≤ j ≤ M− 1, 1 ≤ n ≤ N .

(2.14)
For 0 ≤ j ≤ M and 0 ≤ n ≤ N , define grid functions:

ψnj = ψ(xj , tn),

fnj = f(xj , tn),

ϑj = ϑ(xj).

(2.15)

To continue the process, if ψ, ξ ∈ Ψ̃h is a grid function, consider the following
definitions:

∆xψj =
ψj+1 − ψj−1

2h
, 1 ≤ j ≤ M− 1,

χ(ψ, ξ)j =
1

3
(ψj∆x(ψ)j +∆x(ψξ)j) , 1 ≤ j ≤ M− 1,

δxψj+ 1
2
=
ψj+1 − ψj

h
, 1 ≤ j ≤ M,

δ2xψj =
ψj−1 − 2ψj + ψj+1

h2
, 1 ≤ j ≤ M− 1,

δ3xψj+ 1
2
= δ2x(δxψj+ 1

2
) =

1

h3
(ψj+2 − 3ψj+1 + 3ψj − ψj−1) , 1 ≤ j ≤ M− 2,

ψ
n− 1

2
j =

ψn
j +ψn−1

j

2 , 1 ≤ j ≤ M− 1, 1 ≤ n ≤ N .

(2.16)
To discretize ψxxx, we write the Taylor expansion at points ψnj+2, ψnj+1, ψnj and

ψnj−1 at points (xj , tn). If we consider the first four sentences in each of the above
extensions:

ψxxx(xj , tn) =
1

h3
(ψ(xj+2, tn)− 3ψ(xj+1, tn) + 3ψ(xj , tn)− ψ(xj−1, tn)) . (2.17)

Since the ψ(L, t) = ψx(L, t) = 0 will have ψ(xM+1, tn) = ψ(xM−1, tn), therefore

ψxxx(xM−1, tn) =
1

h3
(ψ(xM−1, tn)− ψ(xM−2, tn)− 3(ψ(xM, tn)− ψ(xj−1, tn))) .

(2.18)
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Hence for j = 1, 2, ...M− 1, we have

ψxxx|nj =
1

h3
(
ψnj+2 − 3ψnj+1 + 3ψnj − ψnj−1

)
, 1 ≤ j ≤ M− 2, 1 ≤ n ≤ N , (2.19)

ψxxx|nM−1=
1

h3
(
ψnM−1−ψnM−2−3

(
ψnM−ψnj−1

))
, i=M− 1, 1≤n≤N , (2.20)

1

µn

[
aν0Ψ

n− 1
2

j −
n−1∑
k=1

(
aνn−k−1−aνn−k

)
Ψ
k− 1

2
j −aνn−1Ψ

0
j

]
−λΨn−

1
2

j +θχ(Ψn−
1
2 ,Ψn−

1
2 )j

+ δ3xΨ
n− 1

2

j+ 1
2

− f
n− 1

2
j = (Rx)

n
j + (Rt)

n
j , 1 ≤ j ≤ M− 2, 1 ≤ n ≤ N , (2.21)

and for j = M− 1, we can get

1

µn

[
aν0Ψ

n− 1
2

M−1 −
n−1∑
k=1

(
aνn−k−1 − aνn−k

)
Ψ
k− 1

2

M−1 − aνn−1Ψ
0
M−1

]
− λΨ

n− 1
2

M−1

+ θχ(Ψn−
1
2 ,Ψn−

1
2 )M−1 +

1

h2

(
δxΨ

n− 1
2

M− 3
2

− 3δxΨ
n− 1

2

M− 1
2

)
− f

n− 1
2

M−1

=(Rx)
n
M−1 + (Rt)

n
M−1, 1 ≤ n ≤ N .

(2.22)

A truncation error in time and space is represented respectively by (Rx)
n
j and

(Rt)
n
j . This is achieved by reusing the Theorem 2.3 and Eqs. (2.19-2.20) there will

be a positive constant η such that:

|(Rt)nj | ≤
η

nmin{rν,2−ν} , |(Rx)
n
j | ≤ ηh, j = 0, 1, 2, ...,M, n = 0, 1, 2, ...,N . (2.23)

As an initial boundary condition, the following conditions apply:{
Ψ0
j = ϑ(xj) = ϑj , 1 ≤ j ≤ M− 1,

Ψn0 = 0, Ψ0
M = 0, 1 ≤ n ≤ N .

(2.24)

Now with eliminating truncated errors (Rx)
n
j and (Rt)

n
j , and by substituting the

exact solution Ψnj with the numerical equivalent ψnj in Equations (2.21) and (2.22),
we propose the following Crank-Nicolson difference scheme as follows:

1

µn

[
aν0ψ

n− 1
2

j −
n−1∑
k=1

(
aνn−k−1−aνn−k

)
ψ
k− 1

2
j −aνn−1ψ

0
j

]
−λψn−

1
2

j +θχ(ψn−
1
2 , ψn−

1
2 )j

+ δ3xψ
n− 1

2

j+ 1
2

− f
n− 1

2
j = 0, 1 ≤ j ≤ M− 2, 1 ≤ n ≤ N ,

(2.25)
and for j = M− 1

1

µn

[
aν0ψ

n− 1
2

M−1−
n−1∑
k=1

(
aνn−k−1−aνn−k

)
ψ
k− 1

2

M−1−a
ν
n−1ψ

0
M−1

]
−λψn−

1
2

M−1

+ θχ(ψn−
1
2 , ψn−

1
2 )M−1 +

1

h2

(
δxψ

n− 1
2

M− 3
2

− 3δxψ
n− 1

2

M− 1
2

)
− f

n− 1
2

M−1 = 0, 1 ≤ n ≤ N ,

(2.26){
ψ0
j = ϑ(xj) = ϑj , 1 ≤ j ≤ M− 1,

ψn0 = 0, ψ0
M = 0, 1 ≤ n ≤ N .

(2.27)
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The computational molecule of its numerical scheme is shown in Figures 1 and 2
for clarity. Vertical and horizontal axes represent time and space discretization,
respectively, and h = τ was also assumed as a convenience.

Figure 1. when 1 ≤ j ≤ M − 2, 1 ≤ n ≤ N . Figure 2. when j = M − 1, 1 ≤ n ≤ N .

3. Analysis of the existence of numerical solution
Let ξ = (ξ0, ξ1, ..., ξM) ∈ Ψ̃0, considering the [26], this is not a difficult task

h
M−2∑
j=1

(δ2xδxξj+1
2
)ξj+

1

h
(δxξM− 3

2
−3δxξM− 1

2
)ξM−1 =

1

2
h2

M−2∑
j=1

(δ2xξj)
2
+
1

2
(δxξ 1

2
)2+

3

2
(δxξM− 1

2
)2.

(3.1)

Lemma 3.1 ( [29]). Assume that ψ, ξ ∈ Ψ̃0. Then (χ(ψ, ξ), ψ) is equal to 0.

Firstly, the Browder theorem is presented so that we can prove existence and
uniqueness. Within this paper, we will use the following notation for convenience
λ∗ := max{λ, 0}.

Theorem 3.1 ( [7]). Assume that H is a finite-dimensional space with the inner
product (., .)H and the induced norm ∥.∥H, and Π : H → H is a continuous operator.
If there exists a constant Ξ > 0 such that

R(Π(Z), Z)H ≥ 0,∀Z ∈ H : ∥Z∥H = Ξ,

there exists an element Z∗ ∈ H with ∥Z∗∥H ≤ Ξ such that Π(Z∗) = 0.

Theorem 3.2. Assume λ∗µnτνn− 1
2

< 1
2 . Then there’s a solution of (2.25 -2.27).

Proof. Based on (2.27), ψ0 is given.
Now, let’s assume that {ψk

∣∣∣ψk ∈ Ψ̃0
h, 0 ≤ k ≤ n− 1} has been determined. Let

ψn−
1
2 ∈ Ψ̃0

h and define

Π(ψn−
1
2 )j =

1

µn

[
aν0ψ

n− 1
2

j −
n−1∑
k=1

(
aνn−k−1 − aνn−k

)
ψ
k− 1

2
j − aνn−1ψ

0
j

]
(3.2)
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− λψ
n− 1

2
j + θχ(ψn−

1
2 , ψn−

1
2 )j + δ2x(δxψ

n− 1
2

j+ 1
2

), 1 ≤ j ≤ M− 2,

Π(ψn−
1
2 )M−1 =

1

µn

[
aν0ψ

n− 1
2

M−1 −
n−1∑
k=1

(
aνn−k−1 − aνn−k

)
ψ
k− 1

2

M−1 − aνn−1ψ
0
M−1

]
(3.3)

− λψ
n− 1

2

M−1 + θχ(ψn−
1
2 , ψn−

1
2 )M−1 +

1

h2
(δxψ

n− 1
2

M− 3
2

− 3δxψ
n− 1

2

M− 3
2

),

with Π(ψn−
1
2 )0 = Π(ψn−

1
2 )M = 0.

(Π(ψn−
1
2 ), ψn−

1
2 )

=
1

µn

[
a0
ν(ψn−

1
2 , ψn−

1
2 )−

n−1∑
k=1

(aνn−k−1 − aνn−k)(ψ
k− 1

2 , ψn−
1
2 )− an−1

ν(ψ0, ψn−
1
2 )

]

− λ(ψn−
1
2 , ψn−

1
2 ) + θ(χ(ψn−

1
2 , ψn−

1
2 ), ψn−

1
2 )M−1 + h[

M−2∑
i=1

ψ
n− 1

2
j δ2x(δxψ

n− 1
2

j+ 1
2

)

+
1

h2
ψ
n− 1

2

M−1(δxψ
n− 1

2

M− 3
2

− 3δxψ
n− 1

2

M− 1
2

)].

(3.4)
Now, implementation (3.1) and Lemma 3.1 we get

(Π(ψn−
1
2 ), ψn−

1
2 )

≥1

2
Dν
t (
∥∥∥ψn− 1

2

∥∥∥2)− λ
∥∥∥ψn− 1

2

∥∥∥2
=

1

2µn

[
aν0

∥∥∥ψn− 1
2

∥∥∥2 − n−1∑
k=1

(aνn−k−1 − aνn−k)
∥∥∥ψn− 1

2

∥∥∥2 − aνn−1

∥∥ψ0
∥∥2]− λ

∥∥∥ψn− 1
2

∥∥∥2
≥ 1

2µn

{
aν0

∥∥∥ψn− 1
2

∥∥∥2 − [n−1∑
k=1

(aνn−k−1 − aνk−1 + an−1)

]
max

0≤k≤n−1

∥∥∥ψk− 1
2

∥∥∥2}

− λ
∥∥∥ψn− 1

2

∥∥∥2
=

1

2µn

{
[aν0 − 2λµn]

∥∥∥ψk− 1
2

∥∥∥2 − aν0 max
0≤k≤n−1

∥∥∥ψk− 1
2

∥∥∥2} ,
(3.5)

when∥∥∥ψn− 1
2

∥∥∥2 =
aν0

aν0 − 2λµn
max

0≤k≤n−1

∥∥∥ψk− 1
2

∥∥∥2 =
1

1− 2λµnτνn− 1
2

max
0≤k≤n−1

∥∥∥ψk− 1
2

∥∥∥2,
(3.6)

and we have
(Π(ψn−

1
2 ), ψn−

1
2 ) ≥ 0. (3.7)

With assumption λ∗µnτ
ν
n < 1

2 and Theorem 3.1, there exists a ψn−
1
2 ∈ Ψ̃0 such

that Π(ψn−
1
2 ) = 0 and

∥∥∥ψn− 1
2

∥∥∥ ≤
max

0≤k≤n−1

∥∥∥ψk− 1
2

∥∥∥2√
1− 2λµnτνn− 1

2

. (3.8)
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4. Analysis on the stability
Assume that fk = f(tk) and the ∇τf

k = fk − fk−1 difference operator for k ≥ 1.
Using the nonuniform L1 calculations, the Caputo derivative is given by

Dν
Nf

n =

n∑
k=1

∫ tk

tk−1

ω1−ν(tn − w)∇τ
fk

τk
dw =

n∑
k=1

a
(n)
n−k∇τf

k, (4.1)

based on the kernel ων(t) = tν

Γ(ν+1) , t > 0. In this case, a(n)n−k represents the time-
level-dependent convolution coefficient

a
(n)
n−k =

∫ tk

tk−1

ω1−ν(tn − w)

τk
dw =

ω2−ν(tn − tk−1)− ω2−ν(tn − tk)

τk
, 1 ≤ k ≤ n.

(4.2)
It follows that the integrated mean-value theorem says that L1 coefficient (4.2)
satisfies (refer to [32])

a
(n)
n−k+1 < ω1−ν(tn − tk−1) < a

(n)
n−k, 1 ≤ k ≤ n. (4.3)

Here is a numerical analysis of the nonuniform L1 scheme’s numerical stability
(1.1). In order to do that, the L1 coefficient (4.2) is used for recursively defining a
convolutional coefficient for n ≥ 1, in the following way

Q
(n)
n−k =

1

a
(k)
0


1, k = n,
n∑

j=k+1

(a
(j)
j−k−1 − a

(j)
j−k)Q

(n)
n−j , 1 ≤ k ≤ n− 1.

(4.4)

The next lemma will be a numerical simulation of two properties of the convolutional
kernel ων(t− w):

n∑
j=k

∫ tj

tj−1

ων(tn − w)ω1−ν(w − tk−1)dw = 1, n ≥ k ≥ 1, (4.5)

n∑
j=k

∫ tj

tj−1

ων(tn − w)ω1+mν−ν(w)dw = ω1+mν(tn), m ≥ 0, n ≥ 1. (4.6)

For the property (4.5) form to be preserved, the equality
n∑
j=k

Q
(n)
n−ja

(j)
j−k ≡ 1 must

be enforced discrete (refer to Lemma 4.1), thereby delivering the Definition (4.4)
of Q(n)

n−j . For this and all subsequent summations, if the upper summation index is
lower than the lower summation index, the sums will always be zero.

Lemma 4.1 ( [17]). Q(n)
n−k defined in (4.4) is a discrete coefficient that is well

defined by
0 < Q

(n)
n−k < Γ(2− ν)τνk , 1 ≤ k ≤ n. (4.7)

Furthermore, the following hold:
(I) we have

n∑
j=k

Q
(n)
n−ja

(j)
j−k = 1, n ≤ k ≤ 1.
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(II) With respect to any nonnegative integer 0 ≤ m ≤ [ 1ν ],

n∑
j=k

Q
(n)
n−jω1+mν−ν(tj) ≤ ω1+mν(tn), n ≥ 1.

(III) If τk−1 ≤ τk, 2 ≤ k ≤ N is satisfied by the nonuniform grid, for any integer
m ≥ 1,

n−1∑
j=1

Q
(n)
n−jω1+mν−ν(tj) ≤ ω1+mν(tn), n ≥ 1.

Lemma 4.2 ( [22]). Assuming

aνk = (n+ 1)ν − nν , n = 0, 1, 2, . . . , (4.8)

the following properties apply to aνk = (k + 1)ν − kν , k = 0, 1, 2, · · · ,
1. aν0 = 1, aν0 > 0, k = 0, 1, 2, · · · ,
2. aνk > aνk+1, k = 0, 1, 2, · · · .

Lemma 4.3. [17] Assume that there is a constant F ≥ 0, and Pn, J n and Kn
are non-negative sequences, so that

Dν
t (P)2 ≤ F(Pn)2 + Pn(J n +Kn), n ≥ 1. (4.9)

Specifying any finite time, tn = T > 0, with τmax ≤ ( 1
2FΓ(2−ν) )

1
ν ,

Pn ≤ 2Eν(2Ftνn)

P0 + max
1≤j≤n

j∑
l=1

Q
(j)
j−1J

l + ων(tn) max
1≤j≤n

Kj

1≤j≤n

 , 1 ≤ n ≤ N ,

(4.10)
where Eν(z) =

∞∑
k=0

zk

Γ(kν+1) is a Mittag-Leffler function, ων(t) = tν

Γ(ν+1) , t > 0, and

the discrete convolution kernel Q(n)
n−k is defined by

Q
(n)
n−k =


Γ(2− ν)τνn ,

(1− ν)τνk
n∑

j=k+1

(a(j,ν)
k+1

− a(j,ν)
k

)Q
(n)
n−j , k = n− 1, n− 2, · · · , 1.

(4.11)

Theorem 4.1. Assume that
{
ψ
n− 1

2
j

∣∣∣ 0 ≤ j ≤ M, 0 ≤ n ≤ N
}

is the solution of the
scheme (2.25)-(2.27), we have∥∥∥ψn− 1

2

∥∥∥ ≤ Eν(4λ
∗tνn− 1

2
) ∥ϑ∥ , 1 ≤ n ≤ N . (4.12)

Proof. Multiplying (2.25) and (2.26) by hψjn−
1
2 and hψM−1

n− 1
2 respectively, and

with summing up for j, we get

1

µn

[
aν0

∥∥∥ψn− 1
2

∥∥∥2 − n−1∑
k=1

(aνn−k−1 − aνn−k)(ψ
k− 1

2 , ψn−
1
2 )− aνn−1(ψ

0, ψn−
1
2 )

]
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− λ
∥∥∥ψn− 1

2

∥∥∥2 + θ(χ(ψn−
1
2 , ψn−

1
2 ), ψn−

1
2 ) + h

M−2∑
j=1

δ2x(δxψ
n− 1

2

j+ 1
2

)ψ
n− 1

2
j

+
1

h
(δxψ

n− 1
2

M− 3
2

− 3δxψ
n− 1

2

M− 1
2

)ψ
n− 1

2

M−1 = 0. (4.13)

By (3.1) and Lemma 3.1, we get

h

M−2∑
j=1

δ2x(δxψ
n− 1

2

j+ 1
2

)ψ
n− 1

2
j +

1

h
(δxψ

n− 1
2

M− 3
2

− 3δxψ
n− 1

2

M− 1
2

)ψ
n− 1

2

M−1

=
1

2
h2

M−2∑
j=1

(δ2xψ
n− 1

2
j ) +

1

2
(δxψ

n− 1
2

1
2

) +
3

2
(δxψ

n− 1
2

M− 1
2

),

(4.14)

(χ(ψn−
1
2 , ψn−

1
2 ), ψn−

1
2 ) = 0. (4.15)

If we substitute (4.14) and (4.15) into (4.13), we get

1

µn

[
aν0

∥∥∥ψn− 1
2

∥∥∥2 − n−1∑
k=1

(aνn−k−1 − aνn−k )(ψ
k− 1

2 , ψn−
1
2 )− aνn−1(ψ

0, ψn−
1
2 )

]

≤λ∗
∥∥∥ψn− 1

2

∥∥∥2, (4.16)

Using Lemma 4.2, we can obtain

1

µn

[
aν0

∥∥∥ψn− 1
2

∥∥∥2 − n−1∑
k=1

(aνn−k−1 − aνn−k )(ψ
k− 1

2 , ψn−
1
2 )− aνn−1(ψ

0, ψn−
1
2 )

]

≥ 1

2µn
[aν0

∥∥∥ψn− 1
2

∥∥∥2 − n−1∑
k=1

(aνn−k−1 − aνn−k )
∥∥∥ψn− 1

2

∥∥∥2 − aνn−1

∥∥∥ψn− 1
2

∥∥∥2
+ aν0

∥∥∥ψn− 1
2

∥∥∥2 − n−1∑
k=1

(aνn−k−1 − aνn−k )
∥∥∥ψk− 1

2

∥∥∥2 − aνn−1

∥∥ψ0
∥∥2]

=
1

2
Dν
t

∥∥∥ψn− 1
2

∥∥∥2. (4.17)

Combining with (4.16), we know

Dν
t

∥∥∥ψn− 1
2

∥∥∥2 ≤ 2λ∗
∥∥∥ψn− 1

2

∥∥∥2, 1 ≤ n ≤ N . (4.18)

By utilizing Lemma 4.3, we find the following∥∥∥ψn− 1
2

∥∥∥2 ≤ 2Eν(4λ
∗tνn− 1

2
) ∥ϑ∥ , 0 ≤ n ≤ N . (4.19)

5. Conducting a convergence analysis
In order to have a new property for the L1 coefficient a(n)n−k, we describe it below.
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Lemma 5.1. In the nonuniform grid case τk−1 ≤ τk, 2 ≤ k ≤ N , the L1 coefficient
(4.2) satisfies, while

0 < ω1−ν(tn − tk)− ω1−ν(tn − tk−1) ≤ a
(n)
n−k−1 − a

(n)
n−k, 1 ≤ k ≤ n− 1. (5.1)

Proof. Observing ω′
β(t) = ωβ−1(t),

∫ t
0
ωβ(α)dα = ωβ+1(t) we apply the Defini-

tion (4.2) of the L1 coefficient a(n)n−k to find

a
(n)
n−k − ω1−ν(tn − tk−1) =

∫ tk

tk−1

ω1−ν(tn − w)− ω1−ν(tn − tk−1)

τk
dw

= − 1

τk

∫ tk

tk−1

∫ w

tk−1

ω−ν(tn − α)dαdw

=

∫ tk

tk−1

α− tk
τk

ω−ν(tn − α)dα > 0, 1 ≤ k ≤ n.

(5.2)

In the previous equality, the order of integration has been switched, and ω−ν(tn −
α) < 0 for 0 < ν < 1. Taking auxiliary functions into consideration now would be
appropriate:

Υ1(Θ) =

∫ tk−1+Θτk

tk−1

α− tk−1 −Θτk
τk

ω−ν(tn − α)dα, 1 ≤ k ≤ n,

Υ2(Θ) =

∫ tk−1+Θτk+1

tk−1

α− tk−1 −Θτk+1

τk+1
ω−ν(tn − α)dα, 1 ≤ k ≤ n− 1,

(5.3)

such that Υ1(0) = Υ′
1(0) = Υ2(0) = Υ′

2(0) = 0. Thanks to the Cauchy differential
mean-value theorem, there exists κk, ςk ∈ (0, 1) such that

a
(n)
n−k − ω1−ν(tn − tk−1)

a
(n)
n−k−1 − ω1−ν(tn − tk)

=
Υ1(1)−Υ1(0)

Υ2(1)−Υ2(0)
=

Υ′
1(κk)

Υ′
2(κk)

=
Υ′

1(κk)−Υ′
1(0)

Υ′
2(κk)−Υ′

2(0)
=

Υ′′
1(ςk)

Υ′′
2(ςk)

=
τkω−ν(tn − tk−1 − ςkτk)

τk+1ω−ν(tn − tk − ςkτk+1)
≤ (tn − tk − ςkτk+1)

ν+1

(tn − tk + τk − ςkτk)
ν+1

≤ (tn − tk)
ν+1

(tn − tk + (1− ςk)τk)
ν+1 ≤ 1, 1 ≤ k ≤ n− 1,

(5.4)
where the basic assumption τk−1 ≤ τk, 2 ≤ k ≤ N is used in the first inequality.

Lemma 5.2 ( [26]). Assume that f ∈ C2((0, T ]) and there exists a constant Cf > 0
such that

|f ′′(t)| ≤ Cf (1 + tε−2), 0 < t ≤ T, (5.5)

where ε ∈ (0, 1) ∪ (1, 2) is a regularity parameter. If the nonuniform grid fulfills
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τk−1 ≤ τk, 2 ≤ k ≤ N , then
n∑
j=1

Q
(n)
n−j

∣∣C
0 D

ν
t f(tj)−Dν

t f(tj)
∣∣

≤
n∑
k=1

2Q
(n)
n−k

Γ(2− ν)

∫ tk

tk−1

(α− tk−1) |f ′′(α)| dα

≤Cf (
τ1
ε

+
1

1− ν
max

2≤k≤n
(tk − t1)

ν
tε−2
k−1τ

2−ν
k ), n ≥ 1.

(5.6)

In this case, the discrete convolution kernel Q(n)
n−j is defined by (4.4).

The Lemma 5.2 provides an easy way to calculate the global temporal error of
the L1 formula on non-uniform meshes.

Let us recall that Lemma 5.2 holds for most nonuniform meshes under a weak
assumption τk−1 ≤ τk, 2 ≤ k ≤ N . Furthermore, when considering a uniform mesh
where τ = TN−1 and tk = kτ , Lemma 5.2 states that

n∑
j=1

Q
(n)
n−j

∣∣C
0 D

ν
t f(tj)−Dν

t f(tj)
∣∣

≤Cfτ
ε

ε
+ Cfτ

min{ε,2−ν} max
2≤k≤n

tε−2+ν
k−1 τ2−ν−min{ε,2−ν}

≤Cf
(
τε

ε
+

1

1− ν
T ε−min{ε,2−ν}τmin{ε,2−ν}

)
, n ≥ 1.

(5.7)

If the initial regularity of the solution for ε ≤ 2−ν improves, the convergence order
increase, but the accuracy barrier lies at O(τ2−ν). The corollary is thus as follows.

Corollary 5.1. Let’s assume that f fulfills the regularity assumption(5.5). In the
case of uniform time meshing, the approximate error of L1 formula (4.2) can be
bounded by (5.7). In other words the uniform time grid is optimal if ε ∈ [2− ν, 2).

According to [8, 9, 14, 20] the smoothly graded time mesh tk ≤ T ( kN )ζ is now
considered when the grading parameter ζ > 1. By verifying the time-step τk ≤
ζkζ−1TN−ζ and

tk − t1 = TN−ζ(kζ − 1) ≤ ζkζ−1(k − 1)TN−ζ , 2 ≤ k ≤ N . (5.8)

Additionally, it states:

(tk−t1)νtε−2
k−1τ

2−ν
k ≤ζ2T εk2(ζ−1)(k−1)ζε−2ζ+νN−ζε≤ζ24ζ−1T ε(k − 1)ζε−2+νN−ζν

=ζ24ζ−1T ε(k − 1)min{ζε,2−ν}−(2−ν)(
k − 1

N )ζε−min{ζε,2−ν}N−min{ζε,2−ν}

≤ζ24ζ−1T ε(k − 1)min{ζε,2−ν}, 2 ≤ k ≤ N .

(5.9)
Accordingly, inequality (5.6) in Lemma 5.2 results in

N∑
j=1

Q
(n)
n−j

∣∣C
0 D

ν
t f(tj)−Dν

t f(tj)
∣∣
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≤Cf (ε−1T εN−ζε +
ζ2

1− ν
4ζ−1T εN−min{ζε,2−ν}), n ≥ 1. (5.10)

This means that the error of the nonuniform L1 formula (4.1) can be bounded by
(5.10).

Theorem 5.1. Assume that the original problem (1.1) has a solution. Then the
numerical solution Ψ

n− 1
2

j of the difference scheme (2.25-2.27) is convergent to the
true solution ψ(x, t).
Denote

Enj = Ψ
n− 1

2
j − ψ

n− 1
2

j , 0 ≤ j ≤ M, 0 ≤ n ≤ N . (5.11)

Therefore it is possible for there to be a constant C that depends neither on M nor
N , in such a way that

∥En∥ ≤ C(N−min{rν,2−ν} + h), 0 ≤ n ≤ N . (5.12)

Proof. We can obtain the error equations by subtracting (2.25)-(2.27) from (2.21),
(2.22) and (2.24)

1

µn
[aν0Enj −

n−1∑
k=1

(aνn−k−1 − aνn−k)Ekj − aνn−1E0
j ]− λE0

j + θ[χ(Ψn−
1
2 ,Ψn−

1
2 )j

− χ(ψn−
1
2 , ψn−

1
2 )j ] + δ2x(δxEnj ) = (Rt)

n− 1
2

j + (Rx)
n− 1

2
j , (5.13)

and

1

µn
[aν0EnM−1 −

n−1∑
k=1

(aνn−k−1 − aνn−k)EkM−1 − aνn−1E0
M−1]− λE0

M−1

+ θ[χ(Ψn−
1
2 ,Ψn−

1
2 )M−1 − χ(ψn−

1
2 , ψn−

1
2 )M−1] +

1

h2
δ2x(δxEnM− 3

2
− 3δxEnM− 1

2
)

=(Rt)
n− 1

2

M−1 + (Rx)
n− 1

2

M−1, 1 ≤ n ≤ N , (5.14)

where

E0
j = 0, 1 ≤ j ≤ M− 1, (5.15)

En0 = 0, Enm = 0, 0 ≤ n ≤ N . (5.16)

After multiplying (5.13) and (5.14) by hEni and hEM−1
i , and adding all terms to-

gether, we have

1

µn

[
aν0∥En∥

2 −
n−1∑
k=1

(aνn−k−1 − aνn−k)(Ek, En)− aνn−1(E0, En)

]
− λ∥En∥2

+ θ[(χ(Ψn−
1
2 ,Ψn−

1
2 )− χ(ψn−

1
2 , ψn−

1
2 ), En] + h

M−2∑
j=1

(δ2xδxe
n
j+ 1

2
)Enj

+
1

h
(δxψ

n
M− 3

2
− 3δxψ

n− 1
2

M− 1
2

)En−
1
2

M−1 = ((Rt)
n
M−1 + (Rx)

n
M−1, En), 0 ≤ n ≤ N .

(5.17)
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By (3.1), we have

h

M−2∑
j=1

δ2x(δxEnj+ 1
2
)Enj +

1

h
(δxEnM− 3

2
− 3δxEnM− 1

2
)EnM−1

=
1

2
h2

M−2∑
j=1

(δ2xEnj )
2
+

1

2
(δxEn1

2
)2 +

3

2
(δxEnM− 1

2
)2. (5.18)

Similar to (4.17) , it holds for the left hand of (5.17), for the first term, that

1

µn

[
aν0∥En∥

2 −
n−1∑
k=1

(aνn−k−1 − aνn−k)(Ek, En)− aνn−1(E0, En)

]
≥ 1

2
Dν
t ∥En∥

2
.

(5.19)
According to Lemma 3.1, the third term on the left hand of (5.17) may be found as
follows: (

χ(Ψn−
1
2 ,Ψn−

1
2 )− χ(ψn−

1
2 , ψn−

1
2 ), En

)
=
(
χ(Ψn−

1
2 ,Ψn−

1
2 )− χ(Ψn−

1
2 − En,Ψn− 1

2 − En), En
)

=
(
χ(En,Ψn− 1

2 ) + χ(Ψn−
1
2 , En)− χ(En, En), En

)
=
(
χ(En,Ψn− 1

2 ), En
)

=
1

3
h

M−1∑
j=1

[Enj ∆xΨ
n− 1

2
j +∆x(EΨ)

n− 1
2

j ]Enj

=
1

3
h

M−1∑
j=1

(∆xΨ
n− 1

2
j )(Enj )

2
+

1

6

M−1∑
j=1

(Enj+1Ψ
n− 1

2
j+1 − Enj−1Ψ

n− 1
2

j−1 )Enj

=
1

3
h

M−1∑
j=1

(∆xΨ
n− 1

2
j )(Enj )

2
+

1

6
h

M−1∑
j=1

(Enj+1Enj δxΨ
n− 1

2

j+ 1
2

).

(5.20)

Denote ϖ = max
0≤x≤L,0≤t≤T

|ψx(x, t)|. Afterward

−
(
χ(Ψn−

1
2 ,Ψn−

1
2 )− χ(ψn−

1
2 , ψn−

1
2 ), En

)
≤1

3
ϖ

hM−1∑
j=1

(Enj )
2
+
h

2

∣∣Enj+1Enj
∣∣ ≤ 1

2
ϖ∥En∥2.

(5.21)

Substituting (5.18)-(5.21) into (5.17), we obtain

Dν
t ∥En∥

2 ≤ (2λ∗ + |θ|ϖ)∥En∥2 + 2 ∥En∥
(∥∥∥(Rt)n− 1

2

∥∥∥+ ∥∥∥(Rx)n− 1
2

∥∥∥) . (5.22)

For the maximum time step size τN ≤ ( 1
4λµn

)
1
ν , apply Lemmas 4.3 and 5.2

∥En∥ ≤2Eν(2(2λ
∗ + |θ|ϖ)tνn− 1

2
)
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×

(∥∥E0
∥∥+ 2 max

1≤k≤n

k∑
l=1

Q
(k)
k−l

∥∥∥(Rt)l∥∥∥+ 2ων(tn) max
1≤k≤n

∥∥∥(Rx)k∥∥∥)
≤4Eν(2(2λ

∗ + |θ|ϖ)tνn− 1
2
)

×
(
C

ν
τν1 +

C

1− ν
max

2≤k≤n
(tk − t1)

ν
tν−2
k−1τ

ν−2
k−1 +

tνn
Γ(1 + ν)

h

)
≤4CEν(2(2λ

∗ + |θ|ϖ)tνn− 1
2
)

(T νN−rν + r24r−1T νN−min{rν,2−ν} + tνn− 1
2
h), 1 ≤ n ≤ N . (5.23)

Neither M nor N affect the constant C.

6. Optimizing the computation
To improve the computational efficiency, an algorithm has been applied which was
presented in [1]. In the method, a useful approximate is estimated to decrease the
computational cost as well as Caputo fractional derivative’s evaluation memory with
0 < ν < 1 order. For scheme (2.25-2.27), we can directly share the fast algorithm
and error estimate here. Detailed information is provided in [1], [25].

Lemma 6.1 ( [1]). Let assume that tolerance to error as ε, the cut-off time limita-
tion as δ, and the final time as T , as well as existing a natural number N and two
positive numbers Nexp and ιi, i = 1, ...,Nexp such as∣∣∣∣∣∣t−ν −

Nexp∑
i=1

ℓie
−ιit

∣∣∣∣∣∣ ≤ ε, ∀ δ ≤ t ≤ T, (6.1)

where Nexp = O((log ε−1)(log log ε−1+log(Tδ−1))+(log δ−1)(log log ε−1+log δ−1)).

In (6.1),
Nexp∑
i=1

ℓje
−ιlt is an approximation to

∫ 2N

0
e−ιtιβ−1dι with respect to 0 <

δ ≤ t ≤ T , a Gauss-Jacobi integral has been used for the integral on sub intervals
[0, 2−M] and [2−M, 2N ], and where M = O(log T ), and N = ((log log ε−1)+log δ−1)
are supplied integers. As a result, in (6.1) ιi and ℓi denote the nodes and weights
of the Gauss-Legendre or Gauss-Jacobi quadrature at various intervals as detailed
in Theorem 2.1 in [14].

When f(t), 0 ≤ t ≤ T , which contains 0 < ν < 1, then denote

HDν
t f(tn) =

1

µn

Nexp∑
i=1

ℓiH
n
i + a(n,ν)n (f(tn)− f(tn−1))

 , n ≥ 1,

Hn
i = e−ιjτnHn−1

i +Xn
i (f(tn)− f(tn−1)), n ≥ 2, H1

i = 0,

Xn
i =

1

τn−1

∫ tn−1

tn−2

e−ιi(tn−ι)dι, 1 ≤ i ≤Nexp.

(6.2)

Lemma 6.2 ( [18]). Let

|f
′
(t)| ≤ γtν−1, |f

′′
(t)| ≤ γtν−2, t ∈ (0, T ]. (6.3)
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we have

Dν
t f(tn) =

HDν
t f(tn) +O(n−min{r(1+ν),2−ν} + ε), n = 1, 2, ...,N . (6.4)

Optimizing the calculations for Problem (1.1) is the next step. By evaluating
the Eq (1.1), we have the following

Dν
t ψ(xj , tn)− λψ(xj , tn) + θψ(xj , tn)ψx(xj , tn) + ψxxx(xi, tn) = 0. (6.5)

On graded meshes, rather than relying on the L1 method in the previous scheme
,estimating Dν

t ψ(xj , tn) with (6.2) yields

1

µn

Nexp∑
i=1

ℓiH
n
i,j + a(n,ν)n (Ψnj −Ψn−1

j )

− λΨnj + θχ(Ψn,Ψn)j + δ2x(δxΨ
n
j+ 1

2
)

=(RHt )nj + (RHx )nj , 1 ≤ j ≤ M− 2, 1 ≤ n ≤ N ,

(6.6)

1

µn

Nexp∑
i=1

ℓiH
n
i,M−1 + a(n,ν)n (ΨnM−1 −Ψn−1

M−1)

− λΨnM−1 + θχ(Ψn,Ψn)M−1

+
1

h2
(δxΨ

n
M− 3

2
− 3δxΨ

n
M− 3

2
) = (RHt )nM−1 + (RHx )nM−1, 1 ≤ j ≤ M− 2.

(6.7)

Hn
i,j = e−ιiτnHn−1

i,j +Xn
i (Ψ

n−1
j −Ψn−2

j ), 1 ≤ i ≤ Nexp, (6.8)
H1
i,j = 0, i = 1, 2, ...,Nexp, 1 ≤ j ≤ M− 1, (6.9)

where

|(RHt )nj | ≤
η

nmin{rν,2−ν} + ε
, |(RHx )nj | ≤ ηh, j = 1, 2, ...,M− 1, n = 1, 2, ...,N .

(6.10)
The above formula can be deduced from (2.19) and (2.20), as well as from Lemmas
5.2, 6.2, and Theorem.

With the truncation errors eliminated and initial boundaries considered

Ψ0
j = ϑ(xj), 1 ≤ j ≤ M− 1,

Ψn0 = 0,ΨnM = 0, 0 ≤ n ≤ N .
(6.11)

as a scheme, we present the following

1

µn

Nexp∑
i=1

ℓih
n
i,j + a(n,ν)n (ψnj − ψn−1

j )

− λψnj + θχ(ψn, ψn)j + δ2x(δxψ
n
j+ 1

2
) = 0,

1 ≤ j ≤ M− 2, 1 ≤ n ≤ N ,

(6.12)

1

µn

Nexp∑
i=1

ℓih
n
i,M−1 + a(n,ν)n (ψnM−1 − ψn−1

M−1)


− λΨnM−1 + θχ(ψn, ψn)M−1 +

1

h2
(δxψ

n
M− 3

2
− 3δxψ

n
M− 3

2
) = 01 ≤ j ≤ M− 2,

(6.13)
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hni,j = e−ιiτnhn−1
i,j + xni (ψ

n−1
j − ψn−2

j ), (6.14)
h1i,j = 0, i = 1, 2, ...,Nexp, 1 ≤ j ≤ M− 1, (6.15)
ψ0
j = ϑ(xj), 1 ≤ j ≤ M− 1, (6.16)

ψn0 = 0, ψnM = 0, 0 ≤ n ≤ N . (6.17)

Theorem 6.1. Let {
Ψ
n− 1

2
j

∣∣∣ 0 ≤ j ≤ M, 0 ≤ n ≤ N
}
,

is the solution to (1.1), and{
ψ
n− 1

2
j

∣∣∣ 0 ≤ j ≤ M, 0 ≤ n ≤ N
}
,

is the solution to (2.25)-(2.27). Denote

Ēnj = Ψ
n− 1

2
j − ψ

n− 1
2

j , 0 ≤ j ≤ M, 0 ≤ n ≤ N . (6.18)

Therefore it is possible for there to be a constant C that depends neither on M nor
N , in such a way that∥∥Ēn∥∥ ≤ C(N−min{rν,2−ν} + h+ ε), 0 ≤ n ≤ N . (6.19)

The proof of the theorem is not presented as it would be achieved by following
the same approach used for Theorem 5.1 by applying Lemma 6.2.

7. Numerical examples
This section presents three numerical examples to demonstrate the efficiency and
accuracy of the proposed method described previously. Each example shows a
comparison of the results obtained with the proposed method and those obtained
by other methods. In this analysis, numerical calculations are performed by running
MATLAB R2016b programs on an Intel Core i7 laptop.

Example 7.1 ( [26]). Let us consider that time fractional nonlinear KdV equation
as follows:
Dν
t ψ(x, t)−

1

20
ψ(x, t)+2ψ(x, t)ψx(x, t)+ψxxx(x, t)=f(x, t), x∈(0, 1), t∈(0, 1],

ψ(x, 0) = 0, x ∈ [0, 1],

ψ(0, t) = 0, ψ(1, t) = 0, ψx(1, t) = 0, t ∈ (0, 1].

(7.1)

The analytical solution can be obtained by ψ(x, t) = tν(x− 1)4 sin(πx). Assum-
ing that the exact solution and the approximate solution are Ψ(x, t) and ψ(x, t),
respectively and the error is defined as follows:

E(M, N) = Max
0≤j≤N

√
∥Ψj − ψj∥2. (7.2)

Assuming N = [M
1

min{rν,2−ν} ], ν = {0.3, 0.6, 0.9} and r = {1, 2, 3}. Tables (1–8)
show the convergence orders for different values of M and r. Additionally, in Table
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Table 1. Maximum error and convergence order of Example 7.1 for different values of ν and N with
r = 1 .

M ν = 0.3 ν = 0.6 ν = 0.9

N E(M,N ) RM N E(M,N ) RM N E(M,N ) RM

16 10321 6.017× 10−3 - 101 3.970× 10−3 - 21 2.657× 10−4 -
32 104031 5.851× 10−4 0.857 322 8.012× 10−4 0.951 47 1.695× 10−4 0.997
64 1048576 1.115× 10−4 1.041 1024 5.861× 10−5 1.172 101 2.329× 10−5 1.296

Table 2. Maximum error and convergence order of Example 7.1 for different values of ν and N with
r = 2.

M ν = 0.3 ν = 0.6 ν = 0.9

N E(M,N ) RM N E(M,N ) RM N E(M,N ) RM

16 101 1.170× 10−3 - 10 8.382× 10−4 - 12 7.420× 10−4 -
32 322 6.531× 10−4 0.927 17 5.812× 10−4 0.871 23 8.734× 10−5 0.971
64 1024 2.502× 10−4 0.993 32 4.912× 10−5 0.948 43 3.438× 10−5 1.136
128 3250 4.726× 10−5 1.146 57 2.983× 10−5 1.225 82 7.032× 10−6 1.402

Table 3. Maximum error and convergence order of Example 7.1 for different values of ν and N with
r = 3.

M ν = 0.3 ν = 0.6 ν = 0.9

N E(M,N ) RM N E(M,N ) RM N E(M,N ) RM

16 21 2.517× 10−3 - 7 6.142× 10−4 - 12 5.740× 10−4 -
32 47 5.301× 10−4 0.941 11 4.358× 10−4 1.262 23 7.113× 10−5 1.309
64 101 1.625× 10−4 0.972 19 8.197× 10−5 1.479 43 8.251× 10−6 1.563
128 219 3.091× 10−5 1.056 32 1.973× 10−5 1.503 82 6.382× 10−6 1.726

Table 4. Comparison maximum errors of Example 7.1 for various values of (M, r) when ν = {0.3, 0.9}.

(M, r) ν = 0.3 ν = 0.9

Ref. [26] our method Ref. [26] our method
(32 , 1) 2.08× 10−2 5.811× 10−4 1.81× 10−2 1.695× 10−4

(64 , 1) 1.04× 10−2 1.115× 10−4 9.23× 10−3 2.329× 10−5

(64 , 2) 1.03× 10−2 2.502× 10−4 5.26× 10−3 3.438× 10−5

(128 , 2) 5.17× 10−3 4.726× 10−5 2.62× 10−3 7.032× 10−6

(64 , 3) 9.25× 10−3 1.625× 10−4 3.38× 10−3 8.251× 10−6

(128 , 3) 4.69× 10−3 3.091× 10−5 1.695× 10−3 6.382× 10−6

(4), we compare our the proposed method with that in Ref. [26]. Comparing the
two methods, it is demonstrated that the method presented in the previous chapter
is more efficient.

Table 4 shows a comparison between our method and the method presented in
Ref. [26]. For this purpose, according to the error defined in Eq.(7.2) and in similar
cases ν and M, a comparison has been made between the errors reported in Ref. [26]
and the errors reported in Tables 1-3. By examining this table, it can be concluded
that our proposed method has higher accuracy and efficiency. It can also be seen
that as the order of the fractional derivative increases, the accuracy of our method
becomes much higher and in some cases it reaches twice the accuracy of Ref. [26]
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method.

Example 7.2 ( [26]). Take into account based on the following time fractional
nonlinear equation for KdV below:
Dνt ψ(x, t)−

4

5
ψ(x, t) + 2ψ(x, t)ψx(x, t) + ψxxx(x, t) = f(x, t), x ∈ (0, 1], t ∈ (0, 2−8],

ψ(x, 0) = x(x− 1)2, x ∈ [0, 1],

ψ(0, t) = 0, ψ(1, t) = 0, ψx(1, t) = 0, t ∈ (0, 2−8].

(7.3)

Since we cannot obtain the exact solution in this example, here are the steps we
take to calculate the space error:

E(h,N ) = Max
0≤j≤M

|ψj(h,N )− ψ2j(
h

2
,N )|. (7.4)

Additionally, the convergence order can be calculated as follows:

RM = log2

(
E(h,N )

E(h2 ,N )

)
. (7.5)

Tables (5-9), present the convergence orders and estimate the errors for different
values of r = {1, 2, 3}, M = {32, 64, 128, 256, 512} and ν = {0.3, 0.6, 0.9}. Figures
3-5 show the numerical solutions for ν = 0.3, 0.6, 0.9 and r = 1, 3. By smaller
fractional derivative order ν, they show that the singularity of the solution increases
and it gets to zero faster.

Table 5. Estimate the errors and convergence order of Example 7.2 for various values of ν with r = 1.

M ν = 0.3 ν = 0.6 ν = 0.9

E(h,N ) RM E(h,N ) RM E(h,N ) RM

32 − - − - − -
64 9.123× 10−5 - 6.841× 10−5 - 5.561× 10−5 -
128 4.670× 10−5 0.982 3.317× 10−5 0.987 2.291× 10−5 0.992
256 3.516× 10−5 0.996 2.626× 10−5 0.991 1.238× 10−5 1.064
512 1.822× 10−5 0.999 1.063× 10−5 0.996 8.131× 10−6 1.105

Table 6. Estimate the errors and convergence order of Example 7.2 for different values of ν with r = 2.

M ν = 0.3 ν = 0.6 ν = 0.9

E(h,N ) RM E(h,N ) RM E(h,N ) RM

32 − - − - − -
64 5.431× 10−5 - 4.713× 10−5 - 2.780× 10−5 -
128 2.360× 10−5 0.991 1.142× 10−5 0.986 1.976× 10−5 0.999
256 1.876× 10−5 1.052 9.652× 10−6 0.996 5.146× 10−6 1.114
512 8.503× 10−6 1.086 7.112× 10−6 1.102 8.291× 10−7 1.086
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Table 7. Estimate the errors and convergence order of Example 7.2 for different values of ν with r = 3.

M ν = 0.3 ν = 0.6 ν = 0.9

E(h,N ) RM E(h,N ) RM E(h,N ) RM

32 − - − - − -
64 2.063× 10−5 - 1.827× 10−5 - 2.426× 10−6 -
128 1.692× 10−5 0.998 4.317× 10−6 0.972 1.147× 10−6 0.992
256 9.786× 10−6 1.063 8.913× 10−6 0.986 9.400× 10−7 1.183
512 6.081× 10−6 1.107 5.112× 10−7 0.993 7.307× 10−7 1.265

Table 8. The CPU time of Example 7.1 for different values of ν, M and N with r = 3.

M ν = 0.3 ν = 0.6 ν = 0.9

N CPU time(s) N CPU time(s) N CPU time(s)
16 21 73 7 25 12 41
32 47 118 11 38 23 54
64 101 157 19 62 43 109
128 219 256 32 143 82 199

Table 9. The CPU time of Example 7.2 for different values of ν and M with r = 3.

M ν = 0.3 ν = 0.6 ν = 0.9

CPU time(s) CPU time(s) CPU time(s)
32 76 84 93
64 135 147 170
128 177 201 226
256 276 316 343
512 342 375 394

ν = 0.3 , r=1

0

10

0.05

1500

0.1

t

5 1000

x

0.15

500

0 0

Figure 3. The numerical solutions of Example 7.2 for ν = 0.3, r = 1 (left shape) and ν = 0.3, r = 3
(right shape).
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Figure 4. The numerical solutions of Example 7.2 for ν = 0.6, r = 1 (left shape) and ν = 0.6, r = 3
(right shape).

Figure 5. The numerical solutions of Example 7.2 for ν = 0.9, r = 1 (left shape) and ν = 0.9, r = 3
(right shape).

Example 7.3 ( [10]). Consider
Dν
t ψ(x, t) + 6ψ(x, t)ψx(x, t) + ψxxx(x, t) = f(x, t), x ∈ (0, 1), t ∈ (0, 1],

ψ(0, t) = 0, t ∈ (0, 1],

ψ(1, t) = 0, t ∈ (0, 1],

ψx(1, t) = 0, t ∈ (0, 1].

(7.6)

In this example, for

f(x, t) =
−Γ(7)

Γ(7− ν)
t6−νx(1−x)2+6(1−t6)2

(
3x5 − 10x4 + 12x3 − 6x2 + x

)
+6(1−t6),

analyze the solution provided by ψ(x, t) = (1 − t6)x(1 − x)2. Assuming that the
exact solution and the approximate solution are Ψ(x, t) and ψ(x, t), respectively.
The error is defined as follows:

E(M,N ) = Max
0≤j≤N

√
∥Ψj − ψj∥2. (7.7)

Tables (10-12), by assuming N =
[
M

1
min{rν,2−ν}

]
, present the convergence orders

and maximum errors for different values of M = {16, 32, 64, 128}, ν = {0.2, 0.6, 0.9}
and r = {1, 2, 3}.
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Table 10. Maximum error and convergence order of Example 7.3 for different values of ν and N with
r = 1 .

M ν = 0.2 ν = 0.6 ν = 0.9

E(M,N ) RM E(M,N ) RM E(M,N ) RM

16 7.35× 10−4 - 6.48× 10−4 - 5.42× 10−5 -
32 3.27× 10−4 1.28 4.12× 10−4 1.33 1.51× 10−5 1.34
64 1.96× 10−4 1.31 6.83× 10−5 1.37 9.23× 10−6 1.41
128 5.50× 10−5 1.37 2.57× 10−5 1.46 1.24× 10−6 1.53

Table 11. Maximum error and convergence order of Example 7.3 for different values of ν and N with
r = 2.

M ν = 0.2 ν = 0.6 ν = 0.9

E(M,N ) RM E(M,N ) RM E(M,N ) RM

16 6.17× 10−4 - 8.38× 10−4 - 8.42× 10−5 -
32 1.53× 10−4 1.37 5.81× 10−5 1.39 7.73× 10−5 1.40
64 2.50× 10−5 1.39 4.91× 10−5 1.43 3.43× 10−6 1.45
128 4.72× 10−5 1.39 2.98× 10−6 1.44 7.03× 10−7 1.48

Table 12. Maximum error and convergence order of Example 7.3 for different values of ν and N with
r = 3.

M ν = 0.3 ν = 0.6 ν = 0.9

E(M,N ) RM E(M,N ) RM E(M,N ) RM

16 2.51× 10−4 - 6.14× 10−5 - 5.74× 10−5 -
32 5.30× 10−5 1.38 4.35× 10−5 1.46 7.11× 10−6 1.56
64 1.62× 10−5 1.43 8.19× 10−6 1.47 8.25× 10−7 1.65
128 3.09× 10−6 1.48 6.97× 10−7 1.50 1.38× 10−7 1.72

8. Conclusion
By using the classical fractional L1 on classified meshes according to time and cen-
tral differences for location decay, we have presented a scheme that has a first-time
convergence over space and can have a min{2 − ν, r} order convergence over time.
Initially, Grunwald inequality which is useful for examining numerical stability and
evaluating numerical methods of solving linear and nonlinear differential equations
was thoroughly investigated. Continually implementing our proposed method and
reviewing its stability and convergence, we claim that our method is effective. To
explain the simplicity of our suggested method and to better understand the com-
putational molecule reader, we have drawn our method. Finally, by comparing
examples to previous works, we have presented encouraging results and concluded
the paper. In our future research, we envisage studying and solving the nonlinear
KdV equation using meshless methods. We will also apply the idea to solve this
equation using weighted finite difference methods.

Declarations conflict of interest. The authors declare that there is no conflict
of interest regarding the publication of this article.
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