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QUASI-PERIODIC SOLUTIONS FOR 1D
NONLINEAR WAVE EQUATION*

Meina Gaolt

Abstract In this paper, one-dimensional (1D) nonlinear wave equation
Uty — Uga + MU+ =0

on the finite z-interval [0, 7] with Dirichlet boundary conditions is considered.
It is proved that there are many 3-dimensional elliptic invariant tori, and thus
quasi-periodic solutions for the above equation. This is an extension of the
previous work [11] by the same author, where many 2-dimensional elliptic
invariant tori for the above equation are obtained. The proof is based on
infinite-dimensional KAM theory and partial Birkhoff normal form.
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1. Introduction and main results
In this paper, we are going to investigate the nonlinear wave equation
Upt — Ugy +mu+u’ =0, (t,z) € R x [0,7] (1.1)
under Dirichlt boundary conditions
u(t,0) =0 =u(t,7),

where the parameter m is real and positive, sometimes referred to as the “mass”. We
prove that the above equation admits many small amplitude quasi-periodic solutions
corresponding to 3-dimensional invariant tori of an associated infinite dimensional
dynamical systems. This result extends the existence of 2-dimensional invariant
tori for the same equation in [11]. Also see the existence of b > 2 and 2-dimensional
invariant tori for the quintic nonlinear wave equation in [12] and [13] respectively.
We study (1.1) as an infinite-dimensional Hamiltonian system on the phase space
P = H}([0,7]) x L*([0,7]) with coordinates u and v = uy, where Hg ([0, 7]) and
L?([0,]) are the usual Sobolev spaces. The Hamiltonian for (1.1) is then

1 1 1 ("
H=—(v,v) + = (Au,u) + f/ ubde, (1.2)
2 2 8/
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where A = —d?/dz? + m and (-,-) denotes the usual scalar product in L?. The
Hamiltonian equations of motions are

_OH __87H__ 7
_E_% v = 9 Au—u'. (13)

Ut

The quasi-periodic solutions of (1.1) to be constructed are of small amplitude.

Thus, in first approximation the high order term u” may be considered as a small

perturbation of the linear equation us; — g, + mu = 0. The latter is of course well
understood and has a plenty of quasi-periodic solutions. To be more precise, let

2
(bj(m):q/;sinja:, Aj=+Vj2+m, j=12,--

be the basic modes and frequencies of the linear system u — gz, + mu = 0 with
Dirichlet boundary conditions. Then every solution is the superposition of their
harmonic oscillations and of the form

u(t,z) = Z%(t)%(f), q;(t) = I cos(Ajt + ¢9).

Their combined motions are periodic, quasi-periodic or almost-periodic, respec-
tively, depending on whether one, finitely many or infinitely many modes are ex-
cited. In particular, for every choice

J={n1<n2<n3}CN+

of 3-modes there is an invariant 6-dimensional linear subspace E; that is foliated
into rotational tori with frequencies Ay, Any; Ang -

Ey={(u,0) = (q1¢n, + @20ns + G3ny» D100, + P20, + P3dny)} = |J To(D),
Iep?

where P3 = {I ¢ R®: [; > 0,1 = 1,2, 3} is the positive quadrant in R? and
To(I) = {(uwv) : qf + X.7pf =1, 1=1,2,3},

using the above representation of u and v. Upon restoring the nonlinearity v7, E
with their quasi-periodic solutions will not persist in their entirety due to the modes
and the strong perturbing effect of u” for large amplitudes. However, there does
persist a Cantor subfamily of rotational 3-torus which are only slightly deformed.
More exactly, we have the following theorem:

Theorem 1.1. Considering 1D nonlinear wave equation (1.1), assume 0 < m < %
and the index set J = {n1 < na < n3z} satisfies
3
ma > L 1=1,2. (1.4)
m

Then there is a set C* in P3 with positive Lebesque measure, a family of 3-tori

Tl = () c Ey

Iec*
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over C*, a Lipschitz continuous embedding
O :T;[C*] — P,

which is a higher order perturbation of the inclusion map ®¢ : Ey — P restricted
to T7[C*], such that the restriction of ® to each T;(I) in the family is an embedding
of a rotational invariant 3-torus for the nonlinear wave equation (1.1).

We prove the above theorem by KAM theory. Historically, KAM theory for
partial differential equations was originated by Kuksin [14-16] and Wayne [20].
In order to use KAM theory, some parameters are needed. For nonlinear wave
equation, one way of introducing parameters is to consider parameterized potentials,
see [1,8,9,16,20] for examples. However, for a prescribed potential, owing to the
absence of exterior parameters, one needs to find out some suitable Birkhoff normal
form, and then extract parameters by amplitude-frequency modulation. In this
aspect, [17] is the pioneer work, where nonlinear Schrédinger equation with constant
potential is studied by Kuksin and Pdéschel, and Birkhoff normal form of order four
is used to extract parameters. For wave equation with cubic nonlinearity u3, see
Poschel [18] for m > 0, Yuan [22] for —1 < m < 0, Yuan [23] for the completely
resonant case m = 0 and Yuan [24] for a prescribed non-constant potential. For
wave equation with quintic nonlinearity, 2-dimensional and b-dimensional invariant
tori are obtained in [12] and [13] respectively. For wave equation with higher order
nonlinearity, only 2-dimensional invariant tori is obtained in [11]. For derivative
nonlinear wave equations, see [3,4] by Berti, Biasco and Procesi. See for example
[2,5-7,10] for the recent results for wave equations. In the following we lay out an
outline of the present paper, and meanwhile point out the main difficulties compared
with [11-13].

In Section 2, the Hamiltonian is written in infinitely many coordinates, and then
put into a partial Birkhoff normal form. In order to obtain the partial Birkhoff
normal form, we have to estimate the lower bound of the divisor

|>‘j1 +"'Jr)‘js|

for (j1,---,Js) with at most 2 components not in J. Here the index set J contains
3 indices instead of 2 indices in [11], while in [12] and [13], we need to estimate the
lower bound of the divisor

|)\j1 +"'+)‘j6|

for (41, -+ ,j6) with at most 2 components not in some index set. This is the key
difficulty. We solve it by choosing suitable index set J (see (1.4)) and exploring the
properties of the function f(t) = vt? +m —t (see Lemma 4.1-4.3 in Section 4).

In Section 3, we prove Theorem 1.1 by applying the KAM theorem in Appendix.
To this end, we need to check the assumptions of the KAM theorem. One difficulty
is to check the nondegeneracy condition |w™! |£(H) < Lin (5.1). We observe that the
Lipschitz semi-norm of w™! can be controlled by 3||(g—“g)’1||g1_>51, where |- |1 is the
¢t-norm for a vector and || - |[;1_,1 is the operator norm from ¢! to ¢! for a matrix.
However, due to the fact that the tangential frequency w(&) is a vector in R? instead
of in R? in [11], we can not formulate (g—‘g’)_l. Another difficulty is to estimate the

thrown measure. In order to check the assumption (5.6) in the KAM theorem, we
have to estimate the measure of ¢ € © for (k,w(¢))+Q; () —2;(¢) small. The main
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idea is to prove either (k,w(¢)) + €;(¢) — 2;(¢) or 8(3 ((k w(¢)) + Q4 (¢) — QJ(C))

is larger than some positive constant.

In Section 4, some technical lemmas are given. In Appendix, we copy a KAM
theorem from [11], [12] and [13], which is a combination of Theorem A and Theorem
D in [19] with some modifications.

2. The Hamiltonian and partial Birkhoff normal form

To rewrite (1.2) as a Hamiltonian in infinitely many coordinates we make the ansatz

v=> /Apid;.

Jj=1

u—Sq—Z\F

j>1

The coordinates are taken from some Hilbert space £%° of all real valued sequences
w = (wy,ws, - ) with finite norm

lwl2.0 = lwj[?52 e

Jjz1

Below we will assume that ¢ > 0 and s > % We then obtain the Hamiltonian

1 1 ("
H:A+G:§ZAj(p?+q?)+§/ (Sq)*dx (2.1)
0

j=1
with equations of motions

oH . o0H oG

= —— = \ipi, Y
a; p; iPjs  DPj 4, 745 dq;

(2.2)

These are the Hamiltonian equations of motions with respect to the standard sym-
plectic structure Zj dgj ANdpj on £%° x £*°. The same as Lemma 3 in [18], we know
the gradient Gy is real analytic as a map from some neighborhood of the origin in
(%% into (5t with
7
Gillaess = OClall ) (23

Thus the associated Hamiltonian vector field

Z(aG 0 0G 0

X~ =
¢ Op; 0gq; 8q] Op;

)

defines a real analytic map from some neighborhood of the origin in £%% x £*% into
Zu,s—i—l X ga,s-‘rl.

Note that
1 /7 8 1
G(q) = g 0 (Sq) dx = g Z G]l g1 " Qs (24)

Js>1

with

1 ™
Gy = 7/ iy -+ biada.
J J /)\jl AJS 0 J J
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It is not difficult to verify that Gj,...;; = 0 unless j; & --- £ jg = 0 for some

combination of plus and minus signs. Thus, only a codimension one set of coefficients

is actually different from zero, and the sum extends only over j; +---+ jg = 0. For

simplicity, we denote G = Giijjrri, Gn, = Gny - - -n;- In particular, we have
——

8

16
7T4>\i>\j>\k)\l
1

:m(S + 46;5 + 40k + 46i + 465 + 4051 + 40
v

™
Gijri = Giijjkku = / sin? iz sin? jx sin? kz sin? lzdx
0

= 20545k = 20i4k,5 — 2054k, — 200450 — 20i41,5 — 200456

= 20p440 — 20k41,5 — 20541, — 2051 k,0 — 20541, — 2041

+ Oitjtied T Oitjttk + Ojktii + Oiphtl,

+ Gitjott + Gith it + it jtk) (2.6)
by elementary calculation. In the rest of this section we transform the Hamiltonian
(2.1) into some partial Birkhoff normal form of order 14 so that it happens, in
a sufficiently small neighborhood of the origin, as a small perturbation of some

nonlinear integrable system.
For the rest of this paper we introduce complex coordinates

1 1
zj = —=(q; +1ip;),  Zj = —=(q; —ip;), j=1.
V2 V2

Inserting them into (2.1), we obtain a real analytic Hamiltonian

H=A+dG

1 [" zi + Z;
:Z)\j|zj|2+g/0 5 z/ﬁj%)%x

Jj=1 Jjz1

1 _ )
=Y Nl + 128 S Gz + 7)) (2 + Z) (2.7)

Jj=1 Ji,egs21

on the now complex Hilbert space £%° with symplectic structure iy i>1 dzj \dz;.
Real analytic means that H is a function of z and z, real analytic in the real and
imaginary part of z. Conveniently introducing z_; := Z; for j > 1, then H in (2.7)
is written as

H=A+G (2.8)
with

A= Z)\ijZ,j, (29)

Jj=1

1
G = 128 Z Gjr"jszjl T Zjss (2'10)
J1y I8 €L
where Gj1"'js = G|j1\"'|js| for j1, cee ,jg €l = Z\ {O}
Define the normal form set

N ={(j1, - ,jg) € Z% : There exists a 8 — permutation 7
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such that jr(1) = —jr2), s Jr(r) = —Jr(8) }-
Define the following index sets
Ay ={(j1,--- ,js) € Z8 : There are exactly [ components not in{4ny, £ny, +n3}}
for 1 =0,1,2 and
As={(j1,--- ,js) €ZE : There are at least 3 components not in{4n1, £ny, +ns}}.
Split G in (2.10) into three parts:

G=G+G+G, (2.11)
where G is the normal form part of G with (j1,---,js) € (Ao UA; UAy) NN
~ 1
G= 128 Z Gjl"'jBZjl T s (2'12)
(J1,,d8) E(AQUALIUAR)NN
3
35 35 N 315
- GZZ G ‘an |8+ZZGW"”””V |Z"l |6|Z”l’ ‘2+T6 ZG“mml/nzl ‘Zm |4|Zm/ |4
= S o
315
+ T Z Gnlnlnl/n[”|znl|4|znll|2|Zn1//|2
Lttt S gty
b
35 315
+ Z Z Gnmzmj |an |6|Zj |2 + T Z Gnmznl/j|znz |4|Zn1/ ‘2|Zj |2
=1 ll:l/’
315
+ 7 Z Gnlnl/nl//j|znl|2|znl/‘2|an//‘2lzj|27

IR

1£1 LAV 1 £

G is the non-normal form part of G with (ji,--- ,js) € (AgUA; UAy) \ N:

~ 1
G = HS Z Gjl“'jszjl Tt Zjgs (213)
(1, ,Js) E(AoUAIUA)\N

and G is the part of G with (J1,- - ,Js) € As:

1

G =13 Yo Gigzi s (2.14)
(J1,++Js)EAs

We will eliminate G by a symplectic coordinate transformation X L, which is the
time-1-map of the flow of a Hamiltonian vector filed Xz given by a Hamiltonian

F= Z Fjl"'j8zj1 T R (215)
(J1,+-,d8)€EZLS
with coefficients
Gjl“'js
= 1280\, 4+ -+ Ajy)’
0, otherwise.

. for (j1,---,js) € (Ao UAT UA2)\ N,
le

1778

(2.16)
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Here \; :=sgnj - A;| for j € Z,. Then formally we have
{A,F}+G =0, (2.17)

where {-,-} is Poisson bracket with respect to the symplectic structure

i) dzindz;.

jz1
Thus expanding at ¢ = 0 and using Taylor’s formula we formally get
HoXp=HoXbL|—

1 1
:A+{A,F}+/ A—t){{A,F},F}oXbtdt+G+ | {G,F}o Xkdt
0 0
1
:A+G+é+/ {G+tG+ G, F}oXLdt. (2.18)
0

Now we need to show the correctness of the definition (2.16) and establish the
regularity of the vector field X. To this end, we prove that the divisors A;, 4+ - -+,
are away from zero:

Lemma 2.1. Suppose 0 < m < % and the indices ny,no,n3 € NT satisfy

N1 > Gﬂ, 1=1,2. (2.19)
m

Then for (ji, -+ ,Jjs) € (Ao UA; UA)\ N, we have

2

m
Proof. Thislemma is equivalent to prove that, for j1,--- ,j8s € Nt andoy,--- ,08 €
{]., —].}, if (Uljla ce ,Ugjg) S (AO U Al U AQ) \N, then we have
m2
]Zal)\]l] > o (2.21)
1=1
We firstly consider the case Z?:l oy 0. In view of 0 < m < % and
N=j+Wi2+m—j)=j+——=———, jeN', (2.22)
Vit+m+j
we have
1
o, | > ol —m >1—4m > —, (2.23)
Sl [ Y|y o ;

which is larger than Therefore, in the following, we assume

_m?
180n3 -

8
Zaljl =0. (2.24)
=1
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Introduce the function

ft)y=Vt2+m—t

(2.25)

m
V2 Em+t

which is positive, monotone decreasing and convex for ¢ > 0. Thus, by (2.24) and

(2.25), we have
8 8 8
ZUMJ’; = ZUZ()\J'; —5) = Zdlf(jl)- (2.26)
1=1 1=1 =1

We secondly consider the case oji + 075 = 0 for some 1 < k,I < 8. Without
loss of generality, assuming k = 7, [ = 8, then we have E?:1 0151 = 0. Then by
using Lemma 2.1 in [13], we get

8 6 2
m
1> o = 1D ol > 5, (2.27)
20n3
1=1 1=1
which is larger than ﬁ. Therefore, in the following, we assume
3
opjk+oui 0, V1<KkI<8. (2.28)
From (2.19), we get
6?1? 6nl
N1 > ——>—>54n;, [=1,2. (2.29)
m m

Now our aim is to prove (2.20) for (o171, ,087s) € (Ao UA; UAg) \ N with
(224) and (228) It is obvious (AO UAL U AQ) \N = (Ao \N) UAL U (AQ \N)
and no element in Ay \ NV fulfills (2.24). In the remaining proof, we consider A;
and Ay \ NV respectively.

For (o171, ,08js) € Ay, denote the unique index different with ny,ns2,n3 in
{j1,-+-js} as a, the maximum and minimum indices in {j1,--- ,Jjs} \ {a} as n,,n,
respectively.

Case 1: ny = n,. By (2.24) and (2.28), we have a = 7n,. Thus in view of
(2.26), we get

8
1S o | =T75(m) — f(a) > 6f(n,). (2.30)
=1

Case 2: n, > n,s. By the definition of n,, all indices in {j1,---,js} \ {a,n,}
are smaller than n,_;. By (2.24) and (2.29),

a>mn,—6n,_1> (54 —06)n,_1 > 48n,. (2.31)
Subcase 2.1: There is only one n, in {j1,---,Js} \ {a}. Recall the definition of

n,s, we conclude that all indices in {ji,---,js} \ {n.r,a} are bigger than n, y; >
54n,. Therefore, using Lemma 4.1, (2.26) and (2.31), we have

| Zaﬁ\jl{ > f(nu) = 6f(ny41) — f(a)
=1

> f(n,) — 6f(54n,) — f(48n,)
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V1043 V1043
> V/ e — ’// e — l//
> )~ 2 ) - Y g, )
1
> 2 fn) (2.32)
Subcase 2.2: There are at least two n,/ in {j1, -+ ,js} \ {a}. Due to (2.28), we
remark that these two n,, have the same signs. Moreover, all indices in {j1,- - ,js}\

{n,s,a} are bigger than n, ;1 > 54n,,. Therefore, using Lemma 4.1, (2.26) and
(2.31), we have

8
‘ Zol/\M >2f(ny ) —5f(ny41) — fla)

1=1
>2f(ny ) —5f(54n,.) — f(48n,/)

5(v10+3 V10 + 3
> 2f ()~ 2T ED i,y VIS g
> f). (2.33)
It is easy to check that the right hands of (2.56), (2.58), (2.59) are larger that
ﬁ. Hence (2.53) holds true for (o171, ,08Js) € Ag.
For (o171, -+ ,08js) € A2\N, denote a, a’ the two indices different with ny, ns, ng
in {j1,---,Js}. Without loss of generality, we assume a < a’. Denote n, and n,-
the maximum and minimum index in {j1,---,js} \ {a,a’} respectively.

Case 1: n, = n,.
Subcase 1.1: @/ —a = 6n,. Then in view of (2.26), we get

8
1> "o, | =6f(n) + fla) — f(d') > 6f(n,). (2.34)

=1

Subcase 1.2: a’ +a = 6n, and a < 7. Then using (2.26), Lemma 4.1 and the
fact that f is convex, we get

> —f(n). (2.35)

Subcase 1.3: @’ +a = 6n, and % < a < 5. By Taylor’s formula, we have, for

J=1
2

)\j:\/j2+m=j+§—m73, (2.36)
J 8y/j%2+0m

where 0 < # < 1 depends on j. Thus, we have

8
13" ad | = 16Mn, = Xa — Aol
=1
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- - ol (2.37)
Vaz+0,m” \/(a')2 + 03m

where 0 < 61,605,035 < 1. Since n,, a, a’ are integers and a + a’ = 6n,,, we know
laa’ — n2| > 1. Otherwise, we have aa’ — n2 = 0, and further a = (3 — v/8)n,,
a’ = (3 +/8)n,, which is impossible. Thus,

(51 1) [be’ —mifatd) Bla’ — ), _6 (2.38)
n, a a nyaa’ nyaa’ nyaa’
On the other hand,
6 1 1 ‘ < 1 n 1 6
V2 + 91m3 Vva? + 92m3 V(@)% + 93m3 Tad o (d)? n2 + m
1 )
<= - 5 (2.39)
a nZ +m
Thus, from (2.37)-(2.39), we get
i 3m m? /1 5
Do > ﬁ@(?*is)
=1 fwaa a n2 +m
B Sm( 1 m ) N 5m?
a \nyd  24a? 8/nZ + m3
S 3m( 1 1/9 ) 5m?
~ a \n,(6n,) 24(n,/6)2 8/n2 L m°
5 2
SR — (2.40)
8y/n2 +m

Subcase 1.4: o’ +a = 6n, and a > . In view of a + o’ = 6n, and our
assumption a < o', we know a’ > 3n,,. Thus using (2.26) and Lemma 4.1, we get

8
1> o, | = 6f(n) — f(a) — f(a)

=1
> 6f(n,) — f(5) — f(3n.)
> 65) - 2f(m) - Y0y,
> f(ny). (2.41)

Case 2: ny, > ny.

Subcase 2.1: a and n,- have the same signs. By the definition of n,, all indices
in {j1,---,Js} \ {nu,a,a’} are not less than n, ;1. Therefore using (2.26), (2.29)
and Lemma 4.1, we get

8
|Zo'l/\jz| > f(nw) + f(a) = f(a') = 5f(ny41)

=1
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> f(nw) =5f(nw41)
> f(n,/) - 5f(54nu’)
5(v/10 + 3)

> f(nr) — Tf(nu’>
1

> S fn). (2.42)

Subcase 2.2: a and n,. have different signs, and there is only one n, . In view of
(2.24), we have a —n,» £a’ £ n, £nj, £---£n;, =0. Asa <a’ and n, > 54n,_1,
we conclude that a’ > n,_; and has different sign with n,. If v > v/ + 2, then
a’ > nyry1; otherwise v = v/ + 1, then there are 3 n,’s and thus @’ > n, = ny,y1.
Now all indices in {41, ,js}\{n./,a} are not less than n, 1. Using (2.19), (2.26),
Lemma 4.2 and the fact that a’ has different sign with n,, we have

8
1Yo f )l = If(@) = flm) £ fla') £ f(m) £ fng,) £ % f(ny,)]
=1

Z |f(a) - f(nt/’)| - 3f(”u’+1)
S m 1 B 3m
T2y +1)24+m 2nu4
2m 3m?
Z Tonz, " 1208,
m
> Tni/’ (2.43)

where in the last inequality we use 0 < m < é.

Subcase 2.3: a and n,s have different signs, and there are [ n,.s for 2 <1 < 4.
In view of (2.24), we have a —In,» £a’ £ n, £n;, £---+tnj, , =0. Asa <d
and n, > 54n,_1, we conclude that ' > n,_; and has different sign with n,. If
v >v' + 2, then @' > n,y1; otherwise v = v/ + 1, then there are 3 n,’s and thus
a’ > n, = ny41. Now all indices in {j1, - ,4s} \ {n./,a} are not less than n, ;.
Using (2.19), (2.26), Lemma 4.3 and the fact that ' has different sign with n,,, we
have

8
1> o f )l = |f (@) = Lf ()] = 3f (nursa)
=1

m? l. m
= m3, (8- 2’n
v! v'+1
m? . m?
> (3—2)—
~ 2n3, ( 2)6n3,
2
m
> —. 2.44
6711?;/ ( )

Subcase 2.4: a and n,s have different signs, and there are 5 n,,. In view of
(2.24), we have a — 5n,» +a’ £ n, = 0. As a < o and n,, < %%, we conclude

40
that a’ > 3(n, — 5n,/) > 2% and has different sign with n,. Using (2.19), (2.26),
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Lemma 4.3 and the fact that a’ has different sign with n,,, we have

In,
20

8
1> f )l = If (@) = 5f(nu)] = F(55)
=1

m? 10m

- Qn?,, B In,
S m? 5m?
- 2n3, 27n3/
25m?
> . 2.4
~ 54n3, (2.45)

It is easy to check that the right hands of (2.34), (2.35), (2.40), (2.41), (2.42),

(2.43), (2.44), (2.45) are larger than %. Hence (2.53) holds true for (o1j1,- - ,08s)
3

€ Ay \ V. This completes the proof of this lemma. O
In view of (2.5) and the above lemma, in the same way as [18], the regularity of
the vector field X could be easily established:

Xp € A(P®, 005, (2.46)

where A(ZZ’S,E‘;’SH) denotes the class of all real analytic maps from some neigh-
borhood of the origin in £;°° into EZ’SH, and £;"° denotes the Hilbert space of all
bi-infinite sequences with finite norm ||q||2 ; = [go|* + Y, lg;[?[j[**€?V/1*. Therefore,
in view of (2.18), we obtain the following theorem:

Theorem 2.1. Suppose 0 < m < % and the indices ny,na,ng € N1 satisfy (2.19).
Then by the symplectic change of coordinates I'y := X}, which is real analytic in
some neighborhood of the origin in €, the Hamiltonian H = A + G in (2.8) is
taken into

Hol; =A+G+G+K, (2.47)

where A is in (2.9), G is in (2.12), G is in (2.14), and
1
K :/ {G+1tG+ G, F}o XLt (2.48)
0

Moreover, Xa, Xg, Xi € AP, 0P,

By simple calculation we have
AL A LA ' A A L 24 A t
K ={G+G+5G.F}+ {{(1—t)(G+G)+§(1—t )G,F},F}oXth, (2.49)
0

where the first term is order 14 and the second term is at least order 20. In order
to obtain a partial Birkhoff normal form of order 14, we need another real analytic,
symplectic coordinate change. To this end, define the normal form set

N ={(j1,--- ,j14) € Z* : There exists a 14-permutation 7 such that
j‘l’(l) = _j‘r(Q)v j‘r(?;) = _j‘r(4)7 I j‘r(13) = _jT(14)}7
and the following index sets

A)={(j1,- - ,j14) EZL* : There are exactly | components not in{+ny, +ny, £n3}}
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for I =0,1, and
AL={(j1," ", J14) €7 : There are at least 2 components not in{#ny, £n9, £n3}}.

Split the first term of K in (2.49) into three parts:
G,F} =K +K+K, (2.50)

where K is the normal form part with (j1,---,j14) € (Aj UA)) NN, K is the
non-normal form part with (ji,---,j14) € (A UA]) \ N, and K is the part with
(j1,--- ,j14) € A). The same procedure as eliminating G, we will eliminate K
by another symplectic coordinate transformation. Similarly, a lemma about the
divisors Aj, + -+ 4+ A;,, is needed:

Lemma 2.2. Suppose 0 < m < % and the indices ny,no,n3 € N satisfy

6 3
Mg > L 1=1,2. (2.51)
m

Then for (j1,- -+, j1a) € (Ay U AL \ N, we have

2
}/\j1+"'+>\j14| > % (2.52)
Proof. This lemma is equivalent to prove that, for ji,--- ,j14 € NT and oq,-- -,

014 S {1771}, lf (O’ljl,' . ,0'14j14) € (A6 U All) \Nl, then we have

14 m2
g;mj,y > Tnd (2.53)

Similarly to (2.24) and (2.28) in Lemma 2.1, we may assume

14
> oui=0 (2.54)
=1
and
kak+aljl7é0, 1<k, 1< 14. (255)

Now our aim is to prove (2.52) for (o1j1, - ,014514) € (A U A}) \ N with
(2.54) and (2.55). It is obvious (AjUA}) \ N = (Aj \N') UA] and no element in
AL\ N fulfills (2.54). In the remaining proof, we consider Af.

For (41, - ,j14) € A], denote the unique index different with ni,ns,n3 in
{j1, -+ ,j14} as a, the maximum and minimum indices in {ji,---,j14} \ {a} as
N, N, respectively.

Case 1: n, = n,. By (2.54) and (2.55), we have a = 13n,,. Thus in view of
(2.26), we get

14
1> " oud, | = 13f(ny) — f(a) > 12f(n,). (2.56)
=1

Case 2: n, > n,. By the definition of n,, all indices in {ji, - ,j14} \ {a,n.}
are smaller than n,_;. By (2.51) and (2.54),

a>n, —12n,_1 > 42n,_1 > 27n,. (2.57)
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Subcase 2.1: There is only one n,s in {j1,--- , 714} \ {a}. Recall the definition of
n,s, we conclude that all indices in {j1,--- ,j14} \ {n.,a} are bigger than n, ;1 >
54n,s. Therefore, using Lemma 4.1, (2.26) and (2.57), we have

1D o] = fnu) = 12f(ny1) = f(a)

=1
Z f(?’Ll,/) - 12f(54nu/) - f(??ny/)
V10 + 3 ~V10+3

> l// —_— V/ l//
> fn) ~ Y pn) - 2
1
> §f(ny/). (2.58)
Subcase 2.2: There are at least two n,, in {j1, -+ ,j1a} \ {a}. Due to (2.55), we re-
mark that these two n,. have the same signs. Moreover, all indices in {j1,- -, j14}\

{nyr,a} are bigger than n, 1 > 54n,,. Therefore, using Lemma 4.1, (2.26) and
(2.57), we have

14

1> aidi| = 2f () = 11f (nria1) — f(a)

=1
> 2f(ny/) - 11f(54n1//) - f(27nyl)

11(v/10 + 3) ~V10+3

> 2f(nu) — Tf(nu’) 162 f(nur)

> f(nw). (2.59)

It is easy to check that the right hands of (2.56), (2.58), (2.59) are larger that %.
3

Hence (2.53) holds true for (o141, ,014514) € Al O
Therefore, we can obtain the following result:

Theorem 2.2. Suppose 0 < m < % and the indices n1,n2,n3 € NT satisfy

6 3
ngr > L 1=1,2. (2.60)
m

Then by another symplectic change of coordinates I's, which is the time-1-map of
the flow of a Hamiltonian vector field Xz and is real analytic in some neighborhood
of the origin in (°, the Hamiltonian H o'y in (2.47) is taken into

(HoT))oTy=A+G+G+K+K+T, (2.61)
where K is of the form

K = Z Klllzls‘znl|2ll|2n2‘2l2‘zn3|2l3 (262)
11,lg,l3€N
11 +la+13="7
with coefficients K 1,1, real and depending only on ni, na,nsg and m, and
(K| = O(llzll.% 11212 ), (2.63)

7| = O(ll=112%) (2.64)

2 = (2j)jeNt\{n1,na,ng}- Moreover, Xg, Xy, X1 € A(E‘;»igg,sﬁ—l).
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3. Proof of Theorem 1.1

By the last section there exist two real analytic, symplectic changes of coordinates
Iy, which takes H into H oI’y o'y = A+G+G’+K+K+T where A is in
(2.9), G is in (2.12), G'is in (2.14), K is in (2.62), K is in (2.63), T is in (2.64). Let
I =(|zj|*:j € NT), then we have

A= NI (3.1)
jz1
3 4 2 72
- 35 351 513 An 811 1 2712 Ay In
G 1 ny-ngs 1 "
SWB(Z 6N, T2, Z 2z Z e
L%l’ L¢z’ 1#£17, l#[” 1231
35 o
+ Z(Z Gmmmﬂil +9 Z Gmnmyjlgl[ny
=1 llyéll/’
+ ]-8 Z Gnlnl/nluj-[n;,-[nll I’ﬂl//)[jﬂ
l#l’,ii/l}fj/ﬂ;él”
(3.2
R = Z Kl1l2l3l7lLllIvlLQgI7lLs3 (33)
l11,lg,l3€EN
11 +lp413="7

Moreover, we know
Gl =O(l=15 5112112, 1Kl = O(l=l% 121125, 1T = OlI212%)- (3.4)

Step 1: New coordinates. We introduce symplectic polar and real coordinates
(z,y,u,v) by setting

/ 1 .
an = ng +yl€_lxla l = 15273

1 . (3.5)
zj = ﬁ(“j + ivy), J # ni,na,ns,
3
1Y dzjndz = dugAdyi+ Y duy Adu;
j>1 i=1 J#n1,n2,n3
and )
InL:£[§+ylv l:172737
1 .
I; = i(uf +02),  J#ni,ng,ns.
Up to a constant depending only on &, the normal form A + G + K becomes
1
(w(€):y) + 5(Q(E),v* + %) +Q
with tangential frequencies
1225 525 7 525 /
wi(€) =An, I i >3 fl (3.6)

12873\, 4n3 A3 Any 87T3

U#£1 ng U1 nl nl/
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1 2 2 1
2835\~ 16, 945 v Ly eiel, L 015 1313
3 2 )2 A3 2 3
167 =y AnAn, 47T Vo Ao Any Ay, AT T )\m)\n,,)\n,,,
U V£t
9 5 1 o Gy
3
+TKo. 010060 +6 D Kjin§060 +5 Y Ky WG
Jj1=6 Jj1=5
Jpr=1 Jyr+apn =2
4 Jl/ ]l" Jl///
+ 4 E Jbgl gll gl// fl///
Jy=4
Jyrtayprr+apn =3
Jyr dyr dpn jl(4)
3 3 3 3
+3 E Kjl...jbglgl/ gl// gl/// 51(43)
J1=3
jl’+j1”+jl”’+jl(4):4
o dy o dpr dpn >1(4) ]1(5)
+2 > oG &7 Gt S G
J1=2
jl’+jl”+jl”’+jl(4)+jl(5):5
1 Ay G dpr @) Iis) Ipe)
+ > K & 60 &F €15 6 &)
Jp=1
jl’+7l”+Jl”’+J](4)+71(5)+J1(6) =6
normal frequencies
35
Q;(6) =), + 4(252 Crimimi& +9°S Cruminy 160 &5 (3.7)
=1 [N%

1£1
i 11 .
+ 18 Z Gnlnl/n,//jé—lg gﬁ gl‘?/)a .7 # n17 n27 ns

IR
12U AU U £

and remainder

Q = O(lyl*) + Oyl - [|u® + ). (3.8)
The total Hamiltonian H = N + P with

N = {wf€),) + 5 (0E),u +07), (39)
P=Q+G+K+T. (3.10)

Now let r > 0 and consider the phase space domain
D2,r): (x| <2, [yl <r?  |lulla,s + [[0]las <7 (3.11)

and the parameter domain

6

H:{€:($13627€3):Tg g 52753

U‘\Ci
H—/

(3.12)

Step 2: Checking assumption A of Theorem 5.1. Let

w= TAl(OJ — OJ()), (313)
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where

T=11-11[. (3.14)

Ay = diag(=5 128” An, 1 <1<3)and wy = (A, )1<i<3. Denote
n=A;", (3.15)
where Ay = diag(\3, : 1 <1< 3). From (3.13) and (3.15), we get

Ow 100,
56 =ML (3.16)

Calculate directly, we have

2 1 1 12 2
w; =445n; + 35(77l’ + 77l”) + 10327713 (7713; + 7713;/) + 6967713 (7]13; + 7]13;/)

1 2 2 1 1 1 1
+264(np ng +ningt) + 1728020300,
1=1,2,3, 1<U,1"<3, I',;I"#1,1 #1"

and
ow; 11 1 _2 2 2
_2 1 1
+ 5761, *ning, +O(rd), i:j, 1<V 0" <3, 10" 45,0I£1", (3.17)
(9(2)1 2 _2 1
5y 35 + 344n7n; ° + 464077, i 88(1; mf +2n; m,)

4
3

1 _2 1
+ 57600, Tnf + O(rs), i#j 1< <3, U'#i,j. (3.18)

In order to estimate |w|4 and \w’1|£(n), we estimate || 2% g¢ |ler—er and H(a—“’) Hip o,
in the following. From (3.17) and (3.18), we have

oo &ul
5ol = <3Z\

2
< 515+ 576 max 771 an 771/ + 344 max, n; an
LU l

—1 1 4
+ 688 max 7, El:nf +0(r3)

Ao,
and
0 %
8°7‘7’J|—|Z ‘*’J|>410+O(r%)2409>0, j=1,2,3. (3.20)
J

i#]
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Then applying Lemma 4.4 to (g“;;), we have

o, 1

—)" < —. 21
15 lemse < 355 (3.21)
By direct calculation, we have
022
1
T =11202] (3:22)
220
3
1Tl e = gg&i} Ty| =3 (3.23)
and
T o1 yer = max Z| =1 (3.24)

From (3.16) (3.19) (3.21) (3.23) and (3.24), we can obtain the estimate of the
Lipschitz semi-norm of w and w™!

|w|L<|87w| ++|87w‘
m=l5g m og; "
Ow Ow Ow Ow Ow Ow;
< max{| 1‘H’|8§2‘H7| 3|H}_|_ -+ max{]| 1|H7|a£2|1'[7| £§|H}
73”&“61%@1
180.)

_3HA 1T_ 877 271”[1_%1

<3AT e s [T H oS ]| 77||171—>/1||A2 o1 - en

Cg. 3 6000, 1
=2 1285, M g
39375,
ComAg
(3.25)
_ W, _
w5 §3H(*) R
8w
= 3||As YA
I (877) e
: (3.26)

ow . _
< 3\|A2|\euz1\|(afn) e se 1T se | [Ax] | e
1 12873\
<323 . .g. 220 7ms
"5 409 35
<7r3)\i3.
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Step 3: Checking assumption B of Theorem 5.1. By (3.7) we know €2 = };,

b
A _ 39 2.1 1.4,
O = 220 Craninig+9'S Goninsi€ €60 F18Cmnansi €0 G E5), 5 # m,ma s,
=1 ll;l/’
(3.27)
From (2.6), we get
WJ = 2m;
Griminij = 8#31\2 X 2J = 3ny; (3.28)

5
27323 A j #n1>n2>n372n173nla
ny

5 i = 2N
5 9y
Tm38Z A 2,0 2

1 - /.
AL ) = e >0

G, L=
Lnlnl/j 13 . /.
ST o oJ =20 gy 1> 1

nyr Nj

3 .
Te> v v vl #mny,n9,n3,ny T ny,ng Eng,2ng,2n o, 1>,
(3.29)

FT D Mgy 1) = M2 E N1, ng Eng,ng £,
9
83 >\n>\ P ,J =mn1+n2 +n3,n3 +nz —ny,ng — Ny —n,
Gringngj = !
7ﬂa,\ X o J # N1, n2,n3,m £ Ny, ng + ng + ng,

ny n3

ng +ng —ni, N 37n27n1,l>l.

We can easily see that Qisa Lipschitz map from II to £_, here £ the space of all
complex sequences with finite norm |wl, = sup; |w;|[j|P, and by calculation we can
get

10 270
e - . 3.30
QU 1<”Z;”<3 A A A, — T3, (3.30)

In view of (3.25) (3.26) and (3.30), denoting

39375A,, 270

M =
T3A\D I
>‘n1 /\nl

L=\, (3.31)

then the assumptions (5.1) in Theorem 5.1 are satisfied. Finally, observing that
AN =Vit+m=j+ 7+ O(573) and % = % + O(j73). We know the assumption
(5.2) in Theorem 5.1 is satisfied with x = 2.

Step 4: Checking assumption C and smallness condition (5.5) of Theorem 5.1.
Observing (3.10) for the perturbation P, it can be easily checked that P is real
analytic in the space coordinates and Lipschitz in the parameters, and for each
& € II its hamiltonian vector field Xp is an analytic map from P%? to PP with
P =p+1. In the following we check the smallness condition (5.5). In view of (3.8),
we have

Q| = O(r*). (3.32)
In view of (3.4) and [¢| = O(r8), we have

G| = O((r3)°r®) = O(r"), (3.33)
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From (3.10), (3.33)-(3.35), we know |P| = O(r*) and thus
| Xplrp(syx = O(r?). (3.36)
Since Xp is real analytic in &, we have
XPIp(smyxn = O(r?r~%) = O(F). (3:37)

We choose ,
a=rsy1 (3.38)

where 7 is taken from the KAM theorem. It;”s obvious that when r is small enough,
=X 2 xp|If —0(r?) < 3.39

€:=|| P||T‘,D(S,T‘)><H + MH PHr,D(s,r)xH (r") < vya, (3.39)

which is just the smallness condition (5.5). Till now there only remains the assump-

tion (5.6) of Theorem 5.1.
Step 5: Checking assumption (5.6) Theorem 5.1. For convenience, we introduce

C = (Cl7§2a<3) S 6)

as parameters with (; = 2, (s = 32-,(3 = &, where

2 6 2
O ={0= (1,2 6a) s 7% < AniCi Moo AngGa < {277 )
In view of (5.3), denoting

{0)

Ru(a) = {C € O : [(k,w(Q) + (1, 20)] < O‘Ak}’ (3.40)
then to prove the assumption (5.6) is equivalent to prove
| Rul@)] < erfasmri=rm (3.41)

(kl)ex

e
where & = aFT-x/1 ,0 < x <1, and c is a positive constant. We only need to give
the proof of the most difficult case that [ has two non-zero components of opposite
sign. In this case, rewrite Ry;(a) in (3.35) as

- i

Risg(o) = {6 € 05 (k. w(0) + 00 - 2,0 <ol Ty, 32

where k € Z3 and i,j € N*\ {n1,na,n3},i # j. In view of (5.4), it is sufficient to
prove

U Ru(@)] < erfasmri=rm, (3.43)

0<|k|<Kx
0<i+j<Lx
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where K, L, are defined in the KAM theorem and here they satisfy

K. =16LM < 64 x 10% (3.44)
Ly = 36(jwln + 1) LM /B < 103X . (3.45)

From (3.6) (3.7), we have, for 0 < |k| < K,,0 <i+j < L,,

(kyw(C)) + :(¢) — 25(0)
=kiAn, + koA, +EsAn, + A — A
3

35 k; Ky 53
+ - (35—+240 S 32722 (Grmimi — Grmamas)) G
12871'3 = )\"l ; )\nl/ 1 miny myny
315 kl i 2
+ 6 3 +12 Z +4 )\nl/)\nl// )\nl’(Gnl’nl’nl”i_Gnllnllnl//j))Cl/Cl”
N "l 1A, l//
V#L”
3
315 ki
+ H Z (STI + 2(Gnlnl,nl,,i - annllnluj))ClCl’C 7
z#z'l ll/l/ Lz/’/¢z//
+O(r%).

If for every 0 < |k| < K.,0 < i+ j < Ly, at least one of the following 4 inequalities
holds:

1
|k1/\n1 + kodny + ksdn, + X — Aj| > (3.46)

= 4)\7137

\35 + 240 Z —+ 32303 (Gryninii — Gryninig)| = (3.47)
nl/

Py 4,

then for r small enough, either |(k,w(¢)) + €(¢) — Q;(¢)| or

33
|87<l3(<k w(Q)) + 2(0) — (0))]

is bigger than g—. If [(k,w(¢)) + Q(¢) — 2;(Q)] > 8A , then
| Rij (&) = 0.

3 .
If |88—<13(<k7w(g)> + Q;(¢) — Qj(g))‘ > ﬁ for some 1 <[ < 3, by using Lemma 4.5
in the next section and noting that |k, 4, j can be bounded by a positive constant
depending only on A,,, we get
i — J
Ay

4
5

| Riei ()] = 2(2 + 3+ 8\, ) (G——21)3 (diam©)? = O(aFr3). (3.48)
Since the number of (k, i, j) satisfying 0 < |k| < K.,0 < i+j < L, can be bounded
by a positive constant depending only on A,,, we finally get

IS

4 rtl—x 4
5

) = O(a3r3) = O(a™r—x/irs), (3.49)

ol=

| U o<|kl< K. Rh]( Q)

0<i+j<Lx

= 0(@

r
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which is less than the right hand of (3.41) by the fact x < 1. Therefore, till now
the only remaining task is to prove that at least one of the 4 inequalities in (3.46)
(3.47) holds. Supposing this not true, then we have

1
|E1Any 4 k2dng + ksAn, + X — Aj| < o (3.50)
n3

k 1
33 ! +2402 = 132003 (Grumimi — Grgnymyj)| < oo =123 (351)
n, l/;fl ngys ns

We will discuss (3.50) (3.51) in three different cases in the following. We also
mention that k € Z2,0 < |k| < K, and 4,7 € Nt \{ny,na,n3},i # 7,0 <i+j < L.

Case 1. Both 7 and j are not in {2n1,2n9,2ns,3n1,3n9,3n3}. Then (3.51)
becomes

kl/ 80 1
— | < , 1=1,2,3. (3.52)
=1 i ’L )\J 4)\1’7,3
Ehmlnatmg - % we get
kl k‘l/ 1 ’
205 — 1<l <3. 3.53
| o <3 o Lsbis (3.53)

As k = (k1, ko, k3) # 0, we may assume k; # 0 for some 1 <[ < b. Without loss
of generality, suppose k; > 0. We claim that k;r > 0 for all 1 <’ < 3. Otherwise,
there exits some 1 <1’ < 3,1’ # [ such that k; < 0, and then we have

k. k; 4
2 >2 .b4
05} e 055—> e (3.54)
which contradicts with (3.53). Noting that A\; — A; and i—? - ?\—? = % have
different signs, we discuss in the following two cases:
Subcase 1.1: If A; — A; > 0, then we have
1
[ty + kodn + Ksdng + X = Ag| > kidn, + kodns +kshey, > 55—, (355)
ns
which contradicts with (3.50).
Subcase 1.2: If A; — \; < 0, then we have
3
ki ky 80 80 ky 1
—205— + 24 — - — 24 .
} 055+ OZ)\R/ y Aj|> . +Z OS> (359
=1 \m VA :
which contradicts with (3.52).
Case 2: Both ¢ and j are in {2n1,2n2,2n3}. Then (3.51) becomes
3
ky 56 1
l ——f|< . 1=1,2,3. (3.57)
ny ’L j 4)\n3
r=1""m™

In the same way as Case 1, we can derive contradictions.
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Case 3: Both i and j are in {3n1,3n2,3n3}. Then (3.51) becomes
76 1
—2 24 — - — =1,2,3. .
| % + OEIM, N jy<4M; 1=1,2,3 (3.58)
r=1""m
In the same way as Case 1, we can derive contradictions. -
Case 4. ¢ = 21:”* fqr some 1 <! <3 and j =3np for some 1 <" <3.
Subcase 4.1. I =1’. Then (3.51) becomes
ky 80 80 1
— 205—L 4240 1<1<3,1#1 3.59
|- 2055+ lzl WP vl vesl I v 1EL (359)
56 76 1 -
) - - — <[< = (. .
| % +zm§:Am ™ jy<4Mﬁ 1<1<3,1=1 (3.60)
I'=1 1 3
Eliminating i—? — i—? by (3.59), we get
ky Ky 2 T
205 N 3.61
‘)‘nl/ )\nl// | )\n3 # ( )
By (3.59) and (3.60), we get
ke k. 24 4 1 _
205 — 4 - < , U AL 3.62
| ()\nl/ )\nf) )\2nf )\3’ﬂf 2)\n3 7& ( )
If k7 > 0, then from (3.62), we get
ki k24 4 1
205 > 205— — + - > 0, (3.63)
)\nl/ An[ )\Zn; )\3n; 2>\n3
which means ki > 0, and from (3.61) we get
R 205k 1205 1
205 > 0 3.64
)\nl// - )\’I’Ll/ 2)\713 )\’I’Ll/ 2)\713 > ’ ( )
which means k;» > 0. Otherwise if k7 < 0, then from (3.62), we get
ki k24 4 1
205 <205— — 0 3.65
>\nl/ >\’IL[ )\Q’ILL’ + )\371[ + 2)\71,3 < ’ ( )
which means k; < 0, and from (3.61) we get
ki 205Ky 1 205 1
205 < < —— <0 3.66
Mo~ A DAy Ay 2y .

which means k;» < 0. In the same way as Subcase 1.2, we can derive contradictions.

Subcase 4.2. [ #1’. Then (3.51) becomes

80

=1 "\ >\2nl >\3np

1
i,

| <

1<1<3,1#411,

(3.67)
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80 1
— 205 240 3.68
| T lzl Mo Aznl TR ST (3.68)
76 1
< . 3.69
=1 nys >\27Ll A-?)TL[/‘ 4>\'IL3 ( )
Eliminating )\ — by (3.67) (3.68), we get
ke k. 24 1
206(— — —) — . 3.70
2055~ {5) = o < 5 (3.70)
Eliminating {32 by (3.67) (3.69), we get
k; kp 4 1
205(— — < —. 3.71
| (A'ILZ )\n[/ ) >\37L[/ | 2)‘77,3 ( )
By (3.68) and (3.69), we get
kp k. 24 4 1
205 - —) - — < 3.72
| (Anp )\n[) )\Qn[ )\3np ‘ 2)\713 ( )
If k7 > 0, then from (3.72), we get
ky ko244 1
205 > 205—L - 0 3.73
VP VLS W V) VR (3.73)
which means k; > 0, and from (3.70), we get
ki ko, 24 1
205 205—— 0 3.74
WD W VR W (3:74)
which means k; > 0. Otherwise if k7 < 0, then from (3.70), we get
If[l kl 24 1
205 205— 0 3.75
U VL W W (3:75)
which means k7 < 0, and from (3.71), we get
k[ kl_' 4 1
205— < 205 — 0 3.76
Anl < )\?’Ll’/ )\377,[/ + 2>\7L3 < ’ ( )

which means k7 < 0. In the same way as Subcase 1.1 and Subcase 1.2, we can
derive contradictions.

Till now, all the assumptions in the KAM theorem have been checked. Taking
X = %, in view of (5.7), the measure of the excluding set of parameters is

m\d

O(r%ami~7a) = O(rs"™),

which is of higher order than O(r%). This means that, when r is small enough, the
rotational tori persist for most of £ € II. Thus Theorem 1.1 follows from Theorem
5.1 in Appendix.
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4. Technical Lemmas

In this section, the first four lemmas are estimates of the function

m
O L — 41
/0 V2 +m+t 4.1)
which are used to perform Birkhoff normal form in Section 2.
Lemma 4.1. For f(t) in (4.1) and 0 <m < §, we have
V1043
0 <A 00 < U R0, Az ez (42)
Proof. This is Lemma 4.1 in [13] with 0 < m < 3. O
Lemma 4.2. For f(t) in (4.1) and 0 <m < §, we have
f(a) = f(n)| > s, aneN*a#n. (4.3)
“2((n+1)24m) ’
Proof. This is Lemma 4.2 in [13] with 0 < m < §. O
Lemma 4.3. For f(t) in (4.1) and 0 <m < §, we have
m2
|f(a)—lf(n)|2ﬁ, a,n € Nt [ =234,5. (4.4)

Proof. For | = 2,3, this is Lemma 4.3 and Lemma 4.4 in [13] with 0 < m < §
respectively. We only need to prove it for [ =4 and [ = 5.

Note that
1£(@) = 4f ()] = ] o — | (4.5)
Va2 +m+a e+ +2n '
If n = 4k, then for all ¢ € NT,
|f(a) —4f(n)] > |f(k) — 4f(4k)|
m _ m
VEE A+ +E VE24+m+k
 15m? 1
16 (VE2+ 2 +E)(VE +m+ k) (VE + %+ VE2 +m)
m2
~ 64k
2
m

If n = 4k + 1, then for all a € N*,

[f(a) =4f(n)| = [f(k) — 4f (4k + 1)

m m
2 B m
Rk e g e )
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m
2
A+ D242 4k DR T m 4 k)
m
>
T 64(k + 1)2
m
If n = 4k + 2, then for all @ € N*,
[f(a) =4f(n)| = [f(k+1) — 4f (4k + 2)]
B m B m
m
>
AW (k+ 52+ B +k+ )W k+1)2+m+k+1)
m
>
~ 64(k + 1)2
m
= (4.8)
If n = 4k + 3, then for all a € N¥,
[f(a) = 4f(n)| = [f(k +1) —4f(4k + 3)|
B m B m
m
>
AW (k+32+ 2+ k+3)(V(k+1)2+m+k+1)
m
>
= 64(k + 3)2
m
Now from (4.6), (4.7), (4.8) and (4.9), we obtain (4.4). For I = 5, the proof is
similar, we omit it here. O

Lemma 4.4. Suppose that A = (aij)nxn 1S @ matriz of order n which satisfies

i =lajil =Y laygl >0, j=1,---,n (4.10)
i#]
then
1A s < (1I%1ji£n7j)_1- (4.11)
Proof. This is Lemma 4.5 in [11]. O

The next lemma is a special case of Lemma 2.1 in [21], which is used to estimate
the measure of parameters in Section 3.

Lemma 4.5. Suppose that g(x) is a 3-th differentiable function on the closure I

of I, where I C R is an interval. Let I, = {z : |g(x)| < h,x € I},h > 0. Ifon I,

|d2g€(:;m)| >d >0, where d is a constant, then |I| <2(2+3+---+m+ d_l)h%.
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5. Appendix: A KAM Theorem

Consider small perturbations of a family of linear integrable hamiltonians

N= 3 i@+ Y O+, 1<n<oc

1<j<n i>1
on a phase space
PYP =T" x R" x £YP x {¥P 5 (z,y,u,v)

with symplectic structure lejgn dz; A dy; + Zj21 du; A dvj, The frequencies
w= (w1, ,wy) and Q = (2,9, --) depend on n-parameters £ € II C R, with
II a closed bounded set of positive Lebesgue measure. For each £ there is an invariant
n-torus 7o = T™ x {0, 0,0} with frequencies w(€). In its normal space described by
the uv-coordinates the origin is an elliptic fixed point with characteristic frequencies
Q(€). The aim is to prove the persistence of a large portion of this family linearly
stable rotational tori under small perturbations H = N 4+ P of N. To this end the
following assumptions are made.

Assumption A: Nondegeneracy. The map & — w(§) between IT and its image is
a homeomorphism which is Lipschitz continuous in both directions. Moreover,

(1,Q(£)) #0 on 11

for all integer vectors [ € Z* with 1 < |I] < 2.
Assumption B: Spectral Asymptotics. There exists 6 < 0 such that

Qi) =4+ +0(,

where the dots stand for fixed lower order terms in j, allowing also negative expo-
nents. More precisely, there exists a fixed, parameter-independent sequence {2 with
Q; = j+--- such that Q; = Q; — Q; give rise to a Lipschitz map

Q:1I— 00
with ¢, the space of all complex sequences with finite norm [w|, = sup; [w;;?.
Assumption C: Regularity. The perturbation P is real analytic in the space

coordinates and Lipschitz in the parameters, and for each £ € II its hamiltonian
vector field Xp = (P, — P, P,, —P,)T defines near Ty a real analytic map

Xp:PYP — PP p>p.
To make this more precise we introduce complex neighbourhoods
D(s,r) : Ima| <s, [yl <72, [[ullap + |[ollap <7

of 7y and weighted norms

1 1 1
(@, y,u,0)lr = (2,9, 0,0) |5 = | + Syl + “llullap + llollap,

where || is the sup-norm for complex vectors. Then we assume that the hamiltonian
vector field X p is real analytic on D(s,r) for some s and r uniformly in £ with finite
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norm | Xply p(s,r) = SUPp(s,r) | Xp[r, and that the same holds for its Lipschitz semi-

norm

8,T)

|Aec Xp|r
| Xp|f = sup ——,
g4 €= (]
where Aee Xp = Xp(+,€) — Xp(+, (), and where the supremum is taken over II.
To state the KAM theorem we also assume that

|w|ﬁ + |Q|£6,H <M < oo, ‘w_llf(ﬂ) < L < oo, (5'1)

where the Lipschitz semi-norms are defined analogously to |Xp|~. Let x > 0 be the
largest exponent such that
O — Q.
;73'] =140(G7"%), i>j, (5.2)
uniformly on II. Without loss of generality, we can assume that —§ < k by increasing
¢ if necessary. Moreover, we introduce

l
Rue) = {€ € 11+ {h(6) + 1,06 < 0l (53)
where (1) = max(1,|3" jl;|), Ax =1+ k|7, 7 > (n+ 3)%5t. Finally let
X={(k,1)eZ"xZ*:0<|k| < K,,0 <|l|s < L}, (5.4)

where K, = 16LM, 0 = min(1, —9), [l|o = >_ 11|57, L« = 36(|w|n + 1) LM/ with
f3 the largest positive constant such that (I, 2)| > 2L 3(I) for every 1 < [I| < 2.

Theorem 5.1. Suppose H = N + P satisfies assumptions A, B, C, and
@
€= |XP|T,D(S,T)><H + M|XP|TL7D(S)T)><H < 7a, (5.5)

where 0 < a < 1 is another parameter, and ~ depends on n,t,s. Then there
exists a Cantor set 11, C II, a Lipschitz continuous family of torus embeddings
®: T" x I, — P*P, and a Lipschitz continuous map @ : I, — R™, such that for
each & € T1, the map ® restricted to T™ x {&} is a real analytic embedding of a
rotational torus with frequencies &(§) for the hamiltonian H at .

Each embedding is real analytic on |Imx| < s/2, and

a ce
|@ = @oly + 371 = Dol < —,
& —w| + %|®—w|£ < ce,

uniformly on that domain and I, where Iy : T x II — Ty is the trivial embedding,
and ¢ <y~ depends on the same parameter as .

Moreover, denoting & = o' 3%, w =
X < min(p — p, 1), then if

m with x any fired number in 0 <

U Ria(&)| < c1p"Lammir (5.6)
(k,l)ex

for all sufficiently small o, where p = diamll, and the constant c¢; depends on x
and p — p, then we have

I\ T1a| < cp" o571, (5.7)

where the constant co also depends on x and p — p.
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This theorem is copied from [12], which is a combination of Theorem A and

Theorem D in [19] with some modifications.
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