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ON THE ORBITAL STABILITY OF A
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Abstract In this paper we establish the orbital stability of ground state
solitary waves for a nonlinear one-dimensional Boussinesq system that models
the evolution of two dimensional long water waves with small amplitude in
the presence of surface tension. We also discuss the well-posedness for the
Boussinesq system, using some Strichartz type estimates associated with the
system and lowering the Sobolev index obtained in some previous results.
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1. Introduction
In the present work we study the nonlinear orbital stability of solitary wave solutions
of the one-dimensional abad-Boussinesq system

(
I − aµ∂2x

)
ηt + ∂2xΦ− bµ∂4xΦ+ ε∂x (η∂xΦ) = 0,(

I − aµ∂2x
)
Φt + η − dµ∂2xη +

ϵ
2 (∂xΦ)

2
= 0,

(1.1)

that arise in the study of the evolution of small amplitude long water waves in
the presence of surface tension (see [24, 29]). Here µ is the long-wave parameter
(dispersion coefficient), ε is the amplitude parameter (nonlinear coefficient), and the
functions η(t, x) and Φ(t, x) denote the wave elevation and the potential velocity on
the bottom z = 0, respectively; and the constants a ≥ 0, b > 0, and d > 0 are such
that

2a− (b+ d) =
1

3
− σ,

where σ−1 is known as the Bond number, associated with the surface tension.
As happens in many water waves models, a clever fact to analyze the orbital

stability/instability is the existence of a Hamiltonian structure which characterizes
solitary waves as critical points of the action functional. For this particular abad-
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Boussinesq system (1.1), the Hamiltonian is given by

H

η

Φ

 =
1

2

∫
R

(
η2 + dµ(∂xη)

2 + (∂xΦ)
2 + bµ(∂2xΦ)

2 + εη(∂xΦ)
2
)
dx,

and the Hamiltonian type structure is given byηt

Φt

 = JH′

η

Φ

 , J =

 0
(
I − aµ∂2x

)−1

−
(
I − aµ∂2x

)−1
0

 .

In addition, by Noether’s Theorem, there is a functional Q (named the Charge)
which is conserved in time for classical solutions defined formally as

Q

η

Φ

 =
1

2

〈
J−1∂x

η

Φ

 ,

η

Φ

〉

=

∫
R
(I − aµ∂2x)∂xηΦ dx = −

∫
R
(η∂xΦ+ a∂xη∂

2
xΦ) dx.

From this Hamiltonian structure, we have that solitary waves of wave speed ω for
the Boussinesq system (1.1) correspond to stationary solutions of the modulated
system ηt

Φt

 = JF ′
ω

η

Φ

 ,

where Fω = H+ ωQ.

The orbital stability has been intensively studied for a long time, for example
in recent years we have the works done by X. Zheng, J. Xin and X. Peng for gener-
alized long-short wave equations (see [32]), Y. Cho and M. Lee for inhomogeneous
nonlinear Schrödinger equations with singular potential (see [5]), M. Fontaine, M.
Lemou and F. Méhats for the HMF Poisson model (see [9]), E. Csobo for a nonlin-
ear Schrödinger equation with inverse square potential on the half-line (see [7]), F.
Cristófani, F. Natali and A. Pastor for regularized dispersive equations (see [6]), J.
Angulo and N. Goloshchapova for NLS equations with the δ′-interaction (see [2]).

Regarding the stability issue, we need to recall that M. Grillakis, J. Shatah and
W. Strauss in [11] established a general result to analyze the orbital stability of
solitary waves for a class of abstract Hamiltonian systems. In this case, solitary
waves of least energy Yω are minimums of the action functional Fω and the sta-
bility analysis depends on the positiveness of the symmetric operator F ′′

ω(Yω) in a
neighborhood of the solitary wave Yω, except possibly in two directions, and also
the strict convexity of the real function

d1(ω) = inf{Fω(Y ) : Y ∈ Mω},

where Mω is a suitable set. For 1D models like the KdV equation, Benney-Luke
equation, the Benjamin-Ono equation, for example, in which there are explicit trav-
elling waves, the verification of the positiveness of F ′′

ω(Yω) is much simpler due to
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the fact that the spectral analysis for the operator F ′′
ω(Yω) is reduced to studying

the eigenvalues of a ordinary differential equation which at ± infinity becomes to a
constant coefficients ordinary differential equation (see [4, 22, 26]). In the case for
the abad-Boussinesq system, we have a harder task to overcome using Grillakis et.
al. approach since the spectral analysis is not straightforward due to the lack of an
explicit formula for travelling waves.

In order to avoid using Grillakis et. al. approach which requires the spectral
analysis, we used a direct approach to prove orbital stability of ground state solitary
wave solutions of the system (1.1) in the case of wave speed ω is near 1−, using
strongly the variational characterization of d1, as done for 2D models: see J. Shatah
for nonlinear Klein Gordon equations [31], J. Quintero for the 2D-Benney-Luke
equation [23], J. C. Saut for the KP equation [8], R. Fukuizumi for the nonlinear
Schrödinger equation with harmonic potential [10] and Y. Liu for the generalized
KP equation [19], among others.

One ingredient needed in our development on the stability of solitary waves is
the well-posedness of the Cauchy problem associated to (1.1). In the absence of at
least a local existence result in a suitable function class that includes the solitary
wave solutions, the question of stability has no clear significance. On account of its
structure, we see directly that the functional H is well defined when η,Φx ∈ H1(R).
This condition already characterizes the natural space (energy space) in which we
consider the well-posedness and the existence and stability of solitary wave solutions.
For instance, J. Quintero and A. Montes established in [30] the existence of solitary
wave solutions which propagate with speed of wave ω > 0, i. e. solutions of the
form

η(t, x) = u (x− ωt) , Φ(t, x) = v (x− ωt) ,

in the Hilbert space X = H1 × V2 with respect to norm

∥(u, v)∥2X = ∥u∥2H1 + ∥v∥2V2 ,

where the usual Sobolev space H1 = H1(R), is the space defined as the completion
of C∞

0 (R) with respect to the norm

∥u∥2H1 =

∫
R

(
u2 + (u′)2

)
dx,

and the space V2 = V2(R) is defined as the completion of C∞
0 (R) with respect to

the norm given by

∥v∥2V2 =

∫
R

(
(v′)2 + (v′′)2

)
dx = ∥v′∥2H1

and the corresponding inner product

(v, w)V2 = (v′, w′)H1 .

In addition, J. Quintero and A. Montes showed the well-posedness associated to
the system (1.1) in the space Xs = Hs×Vs+1, where Hs is the usual Sobolev space
of order s defined as the completion of the Schwartz class S(R) with respect to the
norm

∥f∥2Hs =

∫
R
(1 + |ξ|2)s|f̂(ξ)|2dξ,
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and Vs+1 denotes the completion of the Schwartz class with respect to the norm

∥f∥2Vs+1 =

∫
R
|ξ|2(1 + |ξ|2)s|f̂(ξ)|2dξ,

where the Fourier transform of a function w defined on R is given by

(Fw)(ξ) = ŵ(ξ) =
1

2π

∫
R
e−ixξw(x)dx.

Using a bilinear estimate obtained by J. Bona and N. Tzvetkov in [3] as a key
ingredient, J. Quintero and A. Montes showed the local well posedness for s ≥ 0 in
the case a > 0 and the global well-posedness in the energy space, X = H1 × V2,
when the initial date is small enough; and also showed the local well-posedness for
s > 3

2 in the case a = 0, using the estimates for the Commutator of Kato (see works
by Kato [12–14]).

In this paper we will show the local well-posedness for s > 3
4 in the case for a = 0,

which includes the energy space with s = 1. To prove this local result, we follow the
ideas developed in the well-posedness for the KdV equation, Boussinesq equation,
Ostrovsky equation, among others (see [15, 17, 18]). We will discuss the so-called
Lp − Lq smoothing effect properties of Strichartz type for solutions of the linear
problem associated to (1.1). Then we will use them to obtain the local result for
solutions of the nonlinear problem. The global well-posedness in the energy space
X = H1×V2, when the initial date is small enough, follows from the conservation in
time of the Hamiltonian, a Sobolev type inequality and the use of energy estimates
(Theorem 3.2 in [30]).

Finally, a special characteristic on the Boussinesq system (1.1) is that some well
known water wave models as the one-dimensional Benney-Luke equation,

Φtt − Φxx + aΦxxxx − bΦxxtt +ΦtΦxx + 2ΦxΦxt = 0,

and the Korteweg-de Vries type equation,

ut +
(
σ − 1

3

)
uxxx − 3uux = 0,

emerges from the abad-Boussinesq system (up to some order with respect to ε),
making the system (1.1) very interesting from the physical and numerical view
points. Moreover, for small wave speed and large surface tension, we will see that
a suitable (renormalized) family of solitary waves of the Boussinesq system (1.1)
converges to a nontrivial solitary wave for a KdV type equation. We will use this
fact in the stability analysis.

This paper is organized as follows. In section 2, we establish some estimates
of type Strichartz for solutions of the linear problem associated to system (1.1) for
the case a = 0. In section 3, we show the well-posedness for the Cauchy problem
associated to the abad-Boussinesq system (1.1) for s > 3

4 in the case a = 0. In
section 4, we present some preliminaries for the stability result, related with the
existence of solitary wave solutions for the system Boussinesq (1.1) and the link
between solitary waves for the system (1.1) and the KdV equation. In section 5, we
prove the strict convexity of d1 for c ∈ (0, 1), but near 1. In section 6, we establish
the orbital stability result.
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2. Linear Strichartz estimates for the case a = 0

In this section we will establish some estimates of type Strichartz for solutions of the
linear Cauchy problem associated to (1.1) in the case for a = 0. These estimates
will be the main ingredient in the proof of local well-posedness of the nonlinear
Cauchy problem associated to (1.1). To prove these estimates we rely on the theory
of oscillatory integral established by Kenig, Ponce and Vega in [15,16].

In order to simplify the computation, we rescale the parameters µ and ε from
the abad-Boussinesq system (1.1) by defining

η̃(t, x) =
1

ε
η

(
t

√
µ
,
x
√
µ

)
, Φ̃(t, x) =

µ

ε
Φ

(
t

√
µ
,
x
√
µ

)
.

Then we consider the following Cauchy problem,
ηt +Φxx − bΦxxxx + (ηΦx)x = 0

Φt + η − dηxx +
1
2 (Φx)

2 = 0

η(x, 0) = η0(x), Φ(x, 0) = Φ0(x).

(2.1)

We see that the solution for the linear Cauchy problem associated to (2.1), with
initial data Ψ0 = (η0,Φ0) ∈ Hs × Vs+1, is given by

Ψ(t) = (η(t),Φ(t)) = S(t)Ψ0, (2.2)

where the semigroup S(t) is defined as

S(t)(η,Φ) =
(
S1(t)(η,Φ), S2(t)(η,Φ)

)
,

where

S1(t)(η,Φ)=

∫
R
eixξ

[
cos(φ(ξ)t)η̂(ξ) + |ξ|ϕ(ξ) sin(φ(ξ)t)Φ̂(ξ)

]
dξ ≡ U(t)η + V (t)Φ,

S2(t)(η,Φ)=

∫
R
eixξ

[− sin(φ(ξ)t)η̂(ξ)

|ξ|ϕ(ξ)
+ cos(φ(ξ)t)Φ̂(ξ)

]
dξ ≡W (t)η + U(t)Φ,

and the functions φ, ϕ are given by

φ(ξ) = |ξ|
√

(1 + b|ξ|2)(1 + d|ξ|2), ϕ(ξ) =

√
1 + b|ξ|2
1 + d|ξ|2

.

From the following lemma we see that S(t) is a bounded linear operator from
Hs × Vs+1 into Hs × Vs+1.

Lemma 2.1. Suppose s ∈ R. Then there exists C > 0 such that for all t ∈ R,

∥U(t)f∥Hs ≤ C∥f∥Hs , ∥V (t)g∥Hs ≤ C∥g∥Vs+1 ,

and
∥W (t)f∥Vs+1 ≤ C∥f∥Hs , ∥U(t)g∥Vs+1 ≤ C∥g∥Vs+1 .
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Proof. Note that there are constants C1, C2 > 0 such that C1 ≤ ϕ2 ≤ C2. Then,
if f ∈ Hs(R) and g ∈ Vs+1(R) we have that

∥U(t)f∥Hs =
(∫

R
(1 + |ξ|2)s| cos(φ(ξ)t)f̂(ξ)|2dξ

)1/2

≤
(∫

R
(1 + |ξ|2)s|f̂(ξ)|2dξ

)1/2

= ∥f∥Hs ,

and also that

∥V (t)g∥Hs =
(∫

R
(1 + |ξ|2)s|ξ|2|ϕ(ξ) sin(φ(ξ)t)ĝ(ξ)|2dξ

)1/2

≤ C
(∫

R
(1 + |ξ|2)s|ξ|2|ĝ(ξ)|2dξ

)1/2

= C∥g∥Vs+1 .

Similarly we obtain the other inequalities.
Now, we will establish the Strichartz estimates and smoothing effects for the

operators U(t), V (t) and W (t) and then for S(t).

Theorem 2.1. For γ ≥ 0 define

J±
γ (t)f(x) =

∫
R
ei(±ϕ(ξ)t+xξ)|φ′′(ξ)|γ/2f̂(ξ)dξ.

Then for any γ ∈ [0, 1],(∫
R
∥J±
γ/2(t)f∥

q
Lpdt

)1/q

≤ C∥f∥L2 ,∥∥∥∫ t

0

J±
γ (t− τ)g(·, τ)dτ

∥∥∥
Lq

tL
p
x

≤ C∥g∥
Lq′

t L
p′
x
,

and ∥∥∥∫
R
J±
γ/2(−τ)g(·, τ)dτ

∥∥∥
L2

x

≤ C∥g∥
Lq′

t L
p′
x
,

where q = 4
γ , p =

2
1−γ ,

1
p +

1
p′ =

1
q +

1
q′ = 1.

Proof. It is not difficult to prove that φ belongs to the general class A defined
in [15]. In particular,

C1|ξ|2 ≤ |φ′(ξ)| ≤ C2|ξ|2, C1|ξ| ≤ |φ′′(ξ)| ≤ C2|ξ|, for ξ ̸= 0.

Then using Theorem 2.1 in [15] we have the estimates (see also Theorem 2.3 in [17]).

Lemma 2.2. There exists C > 0 such that

∥D1/4
x U(t)f∥L4

TL
∞
x

≤ C(1 + T 1/4)∥f∥L2 ,

∥D1/4
x V (t)g∥L4

TL
∞
x

≤ C(1 + T 1/4)∥g∥V1 ,

∥D5/4
x W (t)f∥L4

TL
∞
x

≤ C(1 + T 1/4)∥f∥L2 ,

and
∥D5/4

x U(t)g∥L4
TL

∞
x

≤ C(1 + T 1/4)∥g∥V1 .
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Proof. Let χ ∈ C∞
0 (R) a cut-off function, i.e. χ ∈ C∞

0 (R) such that χ ≡ 1 if
|x| ≤ 1 and χ ≡ 0 if |x| ≥ 2. Using the regularity of χ we have that∥∥∥∥∫

R
eixξ cos(φ(ξ)t)|ξ|1/4f̂(ξ)χ(ξ)dξ

∥∥∥∥
L∞

≤ C

∥∥∥∥∫
R
eixξ cos(φ(ξ)t)|ξ|1/4f̂(ξ)χ(ξ)dξ

∥∥∥∥
H1

≤ C
(∫

R
(1 + |ξ|2)s

∣∣∣|ξ|1/4f̂(ξ)χ(ξ)∣∣∣2dξ)1/2

= C∥D1/4
x (f ∗ χ∨)∥H1

≤ C∥f∥L2 .

Then we see that(∫ T

0

∥∥∥∫
R
eixξ cos(φ(ξ)t)|ξ|1/4f̂(ξ)χ(ξ)dξ

∥∥∥4
L∞

dt
)1/4

≤ CT 1/4∥f∥L2 .

On the other hand, using the Minkowski’s inequality and Theorem 2.1 with γ = 1
we obtain that(∫ T

0

∥∥∥∫
R
eixξ cos(φ(ξ)t)|ξ|1/4f̂(ξ)(1− χ(ξ))dξ

∥∥∥4
L∞

dt
)1/4

≤1

2

(∫ T

0

∥∥∥ ∫
R
ei(ϕ(ξ)t+xξ)|φ′′(ξ)|1/4 |ξ|1/4

|φ′′(ξ)|1/4
f̂(ξ)(1− χ(ξ))dξ

∥∥∥4
L∞

dt
)1/4

+
1

2

(∫ T

0

∥∥∥∫
R
ei(−ϕ(ξ)t+xξ)|φ′′(ξ)|1/4 |ξ|1/4

|φ′′(ξ)|1/4
f̂(ξ)(1− χ(ξ))dξ

∥∥∥4
L∞

dt
)1/4

≤C
∥∥∥ |ξ|1/4f̂(ξ)(1− χ(ξ))

|φ′′(ξ)|1/4
∥∥∥
L2

≤ C∥f∥L2 ,

where we have used that |ξ|1/4(1−χ(ξ))
|ϕ′′(ξ)|1/4 ∈ L∞(R). Now, since

D1/4
x U(t)f(x) =

∫
R
eixξ cos(φ(ξ)t)|ξ|1/4f̂(ξ)χ(ξ)dξ

+

∫
R
eixξ cos(φ(ξ)t)|ξ|1/4f̂(ξ)(1− χ(ξ))dξ,

then we see that(∫ T

0

∥∥∥D1/4
x U(t)f

∥∥∥4
L∞

dt
)1/4

≤ C(1 + T 1/4)∥f∥L2 .

In a similar fashion, we have that(∫ T

0

∥∥∥∫
R
eixξ|ξ|ϕ(ξ) sin(φ(ξ)t)|ξ|1/4ĝ(ξ)χ(ξ)dξ

∥∥∥4
L∞

dt
)1/4

≤ CT 1/4∥D1/4
x (∂xg ∗ χ∨)∥H1

≤ CT 1/4∥∂xg∥L2

= CT 1/4∥g∥V1 ,

and also that(∫ T

0

∥∥∥∫
R
eixξ|ξ|ϕ(ξ) sin(φ(ξ)t)|ξ|1/4ĝ(ξ)(1− χ(ξ))dξ

∥∥∥4
L∞

dt
)1/4



1482 J. Quintero, A. Montes & R. Córdoba

≤1

2

(∫ T

0

∥∥∥∫
R
ei(ϕ(ξ)t+xξ)|φ′′(ξ)|1/4ϕ(ξ)|ξ|

1/4

|φ′′(ξ)|1/4
|ξ|ĝ(ξ)(1− χ(ξ))dξ

∥∥∥4
L∞

dt
)1/4

+
1

2

(∫ T

0

∥∥∥∫
R
ei(−ϕ(ξ)t+xξ)|φ′′(ξ)|1/4ϕ(ξ)|ξ|

1/4

|φ′′(ξ)|1/4
|ξ|ĝ(ξ)(1− χ(ξ))dξ

∥∥∥4
L∞

dt
)1/4

≤C
∥∥∥ |ξ|1/4∂̂xg(ξ)ϕ(ξ)(1− χ(ξ))

|φ′′(ξ)|1/4
∥∥∥
L2

≤C∥g∥V1 ,

where we have used that φ(ξ)|ξ|1/4(1−χ(ξ))
|ϕ′′(ξ)|1/4 ∈ L∞(R). Now, since

D1/4
x V (t)g(x) =

∫
R
eixξ|ξ|ϕ(ξ) sin(φ(ξ)t)|ξ|1/4ĝ(ξ)χ(ξ)dξ

+

∫
R
eixξ|ξ|ϕ(ξ) sin(φ(ξ)t)|ξ|1/4ĝ(ξ)(1− χ(ξ))dξ,

follows the inequality(∫ T

0

∥∥∥D1/4
x V (t)g

∥∥∥4
L∞

dt
)1/4

≤ C(1 + T 1/4)∥g∥V1 .

Similarly we obtain the other inequalities.

Lemma 2.3. Define

I±(t)f(x) =

∫
R
ei(±tϕ(ξ)+xξ)f̂(ξ)dξ.

Then there exists C > 0 such that

sup
x

∫
R
|I±(t)f(x)|2dt ≤ C

∫
R

|f̂(ξ)|2

|φ′(ξ)|
dξ.

Proof. First we write∫
R
ei(tϕ(ξ)+xξ)f̂(ξ)dξ =

∫
ξ<0

ei(tϕ(ξ)+xξ)f̂(ξ)dξ +

∫
ξ>0

ei(tϕ(ξ)+xξ)f̂(ξ)dξ.

Note that there exists ψ such that ψ(φ(ξ)) = ξ, ξ < 0. Then making the change of
variable η = φ(ξ) we have that∫

ξ<0

ei(tϕ(ξ)+xξ)f̂(ξ)dξ =

∫
ei(tη+xψ(η))f̂−(ψ(η))

dη

φ′(ψ(η))
,

where f−(x) = f(x), for x < 0 and equals 0 otherwise. Then, using Plancherel’s
identity and returning to the previous variables we have that∫

R

∣∣∣ ∫ ei(tη+xψ(η))f̂−(ψ(η))
dη

φ′(ψ(η))

∣∣∣2dt =∫ ∣∣∣ ∫
R
ei(tη+xψ(η))f̂−(ψ(η))

dt

φ′(ψ(η))

∣∣∣2dη
= C

∫ ∣∣∣eixψ(η)f̂−(ψ(η))
φ′(ψ(η))

∣∣∣2dη
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= C

∫
R

|f̂−(ψ(η))|2

|φ′(ψ(η))|2
dη

= C

∫
R

|f̂−(ξ)|2

|φ′(ξ)|
dξ.

A similar argument can be used to obtain∫
R

∣∣∣ ∫
ξ>0

ei(tϕ(ξ)+xξ)f̂(ξ)dξ
∣∣∣2dt = C

∫
R

|f̂+(ξ)|2

|φ′(ξ)|
dξ,

where f+(x) = f(x), for x > 0 and equals 0 otherwise. So that we have the estimate
for I+(t)f . The proof for I−(t)f is analogous.

Lemma 2.4. There exists C > 0 such that

∥∂xU(t)f∥L∞
x L2

T
≤ C(1 + T 1/2)∥f∥L2 ,

∥∂xV (t)g
∥∥∥
L∞

x L2
T

≤ C(1 + T 1/2)∥g∥V1 ,

∥∂2xWf∥L∞
x L2

T
≤ C(1 + T 1/2)∥f∥L2 ,

and
∥∂2xU(t)g∥L∞

x L2
T
≤ C(1 + T 1/2)∥g∥V1 .

Proof. We take χ ∈ C∞
0 (R) a cut-off function, and write

∂xU(t)f =

∫
R
ieixξ cos(φ(ξ)t)ξf̂(ξ)χ(ξ)dξ +

∫
R
ieixξ cos(φ(ξ)t)ξf̂(ξ)(1− χ(ξ))dξ.

Sobolev’s Lemma and the regularity of χ imply that

sup
x

(∫ T

0

∣∣∣ ∫
R
ieixξ cos(φ(ξ)t)ξf̂(ξ)χ(ξ)dξ

∣∣∣2)1/2

≤ C∥∂xf ∗ χ∥H1 ≤ CT 1/2∥f∥L2 .

In addition, using the Lemma 2.3 we obtain that

sup
x

(∫ T

0

∣∣∣ ∫
R
eixξ cos(φ(ξ)t)iξf̂(ξ)(1− χ(ξ))dξ

∣∣∣2)1/2

≤C
(∫

R

|ξ|2|f̂(ξ)(1− χ(ξ))|2

|φ′(ξ)|
dξ

)1/2

≤ C∥f∥L2 .

Then we have that

∥∂xU(t)f∥L∞
x L2

T
≤ C(1 + T 1/2)∥f∥L2 .

In a similar fashion, we have the other estimates.

Lemma 2.5. Let s > 3
4 , then there exists C > 0 such that

∥U(t)f∥L2
xL

∞
T

≤ C(1 + T )1/2∥f∥Hs ,

∥V (t)g∥L2
xL

∞
T

≤ C(1 + T )1/2∥g∥Vs+1 ,

∥∂xW (t)f∥L2
xL

∞
T

≤ C(1 + T )1/2∥f∥Hs ,

and
∥∂xU(t)g∥L2

xL
∞
T

≤ C(1 + T )1/2∥g∥Vs+1 .
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Proof. We can proceed as in Lemma 3.4 in [18] to obtain a function Hk ∈
L1(R), k ∈ Z, satisfying

|I±k (t, x)| ≤ Hk(x),

for any x ∈ R and |t| ≤ T and such that

∥Hk∥L1 ≤ C


(1 + T )1/223k/2, k ≥ 1

(1 + T ), −1 ≤ k ≤ 0

(1 + T )1/22−k/2, k ≤ −2,

where
Ωk = (−2k+1,−2k−1) ∪ (2k−1, 2k+1), k ∈ Z,

is an open covering of R−{0} and a subordinated partition of unity {ϕk}∞k=−∞ and

I±k (t, x) = C

∫
R−{0}

ei(±tϕ(ξ)+xξ)ϕk(ξ)dξ.

Then we argue as in [16,18] to obtain the estimates.

3. Well posedness for the Cauchy problem
This section is devoted proving well-posedness for the Cauchy problem (2.1) with
initial date (η0,Φ0) ∈ Hs×Vs+1. We will see as usual that the local well-posedness
follows by the linear estimates of section 1, Leibniz rule and Banach fixed point
theorem.

Theorem 3.1. Let s > 3
4 . Then for all (η0,Φ0) ∈ Hs × Vs+1 there exist T > 0

depending only on ∥(η0,Φ0)∥Hs×Vs+1 and a unique solution

(η,Φ) ∈ C
(
[0, T ] : Hs × Vs+1

)
of the Cauchy problem (2.1).

Proof. Let s > 3
4 and M > 0. Define the space

XT = {(η,Φ) ∈ C([0, T ],Hs × Vs+1) : |||(η,Φ)||| <∞},

where

|||(η,Φ)||| =∥η∥L∞
T Hs + ∥Φ∥L∞

T Vs+1 + ∥η∥L2
xL

∞
T

+ ∥Φx∥L2
xL

∞
T

+ ∥ηx∥L4
TL

∞
x

+ ∥Φxx∥L4
TL

∞
x

+ ∥Ds
xηx∥L∞

x L2
T
+ ∥Ds

xΦxx∥L∞
x L2

T
.

We consider the operator

Γ(η,Φ) = (Γ1(η,Φ),Γ2(η,Φ)),

where

Γ1(η,Φ)=U(t)(η0)+V (t)(Φ0)−
∫ t

0

[
U(t−τ)((ηΦx)x)(τ)+V (t−τ)

(
1
2 (Φx)

2
)
(τ)

]
dτ
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and

Γ2(η,Φ)=W (t)(η0)+U(t)(Φ0)−
∫ t

0

[
W (t−τ)((ηΦx)x)(τ)+U(t−τ)

(
1
2 (Φx)

2
)
(τ)

]
dτ.

We will show that for M and T suitable positive numbers the map Γ defines a
contraction in

XT
M = {(η,Φ) ∈ XT : |||(η,Φ)||| ≤M}.

First, we estimate the norm of Γ(η,Φ) inHs×Vs+1. Using the Minkowski inequality,
semigroup properties and Hölder inequality we see that

∥Γ1(η,Φ)(t)∥L2 ≤ C (∥η0∥L2 + ∥Φ0∥V1) + C

∫ T

0

(
∥(ηΦx)x∥L2 + ∥(Φx)2∥V1

)
dτ

≤ C(∥η0∥L2 + ∥Φ0∥V1)

+ CT 3/4
(
sup
[0,T ]

∥η∥L2
x
∥Φxx∥L4

TL
∞
x

+ sup
[0,T ]

∥Φx∥L2
x
∥ηx∥L4

TL
∞
x

+ sup
[0,T ]

∥Φx∥L2
x
∥Φxx∥L4

TL
∞
x

)
and

∥Γ2(η,Φ)(t)∥V1

≤C(∥η0∥L2 + ∥Φ0∥V1)

+CT 3/4
(
sup
[0,T ]

∥η∥L2
x
∥Φxx∥L4

TL
∞
x
+sup

[0,T ]

∥Φx∥L2
x
∥ηx∥L4

TL
∞
x
+sup

[0,T ]

∥Φx∥L2
x
∥Φxx∥L4

TL
∞
x

)
.

On the other hand, using Cauchy-Schwarz’s inequality and Leibniz’s rule we have
that

∥Ds
xΓ1(η,Φ)(t)∥L2

≤C (∥Ds
xη0∥L2 + ∥Ds

xΦ0∥V1) +
∥∥∥Ds

x

∫ t

0

U(t− τ)(ηΦx)x(τ)dτ
∥∥∥
L2

+
∥∥∥Ds

x

∫ t

0

V (t− τ)(Φx)
2(τ)dτ

∥∥∥
L2

≤C(∥Ds
xη0∥L2 + ∥Ds

xΦ0∥V1) + CT 1/2
(
∥Ds

x(ηΦx)x∥L2
xL

2
T
+ ∥Ds

x(Φx)
2
x∥L2

xL
2
T

)
≤C(∥Ds

xη0∥L2 + ∥Ds
xΦ0∥V1)

+ CT 1/2
(
∥Ds

xη∥L4
TL

2
x
∥Φxx∥L4

TL
∞
x

+ ∥Ds
xΦxx∥L∞

x L2
T
∥η∥L2

xL
∞
T

)
+ CT 1/2

(
∥Ds

xΦx∥L4
TL

2
x
∥ηx∥L4

TL
∞
x

+ ∥Ds
xηx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T

)
+ CT 1/2

(
∥Ds

xΦx∥L4
TL

2
x
∥Φxx∥L4

TL
∞
x

+ ∥Ds
xΦxx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T

)
≤C(∥Ds

xη0∥L2 + ∥Ds
xΦ0∥V1)

+ CT 3/4∥Ds
xη∥L∞

T L2
x
∥Φxx∥L4

TL
∞
x

+ CT 1/2∥Ds
xΦxx∥L∞

x L2
T
∥η∥L2

xL
∞
T

+ CT 3/4∥Ds
xΦx∥L∞

T L2
x
∥ηx∥L4

TL
∞
x

+ CT 1/2∥Ds
xηx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T

+ CT 3/4∥Ds
xΦx∥L∞

T L2
x
∥Φxx∥L4

TL
∞
x

+ CT 1/2∥Ds
xΦxx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T
.
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In a similar fashion, we also have that

∥Ds
xΓ2(η,Φ)(t)∥V1

≤C(∥Ds
xη0∥L2 + ∥Ds

xΦ0∥V1)

+ CT 3/4∥Ds
xη∥L∞

T L2
x
∥Φxx∥L4

TL
∞
x

+ CT 1/2∥Ds
xΦxx∥L∞

x L2
T
∥η∥L2

xL
∞
T

+ CT 3/4∥Ds
xΦx∥L∞

T L2
x
∥ηx∥L4

TL
∞
x

+ CT 1/2∥Ds
xηx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T

+ CT 3/4∥Ds
xΦx∥L∞

T L2
x
∥Φxx∥L4

TL
∞
x

+ CT 1/2∥Ds
xΦxx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T
.

From previous computations, we conclude that

sup
[0,T ]

∥Γ(η,Φ)(t)∥Hs×Vs+1 ≤C(∥η0∥Hs+∥Φ0∥Vs+1)+CT 1/2(1+T 1/4)|||(η,Φ)|||2.

Now, using Lemma 2.5 and the previous argument we have that

∥Γ1(η,Φ)∥L2
xL

∞
T

≤C(1 + T )1/2(∥η0∥Hs + ∥Φ0∥Vs+1) +
∥∥∥U(t)

∫ t

0

U(−τ)((ηΦx)x)(τ)dτ
∥∥∥
L2

xL
∞
T

+
∥∥∥V (t)

∫ t

0

V (−τ)(Φx)2(τ)dτ
∥∥∥
L2

xL
∞
T

≤C(1 + T )1/2 (∥η0∥Hs + ∥Φ0∥Vs+1)

+ C(1 + T )1/2T 1/2
(
∥(ηΦx)x∥HsL2

T
+ ∥(Φx)2x∥HsL2

T

)
≤C(1 + T )1/2(∥η0∥Hs + ∥Φ0∥Vs+1)

+ C(1 + T )1/2T 1/2
(
T 1/4∥η∥L∞

T Hs∥Φxx∥L4
TL

∞
x

+ ∥Ds
xΦxx∥L∞

x L2
T
∥η∥L2

xL
∞
T

+ T 1/4∥Φx∥L∞
T Hs∥ηx∥L4

TL
∞
x

+ ∥Ds
xηx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T

+ T 1/4∥Φx∥L∞
T Hs∥Φxx∥L4

TL
∞
x

+ ∥Ds
xΦxx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T

)
≤C(1 + T )1/2(∥η0∥Hs + ∥Φ0∥Vs+1) + C(1 + T )1/2T 1/2(1 + T 1/4)|||(η,Φ)|||2,

and

∥∂xΓ2(η,Φ)∥L2
xL

∞
T

≤C(1 + T )1/2(∥η0∥Hs + ∥η0∥Vs+1) +
∥∥∥∂xW (t)

∫ t

0

W (−τ)((ηΦx)x)(τ)dτ
∥∥∥
L2

xL
∞
T

+
∥∥∥∂xU(t)

∫ t

0

U(−τ)(Φx)2(τ)dτ
∥∥∥
L2

xL
∞
T

≤C(1 + T )1/2 (∥η0∥Hs + ∥Φ0∥Vs+1)

+ C(1 + T )1/2T 1/2
(
∥(ηΦx)x∥HsL2

T
+ ∥(Φx)2x∥HsL2

T

)
≤C(1 + T )1/2(∥η0∥Hs + ∥Φ0∥Vs+1) + C(1 + T )1/2T 1/2(1 + T 1/4)|||(η,Φ)|||2.

Using Lemma 2.2 and Cauchy-Schwarz’s inequality we obtain that

∥∂xΓ1(η,Φ)∥L4
TL

∞
x

≤∥D1/4
x U(t)D3/4η0∥L4

TL
∞
x

+ ∥D1/4
x V (t)D3/4η0∥L4

TL
∞
x
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+
∥∥∥D1/4

x U(t)

∫ t

0

U(−τ)D3/4
x ((ηΦx)x)(τ)dτ

∥∥∥
L4

TL
∞
x

+
∥∥∥D1/4

x V (t)

∫ t

0

V (−τ)D3/4
x (Φx)

2(τ)dτ
∥∥∥
L4

TL
∞
x

≤C(1 + T 1/4)(∥η0∥Hs + ∥Φ0∥Vs+1)

+ C(1 + T 1/4)T 1/2(∥(ηΦx)x∥HsL2
T
+ ∥(Φx)2∥Vs+1L2

T
)

≤C(1 + T 1/4)(∥η0∥Hs + ∥Φ0∥Vs+1)

+ C(1 + T 1/4)T 1/2(1 + T 1/4)|||(η,Φ)|||2

and

∥∂2xΓ2(η,Φ)∥L4
TL

∞
x

≤∥D5/4
x W (t)D3/4η0∥L4

TL
∞
x

+ ∥D5/4
x U(t)D3/4η0∥L4

TL
∞
x

+
∥∥∥D5/4

x W (t)

∫ t

0

W (−τ)D3/4
x ((ηΦx)x)(τ)dτ

∥∥∥
L4

TL
∞
x

+
∥∥∥D5/4

x U(t)

∫ t

0

U(−τ)D3/4
x (Φx)

2(τ)dτ
∥∥∥
L4

TL
∞
x

≤C(1 + T 1/4)(∥η0∥Hs + ∥Φ0∥Vs+1)

+ C(1 + T 1/4)T 1/2(1 + T 1/4)|||(η,Φ)|||2.

Finally, from Lemma 2.4 and Leibniz’s rule it follows that

∥Ds
x∂xΓ1(η,Φ)∥L∞

x L2
T

≤C(1 + T 1/2) (∥Ds
xη0∥L2 + ∥Ds

xΦ0∥V1)

+

∥∥∥∥∂xU(t)

∫ t

0

U(−τ)Ds
x(ηΦx)x(τ)dτ

∥∥∥∥
L∞

x L2
T

+

∥∥∥∥∂xV (t)

∫ t

0

V (−τ)Ds
x(Φx)

2(τ)dτ

∥∥∥∥
L∞

x L2
T

≤C(1 + T 1/2)(∥η0∥Hs + ∥Φ0∥Vs+1)

+ C(1 + T 1/2)T 1/2
(
∥Ds

x(ηΦx)x∥L2
xL

2
T
+ ∥Ds

x(Φx)
2
x∥L2

xL
2
T

)
≤C(1 + T 1/2)(∥η0∥Hs + ∥Φ0∥Vs+1)

+ C(1 + T 1/2)T 1/2
(
∥Ds

xη∥L4
TL

2
x
∥Φxx∥L4

TL
∞
x

+ ∥Ds
xΦxx∥L∞

x L2
T
∥η∥L2

xL
∞
T

+ ∥Ds
xΦx∥L4

TL
2
x
∥ηx∥L4

TL
∞
x

+ ∥Ds
xηx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T

+ ∥Ds
xΦx∥L4

TL
2
x
∥Φxx∥L4

TL
∞
x

+ ∥Ds
xΦxx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T

)
≤C(1 + T 1/2)(∥η0∥Hs + ∥Φ0∥Vs+1)

+ C(1 + T 1/2)T 1/2
(
T 1/4∥Ds

xη∥L∞
T L2

x
∥Φxx∥L4

TL
∞
x

+ ∥Ds
xΦxx∥L∞

x L2
T
∥η∥L2

xL
∞
T

+ T 1/4∥Ds
xΦx∥L∞

T L2
x
∥ηx∥L4

TL
∞
x

+ ∥Ds
xηx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T

+ T 1/4∥Ds
xΦx∥L∞

T L2
x
∥Φxx∥L4

TL
∞
x

+ ∥Ds
xΦxx∥L∞

x L2
T
∥Φx∥L2

xL
∞
T

)
≤C(1 + T 1/2)(∥η0∥Hs + ∥Φ0∥Vs+1) + C(1 + T 1/2)T 1/2(1 + T 1/4)|||(η,Φ)|||2,
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and also that

∥Ds
x∂

2
xΓ2(η,Φ)∥L∞

x L2
T
≤C(1 + T 1/2)(∥η0∥Hs + ∥Φ0∥Vs+1)

+
∥∥∥∂2xW (t)

∫ t

0

W (−τ)Ds
x((ηΦx)x)(τ)dτ

∥∥∥
L∞

x L2
T

+

∥∥∥∥∂2xU(t)

∫ t

0

U(−τ)Ds
x(Φx)

2(τ)dτ

∥∥∥∥
L∞

x L2
T

≤C(1 + T 1/2)(∥η0∥Hs + ∥Φ0∥Vs+1)

+C(1+T 1/2)T 1/2
(
∥Ds

x(ηΦx)x∥L2
xL

2
T
+∥Ds

x(Φx)
2
x∥L2

xL
2
T

)
≤C(1 + T 1/2)(∥η0∥Hs + ∥Φ0∥Vs+1)

+ C(1 + T 1/2)T 1/2(1 + T 1/4)|||(η,Φ)|||2.

From previous estimates we obtain that

|||Γ(η,Φ)|||

≤C(1+T 1/2)(1+T 1/4)
(
∥η0∥Hs+∥Φ0∥Vs+1

)
+CT 1/2(1+T 1/2)(1+T 1/4)2|||(η,Φ)|||2.

If we choose M = 2C(1+T 1/2)(1+T 1/4) (∥η0∥Hs + ∥Φ0∥Vs+1) and T > 0 such that

CT 1/2(1 + T 1/2)(1 + T 1/4)2M < 1/2,

we have that Γ is a contraction in XT
M . Thus, the contraction mapping principle

guarantees the existence of a unique (η,Φ) in XT
M solving the associated integral

problem to system (2.1). To show the continuous dependence we follow a similar
argument as the one described above. The uniqueness follows using a standard
argument and so we will omit it.

Since in [30] was proved the local well-posedness of the Cauchy problem associ-
ated with the abad-Boussinesq system (1.1) for s ≥ 0 in the case a ̸= 0 (see Theorem
2.2 in [30]), we have the following corollary.

Corollary 3.1. Suppose that s is such that if a ̸= 0, s ≥ 0 and if a = 0, s > 3
4 . Then

for all (η0,Φ0) ∈ Hs×Vs+1 there exist T > 0 depending only on ∥(η0,Φ0)∥Hs×Vs+1

and a unique solution (η,Φ) ∈ C
(
[0, T ] : Hs × Vs+1

)
of the Cauchy problem asso-

ciated with (1.1) and initial condition (η0,Φ0).

Moreover, we have the global well-posedness in the energy space X = H1 ×V2.

Theorem 3.2. There is δ > 0 such that for (η0,Φ0) ∈ H1 × V2 with

∥(η0,Φ0)∥H1×V2 ≤ δ,

the Cauchy problem associated with (1.1) and initial condition (η0,Φ0) has a unique
global solution (η,Φ) ∈ C

(
[0,∞),H1 × V2

)
.

Proof. See Theorem 3.2 in [30].
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4. Preliminaries for stability
We start mentioning that solitary waves correspond to pair of functions (u, v) sat-
isfying the system bv

′′′′ − v
′′
+ ω (u′ − au′′′)− (uv′ )

′
= 0,

u− du′′ − ω (v′ − cv′′′) +
1

2
(v′)

2
= 0.

(4.1)

It is straightforward to see that such pair (u, v) is characterized as critical points of
the functional Jω given by

Jω(u, v) = Iω(u, v) +G(u, v),

where the functionals Iω and G are defined on the space X = H1 × V2 by

Iω(u, v) = I1(u, v) + I2,ω(u, v),

I1(u, v) =

∫
R

[
u2 + d(u′)2 + (v′)2 + b(v′′)2

]
dx,

I2,ω(u, v) = −2ω

∫
R
(uv′ + au′v′′) dx,

G(u, v) =

∫
R
u(v′)2dx.

As done by J. Quintero and A. Montes in [29] in the 2-dimensional case, existence
of solitary waves for the Boussinesq system (1.1) for 0 < |ω| < min

{
1, ba ,

d
a

}
can be

established by using the Concentration-Compactness Principle. The strategy is to
consider the following minimization problem

Iω := inf {Iω(u, v) : (u, v) ∈ X with G(u, v) = 1} , (4.2)

and then the existence of solitary wave solutions is consequence of the following
results, which we will use throughout this work (see Lemma 3.1, Theorem 3.1 and
Theorem 3.3 in [29]). Hereafter, we assume wave speed ω satisfying 0 < |ω| <
min

(
1, ba ,

d
a

)
.

Lemma 4.1. The functional Iω is nonnegative and there are positive constants
M1(a, b, d, ω) and M2(a, b, d, ω) such that

M1∥(u, v)∥2X ≤ Iω(u, v) ≤M2∥(u, v)∥2X . (4.3)

Furthermore, Iω is finite and positive.

Theorem 4.1. If (u0, v0) is a minimizer for problem (4.2), then (u, v) = −k(u0, v0)
is a nontrivial solution of (4.1) for k = 2

3Iω.

Theorem 4.2. If (um, vm) is a minimizing sequence for (4.2), then there is a
subsequence (which we denote the same), a sequence of points (ym) ∈ R, and a
minimizer (u0, v0) ∈ X of (4.2), such that the translated functions

(ũm, ṽm) = (um(·+ ym), vm(·+ ym))

converge to (u0, v0) strongly in X.
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We point out that J. Quintero and A. Montes in [30] using the Mountain Pass
Lemma established the existence of solitary waves of wave speed ω with 0 < |ω| <
min

(
1, ba ,

d
a

)
for the Boussinesq system (1.1).

On the other side, a very interesting fact is that can be established a link between
solitary waves for the Boussinesq system (1.1) and the KdV equation. As done in
the 2-dimensional case by J. Quintero and A. Montes for example in [24,29] can be
proved that a renormalized family of solitons of the Boussinesq system converges
to a nontrivial soliton for a KdV equation, assuming ω is close to 1− ot ε → 0+,
and balancing the effects of nonlinearity and dispersion. More precisely, set σ > 1

3 ,
ε > 0, ω2 = 1− ε and for a given couple (u, v) ∈ X define the functions z and w by

u(x) = ε
1
6 z(y), v(x) = ε−

1
3w(y), y = ε

1
2x. (4.4)

Then a simple calculation shows that

I1(u, v) = ε
5
6 I1,ϵ(z, w), I2,ω(u, v) = ε

5
6 I2,ϵ(z, w),

and also that
Iω(ϵ)(u, v) = ε

5
6 Iϵ(z, w), G(u, v) = Gϵ(z, w),

where I1, I2,ϵ, Iϵ and Gϵ are given by

Iϵ(z, w) = I1,ϵ(z, w) + I2,ϵ(z, w),

I1,ϵ(z, w) =

∫
R

(
ε−1z2 + d(z′)2 + ε−1(w′)2 + b(w′′)2

)
dy,

I2,ϵ(z, w) = −2ω

∫
R
(ε−1zw′ + az′w′′) dy,

Gϵ(z, w) =

∫
R
z(w′)2 dy.

Note that if 0 < |ω| < min
(
1, ba ,

d
a

)
, then Iϵ(z, w) > 0 and there is a family

(uω, vω)ω such that
Iω(uω, vω) = Iω, G(uω, vω) = 1.

Thus, if we denote

Iϵ := inf {Iϵ(z, w) : (z, w) ∈ X with Gϵ(z, w) = 1} ,

there is a correspondent family (zϵ, wϵ)ϵ such that

Iϵ = Iϵ(zϵ, wϵ), Gϵ(zϵ, wϵ) = 1, Iω = ε
5
6 Iϵ .

We also have that (zϵ, wϵ) is a solution, in the sense of distributions, of the system
bεw′′′′ − w

′′
+ ω (z′ − aεz′′′) +

2

3
ε

1
6 Iω (zw′ )

′
= 0,

z − dεz′′ − ω (w′ − aεw′′′)− 1

3
ε

1
6 Iω (w′)

2
= 0.

(4.5)

We are interested in relating the family (zϵ, wϵ)ϵ with the solitons for the KdV
equation, as ε→ 0. To do this, we define in V2 the functionals

Jϵ(w) = Iϵ(ωwx, w), Kϵ(w) = G(ωwx, w). (4.6)
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We also define the number J ϵ

J ϵ = inf{Jϵ(w) : w ∈ Z, Kϵ(w) = 1},

where following the same approach in [24, 29], we set the Banach space Z as the
completion of C∞

0 (R) with respect to the norm given by

||w||2Z =

∫
R
(w2

x + w2
xx) dx,

and obtain the following result.

Lemma 4.2. Let σ > 1
3 and 0 < |ω| < min

(
1, ba ,

d
a

)
. Then we have that

lim
ϵ→0+

Iϵ = lim
ϵ→0+

Iϵ(zϵ, wϵ) = J 0 > 0, lim
ϵ→0+

Kϵ(wϵ) = lim
ϵ→0+

G(zϵ, wϵ) = 1,

where

J 0 = inf{J0(w) : w ∈ Z, G0(w) = 1},

J0(w) =

∫
R

(
w2
x +

(
σ − 1

3

)
w2
xx

)
dx,

G0(w) =

∫
R
w3
xdx.

Now, we study the main result in this section. We see that a translate subse-
quence of the renormalized sequence (zϵ, wϵ) converges weakly to a couple (z0, w0)
that satisfies the system (4.1), and so z0 = ∂xw0 is a weak solution of a KdV type
equation. Before we go further, we have the following characterization of solitary
waves for the KdV equation.

Theorem 4.3. Let σ > 1
3 and let (wm)m be a minimizing sequence for J 0, then

there exist a subsequence (denoted the same) and a nonzero distribution w0 ∈ Z
such that

J0(w0) = J 0,

and there exists a sequence of points (yn)m ⊂ R such that wm( ·+ ym) → w0 in Z.
Moreover, w0 is a distributional solution of the equation

wxx −
(
σ − 1

3

)
wxxxx + 2J 0wxwxx = 0, (4.7)

and so w =
(
2
3J

0
)
∂xw0 is a nontrivial solitary wave solution in the sense of

distributions for the KdV type equation

∂xw −
(
σ − 1

3

)
∂3xw + 3w∂xw = 0. (4.8)

Then we have the coming result.

Lemma 4.3. Let σ > 1
3 and 0 < |ω| < min

(
1, ba ,

d
a

)
. For any sequence εj → 0+

there is a translate subsequence (denoted the same) of (zϵj , wϵj )j and there exist
nontrivial distributions w0 ∈ Z and z0 ∈ H1 such that as j → ∞,

wϵj → w0 in Z, zϵj − ∂xw
ϵj → 0, zϵj → z0 in H1.
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Moreover, (z0, w0) is a nontrivial weak solution of the system
z = ∂xw

∂xxw −
(
σ − 1

3

)
∂xxxxw + 3wx∂xxw = 0. (4.9)

In other words, z0 = ∂xw0 ∈ H1, with ∂xw0 being a solution of the solitary wave
equation for a KdV equation in the sense of distributions.

Proof. Let (εj)j be a sequence of positive number such that εj → 0+. We note
that

{(
G0 (wϵj )

)− 1
3 wϵj

}
j

is a minimizing sequence for J 0 and also that

G0 (wϵj ) → 1.

Using this fact and Theorem 4.3, we have that there exist a translate sequence of
(zϵj , wϵj )j (denote the same) and there exist a nonzero distribution w0 ∈ Z such
that wϵj → w0 in Z and w0 is a solution of the equation (4.7). Then there exist an
on trivial distribution z0 ∈ H1 such that zϵj → z0 H

1. Thus, we obtain also that
z0 = ∂w0. Now, we note that the solitary wave system (4.5) can be rewritten, after
taking the x-derivative and multiplying for ωj the second equation, as
ε−1
j (ωj(z

ϵj )′ − (wϵj )′′) + (b(wϵj )′′′′ − aωj(z
ϵj )′′′)

+
2

3
Iϵj ((zϵj )(wϵj )′′ + (zϵj )′(wϵj )′ ) = 0,

ε−1
j (ωj(z

ϵj )′−ω2
j (w

ϵj )′′)+ωj(aωj(w
ϵj )′′′′−d(zϵj )′′′)− 2

3
ωjIϵj ((wϵj )′(wϵj )′′)=0.

Using ω2
j = 1− εj and by subtracting the second from first equation, we get that

− (wϵj )′′ − ωj(aωj(w
ϵj )′′′′ − d(zϵj )′′′) +

2

3
ωjIϵj ((wϵj )′(wϵj )′′)

=− (b(wϵj )′′′′ − aωj(z
ϵj )′′′)− 2

3
Iϵj ((zϵj )(wϵj )′′ + (zϵj )′(wϵj )′ ) . (4.10)

Then, using that Iϵj → I0, wϵj → w0 in Z, zϵj → z0 in H1, and z0 = ∂w0, for any
test function ψ ∈ C∞

0 (R), we have that

lim
j→∞

〈
2ωj
3

Iϵj ((wϵjj )′(w
ϵj
j )′′) +

2

3
Iϵj ((zϵjj )(w

ϵj
j )′)′, ψ

〉
= 2I0⟨w′

0w
′′
0 , ψ⟩.

Thus, we see that
lim
j→∞

〈
−(w

ϵj
j )′′ + (b− aω2

j )(w
ϵj )′′′′ + ωj(d− a)(zϵj )′′′, ψ

〉
=

〈
−w′′

0 +

(
σ − 1

3

)
w′′′′

0 , ψ

〉
,

since 2a − (b + d) = 1
3 − σ. Therefore, from (4.10) we concluded that w0 is a

nontrivial solution of the equation

wxx −
(
σ − 1

3

)
wxxxx + 2J 0wxwxx = 0.

In particular, the pair (z0, w0) = −
(
2
3J

0
)
(z0, w0) is a nontrivial solution of the

system (4.9). In other words, z0 = ∂xw
0 is a solution for of the KdV solitary wave

equation (4.8) in distributional sense.
We will use the Lemma 4.2 and Lemma 4.3 in our proof of stability.
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5. Ground state solutions and convexity of d1

Recall that the solitary waves for the Boussinesq system (1.1) are characterized as
critical points of the functional defined on X = H1 × V2 by

Jω(u, v) = Iω(u, v) +G(u, v).

In particular, if
Kω(u, v) = ⟨J ′

ω(u, v), (u, v)⟩

we have that

Kω(u, v) = 2Iω(u, v) + 3G(u, v) = 2Jω(u, v) +G(u, v).

Now, define the set

Mω = {(u, v) ∈ X : Kω(u, v) = 0, (u, v) ̸= 0} .

Note that Mω is just the “artificial constrain” for minimizing the functional Jω on
X. We will see that the analysis of the orbital stability of ground states solutions
depends upon some properties of the function d defined by

d(ω) = inf{Jω(u, v) : (u, v) ∈ Mω}.

A ground state solution is a solitary wave which minimizes the action functional Jω
among all the nonzero solutions of (4.1). Moreover, the set of ground state solutions

Gω = {(u, v) ∈ Mω : d(ω) = Jω(u, v)}

can be characterized as

Gω =

{
(u, v) ∈ X \ {0} : d(ω) =

1

3
Iω(u, v) = −1

2
G(u, v)

}
⊂ Mω.

In the next lemmas we present important properties of d(ω).

Lemma 5.1. Let 0 < |ω| < min
(
1, ba ,

d
a

)
and σ > 1

3 . Then

1. d(ω) exist and is positive.
2. d(ω) = inf

{
1
3Iω(u, v) : Kω(u, v) ≤ 0, (u, v) ̸= 0

}
.

Proof. 1. Let (u, v) ∈ Mω, then we have that

Jω(u, v) =
1

3
Iω(u, v) ≥ 0.

This implies that d(ω) exists. Now, Using the Young inequality and that the em-
bedding H1(R) ↪→ Lq(R) is continuous for q ≥ 2, we see that there is a constant
C > 0 such that

|G(u, v)| ≤ C
(
∥u∥3H1 + ∥v′∥3H1

)
.

Thus, we see that

Jω(u, v) =
1

3
Iω(u, v) = −1

2
G(u, v) ≤ C∥(u, v)∥3X ≤ C (Iω(u, v))

3
2 .



1494 J. Quintero, A. Montes & R. Córdoba

Then follows that 1
3Iω(u, v) ≥ C, and this implies that d(ω) ≥ C > 0.

2. For (u, v) ∈ X such that Kω(u, v) ≤ 0 we have that G(u, v) < 0. Define
α ∈ [0, 1) by

α = −2Iω(u, v)

3G(u, v)
.

Then a direct computation shows that Kω(α(u, v)) = 0. In other words, α(u, v) ∈
Mω. So that,

d(ω) ≤ Jω(α(u, v)) =
α2

3
Iω(u, v) ≤

1

3
Iω(u, v).

Hence, we obtain that

d(ω) ≤ inf
{1

3
Iω(u, v) : Kω(u, v) ≤ 0

}
.

If (u, v) ∈ Mω, we see that Jω(u, v) = 1
3Iω(u, v) and also that

inf
{1

3
Iω(u, v) : Kω(u, v) ≤ 0, (u, v) ̸= 0

}
≤ inf

{
Jω(u, v) : (u, v) ∈ Mω

}
= d(ω),

meaning that the statement 2 of lemma follows.

Lemma 5.2. Let 0 < |ω| < min
(
1, ba ,

d
a

)
and σ > 1

3 . Then

1. If (um, vm) is a minimizing sequence of d(ω), then there is a subsequence, which
we denote the same, a sequence of points (ym) ∈ R, and (uω, vω) ∈ X \ {0}
such that the translated functions

(um(·+ ym), vm(·+ ym))

converge to (uω, vω) strongly in X, (uω, vω) ∈ Mω, d(ω) = Jω(u
ω, vω) and

(uω, vω) is a solution of (4.1). Moreover,

d(ω) =
4

27
I3
ω, (5.1)

where Iω = inf {Iω(u, v) : G(u, v) = 1, (u, v) ∈ X}.
2. Let (um, vm) be a sequence in X such that

1

3
Iω(um, vm) → d(ω) and Jω(um, vm) → d1 ≤ d(ω).

Then there exist a subsequence of (um, vm) which denote the same, a sequence
(ym) ∈ R2 and (uω, vω) ∈ Mω such that the translated functions

(um(·+ ym), vm(·+ yk))

converge to (uω, vω) strongly in X and d1 = d(ω) = 1
3Iω(u

ω, vω).

Proof. The first part of this result is consequence of the Theorems (4.1)-(4.2) and
the following argument. Let (u, v) ∈ X \ {0} be such that Kω(u, v) = 0, then

Iω(u, v) = −3

2
G(u, v) =

3

2
|G(u, v)| = 3Jω(u, v).
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Consider the couple
(w, z) =

1

G
1
3 (u, v)

(u, v).

Then G(w, z) = 1. Thus,

Iω ≤ Iω(w, z) =
1

G
2
3 (u, v)

Iω(u, v) =

(
3

2

) 2
3

I
1
3
ω (u, v) =

(
3

2

) 2
3 (

3Jω(u, v)
) 1

3

.

So that, we concluded
4

27
I3
ω ≤ d(ω).

Now, suppose that (u, v) ̸= 0 such that G(u, v) = 1. Take t such that

Kω(tu, tv) = 0.

In this case, 2Iω(u, v) + 3t = 0. Therefore

t2 =
4

9
I2ω(u, v).

Then we obtain,

d(ω) ≤ Jω(tu, tv) = t2 (Iω(u, v) + t) =
4

27
I3ω(u, v).

Thus, we have shown that
d(ω) ≤ 4

27
(Iω)3 .

This proves (5.1). Now, we show the second part. Since Kω = 2Iω + 3G, then we
see that

Jω(um, vm) =
1

3
(Iω(um, vm) +Kω(um, vm)) → d1 ≤ d(ω).

Then for m large enough we have that Kω(um, vm) ≤ 0. This fact implies that the
sequence (um, vm) is a minimizing sequence for d(ω). Then using the part 1 we
have that there exist a subsequence of (um, vm), which denote the same, a sequence
(ym) ∈ R and (uω, vω) ∈ Mω such that

(um(·+ ym), vm(·+ ym)) → (uω, vω) in X.

In particular Kω(u
ω, vω) = 0 and d1 = d(ω) = 1

3Iω(u
ω, vω).

Lemma 5.3. Let 0 < |ω| < min
(
1, ba ,

d
a

)
and σ > 3

8 . Then

1. If 0 < ω1 < ω2 < 1 and (u, v) ∈ Gω, then we have that d(ω) and I2,ω(u, v) are
uniformly bounded functions on [ω1, ω2].

2. If ω1 < ω2 and (uωi , vωi) ∈ Gωi , we have the following inequalities

d(ω1) ≤ d(ω2)−
(
ω2 − ω1

ω2

)
I2,ω2

(uω2 , vω2) + o(ω2 − ω1),

d(ω2) ≤ d(ω1) +

(
ω2 − ω1

ω1

)
I2,ω1

(uω1 , vω1) + o(ω2 − ω1).
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3. If 0 < ω1 < ω2 < 1, (uω1 , vω1) ∈ Gω1
and I2,ω1

(uω1 , vω1) ≤ 0, then

d(ω2) ≤ d(ω1) +
(ω2 − ω1)

3ω1
I2,ω1(u

ω1 , vω1).

In particular, d is a strictly decreasing function on (ω1, 1).

Proof. 1. Let ω1, ω2 be such that 0 < ω1 < ω2 < 1 and let (u, v) ∈ X be such
that G(u, v) ̸= 0. Define tω by

tω = −2

3

Iω(u, v)

G(u, v)
.

Then we have that Kω(tω(u, v)) = 0, Jω(tω(u, v)) =
t2ω
3 Iω(u, v) and there exist

C > 0 such that for all ω ∈ [ω1, ω2],

d(ω) ≤ Jω(tω(u, v)) =
4

27

I3ω(u, v)

G2(u, v)
≤ C

∥(u, v)∥6X
G2(u, v)

.

Now, let (w, z) ∈ Gω, then we see that 2Iω(w, z) + 3G(w, z) = 0. Moreover,

C1(ω1, ω2)∥(w, z)∥2X ≤ 2Iω(w, z) = 3|G(w, z)| ≤ C∥(w, z)∥3X .

Then we conclude that

C1(σ, ω1, ω2) ≤ ∥(w, z)∥X ≤ C2(ω1, ω2)

(
1

3
Iω(w, z)

) 1
2

.

Thus, we have shown that

d(ω) ≥
(
C1(ω1, ω2)

C2(ω1, ω2)

)2

.

Hence, if (u, v) ∈ Gω we obtain that Iω(u, v) and G(u, v) are uniformly bounded on
[ω1, ω2] since

d(ω) =
1

3
Iω(u, v) = −1

2
G(u, v),

which implies that I2,ω(u, v) is also uniformly bounded because Kω(u, v) = 0 and

I1(u, v) ∼= ∥(u, v)∥2X .

2. Let (w, z) be defined by (w, z) = t(uω2 , vω2). We want t such thatKω1
(w, z) =

0. Note that

Kω1(w, z) = 2t2Iω1(u
ω2 , vω2) + 3t3G(uω2 , vω2)

= t2
(
2Iω2

(uω2 , vω2)− 2(ω2 − ω1)

ω2
I2,ω2

(uω2 , vω2)

)
+ 3t3G(uω2 , vω2)

= t2
(
3tG(uω2 , vω2)− 3G(uω2 , vω2)− 2(ω2 − ω1)

ω2
I2,ω2

(uω2 , vω2

)
.

Thus, t has to be such that

tG(uω2 , vω2) = G(uω2 , vω2) +
2(ω2 − ω1)

3ω2
I2,ω2

(uω2 , vω2)
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or equivalently

t = 1 +
2(ω2 − ω1)

3ω2

(
I2,ω2

(uω2 , vω2)

G(uω2 , vω2)

)
= 1− (ω2 − ω1)

3ω2

(
I2,ω2

(uω2 , vω2)

d(ω2)

)
.

Then for this t, we conclude that Kω1(w, z) = 0. Now,

d(ω1) ≤ Jω1(w, z) = t2 (Iω1(u
ω2 , vω2) + tG(uω2 , vω2))

= t2
(
Iω2

(uω2 , vω2) +
ω1 − ω2

ω2
I2,ω2

(uω2 , vω2) + tG(uω2 , vω2)

)
= t2

(
d(ω2)−

ω2 − ω1

3ω2
I2,ω2

(uω2 , vω2)

)
.

But we have that

t2 =

(
1− (ω2 − ω1)

3ω2

(
I2,ω2

(uω2 , vω2)

d(ω2)

))2

= 1− 2(ω2 − ω1)

3ω2

(
I2,ω2(u

ω2 , vω2)

d(ω2)

)
+O

(
(ω2 − ω1)

2
)
.

Then we see that

t2
(
d(ω2)−

(ω2 − ω1)

3ω2
I2,ω2

(uω2 , vω2)

)
=d(ω2)−

(ω2 − ω1)

ω2
I2,ω2(u

ω2 , vω2) +O
(
(ω2 − ω1)

2
)
,

which implies the desired result,

d(ω1) ≤ d(ω2)−
(
ω2 − ω1

ω2

)
I2,ω2

(uω2 , vω2) + o(ω2 − ω1).

Now, let (w, z) be defined by (w, z) = t(uω1 , vω1). As before, we want t such that
Kω2

(w, z) = 0. In this case,

t = 1− 2(ω2 − ω1)

3ω1

(
I2,ω1

(uω1 , vω1)

G(uω1 , vω1)

)
= 1 +

(ω2 − ω1)

3ω1

(
I2,ω1

(uω1 , vω1)

d(ω1)

)
.

Since Kω1
(w, z) = 0, we see that

d(ω2) ≤ Jω2(w, z) = t2
(
d(ω1) +

ω2 − ω1

3ω1
I2,ω1(u

ω1 , vω1)

)
.

Then, as above, we have that

t2 = 1 +
2(ω2 − ω1)

3ω1

(
I2,ω1(u

ω1 , vω1)

d(ω1)

)
+O

(
(ω2 − ω1)

2
)
.

Using this we conclude that

t2
(
d(ω1) +

(ω2 − ω1)

3ω1
I2,ω1

(uω1 , vω1)

)
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=d(ω1) +
(ω2 − ω1)

ω1
I2,ω1

(uω1 , vω1) +O
(
(ω2 − ω1)

2
)
,

which implies the other inequality.
3. Assume that Kω1

(uω1 , vω1) = 0. Hence we see that G(uω1 , vω1) ≤ 0. Now, if
I2,ω1(u

ω1 , vω1) ≤ 0 then for ω1 < ω2 we have that

Kω2
(uω1 , vω1) = Kω1

(uω1 , vω1) +
2(ω2 − ω1)

ω1
I2,ω1

(uω1 , vω1) ≤ 0.

Thus, we obtain that

d(ω2) ≤
1

3
Iω2

(uω1 , vω1) =
1

3

(
Iω1

(uω1 , vω1) +
ω2 − ω1

ω1
I2,ω1

(uω1 , vω1)

)
≤ d(ω1) +

ω2 − ω1

3ω1
I2,ω1

(uω1 , vω1).

This also implies that d(ω2) < d(ω1), provided that 0 < ω1 < ω2 < 1.

Now, we will prove that the function d is strictly convex on (ω0, 1) with ω0 > 0
near 1. To do this, we compute d′ and analyze the behavior of d and d′ near 1−.
We have the following results.

Lemma 5.4. If (uω, vω) ∈ Gω, then we have that

d′(ω) =
I2,ω(u

ω, vω)

ω
= Q(uω, vω). (5.2)

Proof. Note that d′ can be computed by taking appropriate limits in part 2 of
Lemma 5.3.

Theorem 5.1. Let 0 < |ω| < min
(
1, ba ,

d
a

)
, σ > 1

3 , and (uω, vω) ∈ Gω. Then we
have that

lim
ω→1−

d(ω) = 0 and I2,ω(u
ω, vω) < 0 for ω near 1−.

Proof. From Lemma 4.2 and (5.1) we obtain the first part. Now, using the same
notation as Section 5 we have that

εI2,ϵ(zϵ, wϵ) = −2ω

∫
R

(
zϵ (wϵ)

′
+ aε (zϵ)

′
(wϵ)

′′
)
dy.

Then using Lemma 4.3 we see that

lim
ϵ→0+

εI2,ϵ(zϵ, wϵ) < 0,

meaning for ε near 0+ that I2,ϵ(zϵ, wϵ) < 0, which implies for ω near 1−,

I2,ω(u
ω, vω) < 0.

Theorem 5.2. Let 0 < |ω| < min
(
1, ba ,

d
a

)
and σ > 1

3 . Then there exist 0 <
ω0 < 1 enough near 1 such that d is a decreasing function on (ω0, 1). Furthermore,
limω→1− d

′(ω) = 0.
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Proof. From Theorem 5.1 we have that d is a decreasing function for ω near 1−

and we also have that limω→1− ∥(uω, vω)∥X = 0 for any (uω, vω) ∈ X such that
d(ω) = 1

3Iω(u
ω, vω), since

∥(uω, vω)∥2X ≤ C(σ)Iω(u
ω, vω) = C(σ)d(ω).

Thus, from (5.2) and definition of I2,ω we conclude that

|d′(ω)|≤C
(
∥uω∥L2(R2)∥(vω)′∥L2(R2)+∥(uω)′∥L2(R2)∥(vω)′′∥L2(R2)

)
≤C∥(uω, vω)∥2X .

Therefore
lim
ω→1−

d′(ω) = 0.

From previous results we have the following Corollary.

Corollary 5.1. Let σ > 1
3 . Then d is strictly convex for ω near 1−.

6. Orbital stability of the solitary waves
We first consider the modulated system associated with the system (4.1) on X. In
other words, we assume that the solution (η(t),Φ(t)) of the abad-Boussinesq system
(1.1) has the form

η(t, x) = u(t, x− ωt), Φ(t, x) = v(t, x− ωt).

Then we see that (u(t), v(t)) satisfies the modulated system
(
I − a∂2x

)
ut − ω

(
I − a∂2x

)
ux + ∂2xv − b∂4xv + ∂x (u∂xv) = 0,(

I − a∂2x
)
vt − ω

(
I − a∂2x

)
vx + u− d∂2xu+

1

2
(∂xv)

2
= 0.

(6.1)

We note that the modulated Hamiltonian for this system has the form

Hω(u, v) =
1

2
Jω(u, v) = H(u, v) +

1

2
I2,ω(u, v).

We also observe that Hω is conserved in time on solutions since(
I − a∂2x

)
ut = ∂xHv,ω(w, z) = ω

(
I − a∂2x

)
ux + b∂2xv − ∂2xv − ∂x (u∂xv) ,

−
(
I − a∂2x

)
vt = ∂xHu,ω(w, z) = −ω

(
I − a∂2x

)
vx + u− d∂2xu+

1

2
(∂xv)

2,

where
∂xHω(u, v) =

(
∂xHu,ω(u, v), ∂xHv,ω(u, v)

)
.

Now we introduce the regions Ri
ω, i = 1, 2, in the energy space X by

R1
ω =

{
(w, z) ∈ X : Hω(w, z) <

1

2
d(ω),

1

3
Iω(w, z) < d(ω)

}
,

R2
ω =

{
(w, z) ∈ X : Hω(w, z) <

1

2
d(ω),

1

3
Iω(w, z) > d(ω)

}
,

and have the following result.
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Lemma 6.1. R1
ω,R2

ω are invariant regions under the flow for the modulated system
(6.1).

Proof. Let (u0, v0) ∈ R1
ω. Suppose that (w(t), z(t)) satisfies the modulated sys-

tem (6.1) with initial condition

w(0) = u0, z(0) = v0.

By characterization of d(ω) and definition of R1
ω, we must have that

Kω(u0, v0) > 0.

In fact, suppose that Kω(u0, v0) ≤ 0. Then we see that d(ω) ≤ 1
3Iω(u0, v0). More-

over, if (w(t), z(t)) ∈ R1
ω for some t > 0, we have that Kω(w(t), z(t)) > 0. Now,

suppose that there exists a minimum t0 such that Kω(w(t), z(t)) > 0 for t ∈ [0, t0)
and Kω(w(t0), z(t0)) = 0. We note by the characterization of d(ω) that

d(ω) ≤ 1

3
Iω(w(t0), z(t0))

≤ lim inf
t→t−0

(
1

3
Iω(w(t), z(t)) +

1

3
Kω(w(t), z(t))

)
≤ lim inf

t→t−0

Jω(w(t), z(t)) ≤ 2 lim inf
t→t−0

Hω(w(t), z(t))

≤ 2Hω(u0, v0) < d(ω).

On the other hand,

d(ω) > 2Hω(w(t), z(t)) = 2Hω(u0, v0) = Jω(u0, v0)

=
1

3
Iω(u0, v0) +

1

3
Kω(u0, v0) >

1

3
Iω(u0, v0),

which shows that R1
ω is invariant under the flow for the modulated system (6.1). In

a similar fashion we have that R2
ω is also invariant under the flow for the modulated

system (6.1).
The following lemma will be used to obtain stability with respect to the ground

state solutions. We will use the notation Uω = (uω, vω) for “ground state solution”,
that is, d(ω) = Jω(U

ω).

Lemma 6.2. Let σ > 1
3 and 0 < ω0 < 1 be near 1. If U(t) = (η(t),Φ(t)) is a global

solution of abad-Boussinesq system (1.1) with initial condition U(0) = U0 ∈ X,
then for every M, there is δ(M) such that if

∥U0 − Uω0∥X < δ(M).

Then we have

d

(
ω0 +

1

M

)
≤ 1

3
Iω0(U(t)) ≤ d

(
ω0 −

1

M

)
, for all t ∈ R.

Proof. Let M > 0 be fixed and define ω1 = ω0 − 1
M and ω2 = ω0 +

1
M . Now, let

(zi(t), wi(t)) be defined by the formulas

η(t, x) = ui(t, x− ωit), Φ(t, x) = vi(t, x− ωit), i = 1, 2.
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Then the couple (ui(t), vi(t)) satisfies the modulated system (6.1) with initial con-
dition

(ui(0), vi(0)) = U(0).

For this solution we have that the modulated Hamiltonian is conserved in time, in
other words

Hωi(U(t)) = Hωi(U(0)).

Now, using the hypothesis we conclude for small δ that

Iωi
(Uω0) = Iωi

(U(0)) +O(δ).

Since d is a strictly decreasing function such that d(ω0) =
1
3Iω0

(Uω0), we can choose
δ small enough in such a way that

d(ω2) <
1

3
Iω0

(U(0)) < d(ω1).

We also have that

Jωi(U(0)) = Jωi(U
ω0) +O(δ)

= Jω0(U
ω0) +

ωi − ω0

ω0
I2,ω0(U

ω0) +O(δ)

= d(ω0) + (ωi − ω0)d
′(ω0) +O(δ).

Using that d is twice differentiable, we have for some ω̃ between ωi and ω0 that

d(ωi) = d(ω0) + (ωi − ω0)d
′(ω0) +

1

2
(ωi − ω0)

2d′′(ω0),

where we are using Taylor expansion on ω0. So, replacing this in previous inequality,
we conclude that

Jωi
(U(0)) = d(ωi)−

1

2
(ωi − ω0)

2d′′(ω0) +O(δ).

So, choosing δ small enough such that

−1

2
(ωi − ω0)

2d′′(ω0) +O(δ) < 0,

we conclude that
2Hωi (U(0)) = Jωi (U(0)) < d(ωi). (6.2)

Then, using Lemma 6.1, we have for all t ∈ R that

Hωi (U(t)) <
1

2
d(ωi), d

(
ω0 +

1

M

)
≤ 1

3
Iω0 (U(t)) ≤ d

(
ω0 −

1

M

)
.

Finally we establish the main result in this work.

Theorem 6.1 (Orbital stability). Let σ > 1
3 ; b

a ,
d
a > 1, and 0 < ω0 < 1 be near 1.

Then the solitary wave solutions Uω0 (ground state solitary wave solutions) of the
abad-Boussinesq system (1.1) are stable in the following sense: Given ε > 0, there
exist δ(ε) > 0 such that if U0 ∈ X satisfies

∥U0 − Uω0∥X < δ(ε),
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then there exist a unique solution U(t) of the Cauchy problem associated to Boussi-
nesq system (1.1) with initial condition U0 such that

inf
V ∈Gω0

∥U(t)− V ∥X < ε, for all t ∈ R.

Proof. We will argue by contradiction. Suppose that there exist a positive number
ε0, and sequences (tk) ⊂ R and (Uk0 ) ⊂ X, such that

lim
k→∞

∥Uk0 − Uω0∥X = 0, inf
V ∈Gω0

∥Uk(tk)− V ∥X > ε0,

where Uk denotes the unique solution of system (1.1) with initial condition Uk(0) =
Uk0 . Now, from the Lemma 6.2 and the assumption, given m > 0 we have the
existence of δ(m) and a subsequence km such that

∥Ukm0 − Uω0∥X < δ(m)

and
d
(
ω0 +

1

km

)
≤ 1

3
Iω0

(
Ukm(tkm)

)
≤ d

(
ω0 −

1

km

)
,

meaning that there exist a subsequence of (Uk(tk)), which we denote the same, such
that

d
(
ω0 +

1

k

)
≤ 1

3
Iω0

(
Uk(tk)

)
≤ d

(
ω0 −

1

k

)
.

In particular, we have that 1
3Iω0

(
Uk(tk)

)
−→ d(ω0) as k → ∞. Now, we consider

ω2 = ω0 +
1
k and V k,2(t) defined as Uk(t, x) = V k,2(t, x− ω2t). Then as in proof of

previous lemma (see (6.2)), we obtain that

2Hω2

(
Uk(tk)

)
= Jω2

(
Uk(tk)

)
< d(ω2) < d(ω0) < d

(
ω0 −

1

k

)
.

On the other hand,

Jω2

(
Uk(tk)

)
= Jω0

(
Uk(tk)

)
+

(
ω2 − ω0

ω0

)
I2,ω0

(
Uk(tk)

)
= Jω0

(
Uk(tk)

)
+

(
1

kω0

)
I2,ω0

(
Uk(tk)

)
.

But note that

lim
k→∞

(
1

kω0

) ∣∣I2,ω0

(
Uk(tk)

)∣∣ ≤ lim
k→∞

C

k
∥Uk(tk)∥2X = 0.

Using this fact, we conclude that

Jω0

(
Uk(tk)

)
−→ d1 ≤ d(ω0).

Then by Lemma 5.2, there exist Uω0
∈ Gω0

such that

Uk(tk) −→ Uω0 in X,
1

3
Iω0

(
Uk(tk)

)
−→ d(ω0) = d1, k → ∞,

and also that Jω0

(
Uk(tk)

)
−→ d(ω0). But this contradicts the assumption of

instability
inf

V ∈Gω0

∥Uk(tk)− V ∥X > ε0.
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