
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 13, Number 3, June 2023, 1505–1534 DOI:10.11948/20220334

QUASI-PERIODIC SOLUTIONS FOR 1D
NONLINEAR WAVE EQUATION∗

Meina Gao1,†

Abstract In this paper, one-dimensional (1D) nonlinear wave equation

utt − uxx +mu+ u7 = 0

on the finite x-interval [0, π] with Dirichlet boundary conditions is considered.
It is proved that there are many 3-dimensional elliptic invariant tori, and thus
quasi-periodic solutions for the above equation. This is an extension of the
previous work [11] by the same author, where many 2-dimensional elliptic
invariant tori for the above equation are obtained. The proof is based on
infinite-dimensional KAM theory and partial Birkhoff normal form.
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1. Introduction and main results
In this paper, we are going to investigate the nonlinear wave equation

utt − uxx +mu+ u7 = 0, (t, x) ∈ R× [0, π] (1.1)

under Dirichlt boundary conditions

u(t, 0) = 0 = u(t, π),

where the parameter m is real and positive, sometimes referred to as the “mass”. We
prove that the above equation admits many small amplitude quasi-periodic solutions
corresponding to 3-dimensional invariant tori of an associated infinite dimensional
dynamical systems. This result extends the existence of 2-dimensional invariant
tori for the same equation in [11]. Also see the existence of b ≥ 2 and 2-dimensional
invariant tori for the quintic nonlinear wave equation in [12] and [13] respectively.

We study (1.1) as an infinite-dimensional Hamiltonian system on the phase space
P = H1

0 ([0, π]) × L2([0, π]) with coordinates u and v = ut, where H1
0 ([0, π]) and

L2([0, π]) are the usual Sobolev spaces. The Hamiltonian for (1.1) is then

H =
1

2
〈v, v〉+ 1

2
〈Au, u〉+ 1

8

∫ π

0

u8dx, (1.2)
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where A = −d2/dx2 + m and 〈·, ·〉 denotes the usual scalar product in L2. The
Hamiltonian equations of motions are

ut =
∂H

∂v
= v, vt = −∂H

∂u
= −Au− u7. (1.3)

The quasi-periodic solutions of (1.1) to be constructed are of small amplitude.
Thus, in first approximation the high order term u7 may be considered as a small
perturbation of the linear equation utt − uxx +mu = 0. The latter is of course well
understood and has a plenty of quasi-periodic solutions. To be more precise, let

φj(x) =

√
2

π
sin jx, λj =

√
j2 +m, j = 1, 2, · · ·

be the basic modes and frequencies of the linear system utt − uxx +mu = 0 with
Dirichlet boundary conditions. Then every solution is the superposition of their
harmonic oscillations and of the form

u(t, x) =
∑
j≥1

qj(t)φj(x), qj(t) = Ij cos(λjt+ ϕ0
j ).

Their combined motions are periodic, quasi-periodic or almost-periodic, respec-
tively, depending on whether one, finitely many or infinitely many modes are ex-
cited. In particular, for every choice

J = {n1 < n2 < n3} ⊂ N+

of 3-modes there is an invariant 6-dimensional linear subspace EJ that is foliated
into rotational tori with frequencies λn1

, λn2
, λn3

:

EJ = {(u, v) = (q1φn1
+ q2φn2

+ q3φn3
, p1φn1

+ p2φn2
+ p3φn3

)} =
⋃
I∈P3

TJ(I),

where P3 = {I ∈ R3 : Il > 0, l = 1, 2, 3} is the positive quadrant in R3 and

TJ(I) = {(u, v) : q2l + λ−2
nl

p2l = Il, l = 1, 2, 3},

using the above representation of u and v. Upon restoring the nonlinearity u7, EJ

with their quasi-periodic solutions will not persist in their entirety due to the modes
and the strong perturbing effect of u7 for large amplitudes. However, there does
persist a Cantor subfamily of rotational 3-torus which are only slightly deformed.
More exactly, we have the following theorem:

Theorem 1.1. Considering 1D nonlinear wave equation (1.1), assume 0 < m ≤ 1
9

and the index set J = {n1 < n2 < n3} satisfies

nl+1 ≥ n3
l

m
, l = 1, 2. (1.4)

Then there is a set C∗ in P3 with positive Lebesgue measure, a family of 3-tori

TJ [C∗] =
⋃

I∈C∗

TJ(I) ⊂ EJ
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over C∗, a Lipschitz continuous embedding

Φ : TJ [C∗] ↪→ P,

which is a higher order perturbation of the inclusion map Φ0 : EJ ↪→ P restricted
to TJ [C∗], such that the restriction of Φ to each TJ(I) in the family is an embedding
of a rotational invariant 3-torus for the nonlinear wave equation (1.1).

We prove the above theorem by KAM theory. Historically, KAM theory for
partial differential equations was originated by Kuksin [14–16] and Wayne [20].
In order to use KAM theory, some parameters are needed. For nonlinear wave
equation, one way of introducing parameters is to consider parameterized potentials,
see [1, 8, 9, 16, 20] for examples. However, for a prescribed potential, owing to the
absence of exterior parameters, one needs to find out some suitable Birkhoff normal
form, and then extract parameters by amplitude-frequency modulation. In this
aspect, [17] is the pioneer work, where nonlinear Schrödinger equation with constant
potential is studied by Kuksin and Pöschel, and Birkhoff normal form of order four
is used to extract parameters. For wave equation with cubic nonlinearity u3, see
Pöschel [18] for m > 0, Yuan [22] for −1 < m < 0, Yuan [23] for the completely
resonant case m = 0 and Yuan [24] for a prescribed non-constant potential. For
wave equation with quintic nonlinearity, 2-dimensional and b-dimensional invariant
tori are obtained in [12] and [13] respectively. For wave equation with higher order
nonlinearity, only 2-dimensional invariant tori is obtained in [11]. For derivative
nonlinear wave equations, see [3, 4] by Berti, Biasco and Procesi. See for example
[2, 5–7, 10] for the recent results for wave equations. In the following we lay out an
outline of the present paper, and meanwhile point out the main difficulties compared
with [11–13].

In Section 2, the Hamiltonian is written in infinitely many coordinates, and then
put into a partial Birkhoff normal form. In order to obtain the partial Birkhoff
normal form, we have to estimate the lower bound of the divisor

|λj1 + · · ·+ λj8 |

for (j1, · · · , j8) with at most 2 components not in J . Here the index set J contains
3 indices instead of 2 indices in [11], while in [12] and [13], we need to estimate the
lower bound of the divisor

|λj1 + · · ·+ λj6 |

for (j1, · · · , j6) with at most 2 components not in some index set. This is the key
difficulty. We solve it by choosing suitable index set J (see (1.4)) and exploring the
properties of the function f(t) =

√
t2 +m− t (see Lemma 4.1-4.3 in Section 4).

In Section 3, we prove Theorem 1.1 by applying the KAM theorem in Appendix.
To this end, we need to check the assumptions of the KAM theorem. One difficulty
is to check the nondegeneracy condition |ω−1|Lω(Π) ≤ L in (5.1). We observe that the
Lipschitz semi-norm of ω−1 can be controlled by 3||(∂ω∂ξ )

−1||ℓ1→ℓ1 , where | · |1 is the
`1-norm for a vector and || · ||ℓ1→ℓ1 is the operator norm from `1 to `1 for a matrix.
However, due to the fact that the tangential frequency ω(ξ) is a vector in R3 instead
of in R2 in [11], we can not formulate (∂ω∂ξ )

−1. Another difficulty is to estimate the
thrown measure. In order to check the assumption (5.6) in the KAM theorem, we
have to estimate the measure of ζ ∈ Θ for 〈k, ω(ζ)〉+Ωi(ζ)−Ωj(ζ) small. The main
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idea is to prove either 〈k, ω(ζ)〉+ Ωi(ζ)− Ωj(ζ) or ∂3

∂ζ3

(
〈k, ω(ζ)〉+ Ωi(ζ)− Ωj(ζ)

)
is larger than some positive constant.

In Section 4, some technical lemmas are given. In Appendix, we copy a KAM
theorem from [11], [12] and [13], which is a combination of Theorem A and Theorem
D in [19] with some modifications.

2. The Hamiltonian and partial Birkhoff normal form
To rewrite (1.2) as a Hamiltonian in infinitely many coordinates we make the ansatz

u = Sq =
∑
j≥1

qj√
λj

φj , v =
∑
j≥1

√
λjpjφj .

The coordinates are taken from some Hilbert space `a,s of all real valued sequences
w = (w1, w2, · · · ) with finite norm

||w||2a,s =
∑
j≥1

|wj |2j2se2aj .

Below we will assume that a ≥ 0 and s > 1
2 . We then obtain the Hamiltonian

H = Λ+G =
1

2

∑
j≥1

λj(p
2
j + q2j ) +

1

8

∫ π

0

(Sq)8dx (2.1)

with equations of motions

q̇j =
∂H

∂pj
= λjpj , ṗj = −∂H

∂qj
= −λjqj −

∂G

∂qj
. (2.2)

These are the Hamiltonian equations of motions with respect to the standard sym-
plectic structure

∑
j dqj ∧dpj on `a,s× `a,s. The same as Lemma 3 in [18], we know

the gradient Gq is real analytic as a map from some neighborhood of the origin in
`a,s into `a,s+1 with

||Gq||a,s+1 = O(||q||7a,s). (2.3)

Thus the associated Hamiltonian vector field

XG =
∑
j≥1

(
∂G

∂pj

∂

∂qj
− ∂G

∂qj

∂

∂pj
)

defines a real analytic map from some neighborhood of the origin in `a,s × `a,s into
`a,s+1 × `a,s+1.

Note that

G(q) =
1

8

∫ π

0

(Sq)8dx =
1

8

∑
j1,··· ,j8≥1

Gj1···j8qj1 · · · qj8 (2.4)

with
Gj1···j8 =

1√
λj1 · · ·λj8

∫ π

0

φj1 · · ·φj8dx. (2.5)
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It is not difficult to verify that Gj1···j8 = 0 unless j1 ± · · · ± j8 = 0 for some
combination of plus and minus signs. Thus, only a codimension one set of coefficients
is actually different from zero, and the sum extends only over j1 ± · · · ± j8 = 0. For
simplicity, we denote Gijkl = Giijjkkll, Gnl

= Gnl · · ·nl︸ ︷︷ ︸
8

. In particular, we have

Gijkl = Giijjkkll =
16

π4λiλjλkλl

∫ π

0

sin2 ix sin2 jx sin2 kx sin2 lxdx

=
1

8π3λiλjλkλl
(8 + 4δij + 4δik + 4δil + 4δjk + 4δjl + 4δkl

− 2δi+j,k − 2δi+k,j − 2δj+k,i − 2δi+j,l − 2δi+l,j − 2δl+j,i

− 2δk+j,l − 2δk+l,j − 2δj+l,i − 2δi+k,l − 2δi+l,k − 2δk+l,i

+ δi+j+k,l + δi+j+l,k + δj+k+l,i + δi+k+l,j

+ δi+j,k+l + δi+k,j+l + δi+l,j+k) (2.6)

by elementary calculation. In the rest of this section we transform the Hamiltonian
(2.1) into some partial Birkhoff normal form of order 14 so that it happens, in
a sufficiently small neighborhood of the origin, as a small perturbation of some
nonlinear integrable system.

For the rest of this paper we introduce complex coordinates

zj =
1√
2
(qj + ipj), z̄j =

1√
2
(qj − ipj), j ≥ 1.

Inserting them into (2.1), we obtain a real analytic Hamiltonian

H = Λ+G

=
∑
j≥1

λj |zj |2 +
1

8

∫ π

0

(
∑
j≥1

zj + z̄j√
2λj

φj)
8dx

=
∑
j≥1

λj |zj |2 +
1

128

∑
j1,··· ,j8≥1

Gj1···j8(zj1 + z̄j1) · · · (zj8 + z̄j8) (2.7)

on the now complex Hilbert space `a,s with symplectic structure i
∑

j≥1 dzj ∧ dz̄j .
Real analytic means that H is a function of z and z̄, real analytic in the real and
imaginary part of z. Conveniently introducing z−j := z̄j for j ≥ 1, then H in (2.7)
is written as

H = Λ+G (2.8)
with

Λ =
∑
j≥1

λjzjz−j , (2.9)

G =
1

128

∑
j1,··· ,j8∈Z∗

Gj1···j8zj1 · · · zj8 , (2.10)

where Gj1···j8 := G|j1|···|j8| for j1, · · · , j8 ∈ Z∗ := Z \ {0}.
Define the normal form set

N ={(j1, · · · , j8) ∈ Z8
∗ : There exists a 8− permutation τ
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such that jτ(1) = −jτ(2), · · · , jτ(7) = −jτ(8)}.

Define the following index sets

∆l = {(j1, · · · , j8) ∈ Z8
∗ : There are exactly l components not in{±n1,±n2,±n3}}

for l = 0, 1, 2 and

∆3={(j1, · · · , j8)∈Z8
∗ : There are at least 3 components not in{±n1,±n2,±n3}}.

Split G in (2.10) into three parts:

G = Ḡ+ G̃+ Ĝ, (2.11)

where Ḡ is the normal form part of G with (j1, · · · , j8) ∈ (∆0 ∪∆1 ∪∆2) ∩N :

Ḡ =
1

128

∑
(j1,··· ,j8)∈(∆0∪∆1∪∆2)∩N

Gj1···j8zj1 · · · zj8 (2.12)

=
35

64

3∑
l=1

Gnl
|znl

|8+35

4

∑
l,l′
l̸=l′

Gnlnlnlnl′ |znl
|6|znl′ |

2+
315

16

∑
l,l′
l ̸=l′

Gnlnlnl′nl′ |znl
|4|znl′ |

4

+
315

4

∑
l,l′,l′′

l ̸=l′,l ̸=l′′,l′ ̸=l′′

Gnlnlnl′nl′′ |znl
|4|znl′ |

2|znl′′ |
2

+
35

4

b∑
l=1

Gnlnlnlj |znl
|6|zj |2 +

315

4

∑
l,l′
l ̸=l′

Gnlnlnl′ j |znl
|4|znl′ |

2|zj |2

+
315

2

∑
l,l′,l′′

l ̸=l′,l ̸=l′′,l′ ̸=l′′

Gnlnl′nl′′ j |znl
|2|znl′ |

2|znl′′ |
2|zj |2,

G̃ is the non-normal form part of G with (j1, · · · , j8) ∈ (∆0 ∪∆1 ∪∆2) \ N :

G̃ =
1

128

∑
(j1,··· ,j8)∈(∆0∪∆1∪∆2)\N

Gj1···j8zj1 · · · zj8 , (2.13)

and Ĝ is the part of G with (j1, · · · , j8) ∈ ∆3:

Ĝ =
1

128

∑
(j1,··· ,j8)∈∆3

Gj1···j8zj1 · · · zj8 . (2.14)

We will eliminate G̃ by a symplectic coordinate transformation X1
F , which is the

time-1-map of the flow of a Hamiltonian vector filed XF given by a Hamiltonian

F =
∑

(j1,··· ,j8)∈Z8
∗

Fj1···j8zj1 · · · zj8 (2.15)

with coefficients

iFj1···j8 =


Gj1···j8

128(λj1 + · · ·+ λj8)
, for (j1, · · · , j8) ∈ (∆0 ∪∆1 ∪∆2) \ N ,

0, otherwise.
(2.16)
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Here λj := sgnj · λ|j| for j ∈ Z∗. Then formally we have

{Λ, F}+ G̃ = 0, (2.17)

where {·, ·} is Poisson bracket with respect to the symplectic structure

i
∑
j≥1

dzj∧dz−j .

Thus expanding at t = 0 and using Taylor’s formula we formally get

H ◦X1
F = H ◦Xt

F |t=1

= Λ+ {Λ, F}+
∫ 1

0

(1− t){{Λ, F}, F} ◦Xt
F dt+G+

∫ 1

0

{G,F} ◦Xt
F dt

= Λ+ Ḡ+ Ĝ+

∫ 1

0

{Ḡ+ tG̃+ Ĝ, F} ◦Xt
F dt. (2.18)

Now we need to show the correctness of the definition (2.16) and establish the
regularity of the vector field XF . To this end, we prove that the divisors λj1+· · ·+λj8

are away from zero:

Lemma 2.1. Suppose 0 < m ≤ 1
9 and the indices n1, n2, n3 ∈ N+ satisfy

nl+1 ≥ 6n3
l

m
, l = 1, 2. (2.19)

Then for (j1, · · · , j8) ∈ (∆0 ∪∆1 ∪∆2) \ N , we have

∣∣λj1 + · · ·+ λj8

∣∣ ≥ m2

480n3
3

. (2.20)

Proof. This lemma is equivalent to prove that, for j1, · · · , j8 ∈ N+ and σ1, · · · , σ8 ∈
{1,−1}, if (σ1j1, · · · , σ8j8) ∈ (∆0 ∪∆1 ∪∆2) \ N , then we have

∣∣ 8∑
l=1

σlλjl

∣∣ ≥ m2

480n3
3

. (2.21)

We firstly consider the case
∑8

l=1 σljl 6= 0. In view of 0 < m ≤ 1
9 and

λj = j + (
√
j2 +m− j) = j +

m√
j2 +m+ j

, j ∈ N+, (2.22)

we have

∣∣ 8∑
l=1

σlλjl

∣∣ ≥ ∣∣ 8∑
l=1

σljl
∣∣−m

8∑
l=1

1√
j2l +m+ jl

≥ 1− 4m ≥ 1

4
, (2.23)

which is larger than m2

480n3
3
. Therefore, in the following, we assume

8∑
l=1

σljl = 0. (2.24)
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Introduce the function

f(t) =
√
t2 +m− t =

m√
t2 +m+ t

, (2.25)

which is positive, monotone decreasing and convex for t ≥ 0. Thus, by (2.24) and
(2.25), we have

8∑
l=1

σlλjl =

8∑
l=1

σl(λjl − jl) =

8∑
l=1

σlf(jl). (2.26)

We secondly consider the case σkjk + σljl = 0 for some 1 ≤ k, l ≤ 8. Without
loss of generality, assuming k = 7, l = 8, then we have

∑6
l=1 σljl = 0. Then by

using Lemma 2.1 in [13], we get

|
8∑

l=1

σlλjl | = |
6∑

l=1

σlλjl | ≥
m2

20n3
3

, (2.27)

which is larger than m2

480n3
3
. Therefore, in the following, we assume

σkjk + σljl 6= 0, ∀ 1 ≤ k, l ≤ 8. (2.28)

From (2.19), we get

nl+1 ≥ 6n3
l

m
≥ 6nl

m
≥ 54nl, l = 1, 2. (2.29)

Now our aim is to prove (2.20) for (σ1j1, · · · , σ8j8) ∈ (∆0 ∪∆1 ∪∆2) \ N with
(2.24) and (2.28). It is obvious (∆0 ∪∆1 ∪∆2) \ N = (∆0 \ N ) ∪∆1 ∪ (∆2 \ N )
and no element in ∆0 \ N fulfills (2.24). In the remaining proof, we consider ∆1

and ∆2 \ N respectively.
For (σ1j1, · · · , σ8j8) ∈ ∆1, denote the unique index different with n1, n2, n3 in

{j1, · · · j8} as a, the maximum and minimum indices in {j1, · · · , j8} \ {a} as nν , nν′

respectively.
Case 1: nν′ = nν . By (2.24) and (2.28), we have a = 7nν . Thus in view of

(2.26), we get ∣∣ 8∑
l=1

σlλjl

∣∣ = 7f(nν)− f(a) > 6f(nν). (2.30)

Case 2: nν > nν′ . By the definition of nν , all indices in {j1, · · · , j8} \ {a, nν}
are smaller than nν−1. By (2.24) and (2.29),

a ≥ nν − 6nν−1 ≥ (54− 6)nν−1 ≥ 48nν′ . (2.31)

Subcase 2.1: There is only one nν′ in {j1, · · · , j8} \ {a}. Recall the definition of
nν′ , we conclude that all indices in {j1, · · · , j8} \ {nν′ , a} are bigger than nν′+1 ≥
54nν′ . Therefore, using Lemma 4.1, (2.26) and (2.31), we have

∣∣ 8∑
l=1

σlλjl

∣∣ ≥ f(nν′)− 6f(nν′+1)− f(a)

≥ f(nν′)− 6f(54nν′)− f(48nν′)
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≥ f(nν′)−
√
10 + 3

54
f(nν′)−

√
10 + 3

288
f(nν′)

≥ 1

2
f(nν′). (2.32)

Subcase 2.2: There are at least two nν′ in {j1, · · · , j8} \ {a}. Due to (2.28), we
remark that these two nν′ have the same signs. Moreover, all indices in {j1, · · · , j8}\
{nν′ , a} are bigger than nν′+1 ≥ 54nν′ . Therefore, using Lemma 4.1, (2.26) and
(2.31), we have

∣∣ 8∑
l=1

σlλjl

∣∣ ≥ 2f(nν′)− 5f(nν′+1)− f(a)

≥ 2f(nν′)− 5f(54nν′)− f(48nν′)

≥ 2f(nν′)− 5(
√
10 + 3)

324
f(nν′)−

√
10 + 3

288
f(nν′)

≥ f(nν′). (2.33)

It is easy to check that the right hands of (2.56), (2.58), (2.59) are larger that
m2

480n3
3
. Hence (2.53) holds true for (σ1j1, · · · , σ8j8) ∈ ∆1.

For (σ1j1, · · · , σ8j8) ∈ ∆2\N , denote a, a′ the two indices different with n1, n2, n3

in {j1, · · · , j8}. Without loss of generality, we assume a ≤ a′. Denote nν and nν′

the maximum and minimum index in {j1, · · · , j8} \ {a, a′} respectively.
Case 1: nν = nν′ .
Subcase 1.1: a′ − a = 6nν . Then in view of (2.26), we get

|
8∑

l=1

σlλjl | = 6f(nν) + f(a)− f(a′) > 6f(nν). (2.34)

Subcase 1.2: a′ + a = 6nν and a ≤ nν

6 . Then using (2.26), Lemma 4.1 and the
fact that f is convex, we get

∣∣ 8∑
l=1

σlλjl

∣∣ = f(a) + f(a′)− 6f(nν)

≥ f(
nν

6
) + f(

35nν

6
)− 6f(nν)

≥ 36√
10 + 3

f(nν) +
6

35
f(nν)− 6f(nν)

≥ 1

480
f(nν). (2.35)

Subcase 1.3: a′ + a = 6nν and nν

6 < a < nν

2 . By Taylor’s formula, we have, for
j ≥ 1,

λj =
√
j2 +m = j +

m

2j
− m2

8
√

j2 + θm
3 , (2.36)

where 0 < θ < 1 depends on j. Thus, we have

∣∣ 8∑
l=1

σlλjl

∣∣ = |6λnν − λa − λa′ |
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=
∣∣m
2
(
6

nν
− 1

a
− 1

a′
)− m2

8
(

6√
n2
ν + θ1m

3

− 1
√
a2 + θ2m

3 − 1√
(a′)2 + θ3m

3 )
∣∣, (2.37)

where 0 < θ1, θ2, θ3 < 1. Since nν , a, a′ are integers and a + a′ = 6nν , we know
|aa′ − n2

ν | ≥ 1. Otherwise, we have aa′ − n2
ν = 0, and further a = (3 −

√
8)nν ,

a′ = (3 +
√
8)nν , which is impossible. Thus,∣∣ 6

nν
− 1

a
− 1

a′
∣∣ = |6aa′ − nν(a+ a′)|

nνaa′
=

6|aa′ − n2
ν |

nνaa′
≥ 6

nνaa′
. (2.38)

On the other hand,∣∣ 6√
n2
ν + θ1m

3 − 1
√
a2 + θ2m

3 − 1√
(a′)2 + θ3m

3

∣∣ ≤ 1

a3
+

1

(a′)3
− 6√

n2
ν +m

3

≤ 1

a3
− 5√

n2
ν +m

3 . (2.39)

Thus, from (2.37)-(2.39), we get

∣∣ 8∑
l=1

σlλjl

∣∣ ≥ 3m

nνaa′
− m2

8

( 1

a3
− 5√

n2
ν +m

3

)
=

3m

a

( 1

nνa′
− m

24a2

)
+

5m2

8
√

n2
ν +m

3

≥ 3m

a

( 1

nν(6nν)
− 1/9

24(nν/6)2

)
+

5m2

8
√
n2
ν +m

3

=
5m2

8
√
n2
ν +m

3 . (2.40)

Subcase 1.4: a′ + a = 6nν and a ≥ nν

2 . In view of a + a′ = 6nν and our
assumption a ≤ a′, we know a′ ≥ 3nν . Thus using (2.26) and Lemma 4.1, we get

∣∣ 8∑
l=1

σlλjl

∣∣ = 6f(nν)− f(a)− f(a′)

≥ 6f(nν)− f(
nν

2
)− f(3nν)

≥ 6f(nν)− 2f(nν)−
√
10 + 3

18
f(nν)

> f(nν). (2.41)

Case 2: nν > nν′ .
Subcase 2.1: a and nν′ have the same signs. By the definition of nν′ , all indices

in {j1, · · · , j8} \ {nν′ , a, a′} are not less than nν′+1. Therefore using (2.26), (2.29)
and Lemma 4.1, we get

|
8∑

l=1

σlλjl | ≥ f(nν′) + f(a)− f(a′)− 5f(nν′+1)
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≥ f(nν′)− 5f(nν′+1)

≥ f(nν′)− 5f(54nν′)

≥ f(nν′)− 5(
√
10 + 3)

324
f(nν′)

>
1

2
f(nν′). (2.42)

Subcase 2.2: a and nν′ have different signs, and there is only one nν′ . In view of
(2.24), we have a−nν′ ± a′ ±nν ±nj1 ± · · · ±nj4 = 0. As a ≤ a′ and nν ≥ 54nν−1,
we conclude that a′ ≥ nν−1 and has different sign with nν . If ν ≥ ν′ + 2, then
a′ ≥ nν′+1; otherwise ν = ν′ + 1, then there are 3 nν ’s and thus a′ ≥ nν = nν′+1.
Now all indices in {j1, · · · , j8}\{nν′ , a} are not less than nν′+1. Using (2.19), (2.26),
Lemma 4.2 and the fact that a′ has different sign with nν , we have

|
8∑

l=1

σlf(λjl)| = |f(a)− f(nν′)± f(a′)± f(nν)± f(nj1)± · · · ± f(nj4)|

≥ |f(a)− f(nν′)| − 3f(nν′+1)

≥ m

2

1

(nν′ + 1)2 +m
− 3m

2nν′+1

≥ 2m

17n2
ν′

− 3m2

12n3
ν′

≥ m

20n3
ν′
, (2.43)

where in the last inequality we use 0 < m ≤ 1
9 .

Subcase 2.3: a and nν′ have different signs, and there are l nν′s for 2 ≤ l ≤ 4.
In view of (2.24), we have a − lnν′ ± a′ ± nν ± nj1 ± · · · ± nj5−l

= 0. As a ≤ a′

and nν ≥ 54nν−1, we conclude that a′ ≥ nν−1 and has different sign with nν . If
ν ≥ ν′ + 2, then a′ ≥ nν′+1; otherwise ν = ν′ + 1, then there are 3 nν ’s and thus
a′ ≥ nν = nν′+1. Now all indices in {j1, · · · , j8} \ {nν′ , a} are not less than nν′+1.
Using (2.19), (2.26), Lemma 4.3 and the fact that a′ has different sign with nν , we
have

|
8∑

l=1

σlf(λjl)| ≥ |f(a)− lf(nν′)| − 3f(nν′+1)

≥ m2

2n3
ν′

− (3− l

2
)

m

nν′+1

≥ m2

2n3
ν′

− (3− l

2
)
m2

6n3
ν′

>
m2

6n3
ν′
. (2.44)

Subcase 2.4: a and nν′ have different signs, and there are 5 nν′ . In view of
(2.24), we have a − 5nν′ ± a′ ± nν = 0. As a ≤ a′ and nν′ ≤ nν

54 , we conclude
that a′ ≥ 1

2 (nν − 5nν′) ≥ 9nν

20 and has different sign with nν . Using (2.19), (2.26),
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Lemma 4.3 and the fact that a′ has different sign with nν , we have

|
8∑

l=1

σlf(λjl)| ≥ |f(a)− 5f(nν′)| − f(
9nν

20
)

≥ m2

2n3
ν′

− 10m

9nν

≥ m2

2n3
ν′

− 5m2

27n3
ν′

≥ 25m2

54n3
ν′
. (2.45)

It is easy to check that the right hands of (2.34), (2.35), (2.40), (2.41), (2.42),
(2.43), (2.44), (2.45) are larger than m2

480n3
3
. Hence (2.53) holds true for (σ1j1, · · · , σ8j8)

∈ ∆2 \ N . This completes the proof of this lemma.
In view of (2.5) and the above lemma, in the same way as [18], the regularity of

the vector field XF could be easily established:

XF ∈ A(`a,sb , `a,s+1
b ), (2.46)

where A(`a,sb , `a,s+1
b ) denotes the class of all real analytic maps from some neigh-

borhood of the origin in `a,sb into `a,s+1
b , and `a,sb denotes the Hilbert space of all

bi-infinite sequences with finite norm ||q||2a,s = |q0|2+
∑

j |qj |2|j|2se2|j|a. Therefore,
in view of (2.18), we obtain the following theorem:

Theorem 2.1. Suppose 0 < m ≤ 1
9 and the indices n1, n2, n3 ∈ N+ satisfy (2.19).

Then by the symplectic change of coordinates Γ1 := X1
F , which is real analytic in

some neighborhood of the origin in `a,pb , the Hamiltonian H = Λ + G in (2.8) is
taken into

H ◦ Γ1 = Λ+ Ḡ+ Ĝ+K, (2.47)
where Λ is in (2.9), Ḡ is in (2.12), Ĝ is in (2.14), and

K =

∫ 1

0

{Ḡ+ tG̃+ Ĝ, F} ◦Xt
F dt. (2.48)

Moreover, XḠ, XĜ, XK ∈ A(`a,pb , `a,p+1
b ).

By simple calculation we have

K =
{
Ḡ+ Ĝ+

1

2
G̃, F

}
+

∫ 1

0

{{
(1− t)(Ḡ+ Ĝ)+

1

2
(1− t2)G̃, F

}
, F

}
◦Xt

F dt, (2.49)

where the first term is order 14 and the second term is at least order 20. In order
to obtain a partial Birkhoff normal form of order 14, we need another real analytic,
symplectic coordinate change. To this end, define the normal form set

N ′ ={(j1, · · · , j14) ∈ Z14
∗ : There exists a 14-permutation τ such that

jτ(1) = −jτ(2), jτ(3) = −jτ(4), · · · , jτ(13) = −jτ(14)},

and the following index sets

∆′
l={(j1, · · · , j14)∈Z14

∗ :There are exactly l components not in{±n1,±n2,±n3}}
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for l = 0, 1, and

∆′
2={(j1, · · · , j14)∈Z14

∗ :There are at least 2 components not in{±n1,±n2,±n3}}.

Split the first term of K in (2.49) into three parts:{
Ḡ+ Ĝ+

1

2
G̃, F

}
= K̄ + K̃ + K̂, (2.50)

where K̄ is the normal form part with (j1, · · · , j14) ∈ (∆′
0 ∪ ∆′

1) ∩ N ′, K̃ is the
non-normal form part with (j1, · · · , j14) ∈ (∆′

0 ∪∆′
1) \ N ′, and K̂ is the part with

(j1, · · · , j14) ∈ ∆′
2. The same procedure as eliminating G̃, we will eliminate K̃

by another symplectic coordinate transformation. Similarly, a lemma about the
divisors λj1 + · · ·+ λj14 is needed:

Lemma 2.2. Suppose 0 < m ≤ 1
9 and the indices n1, n2, n3 ∈ N+ satisfy

nl+1 ≥ 6n3
l

m
, l = 1, 2. (2.51)

Then for (j1, · · · , j14) ∈ (∆′
0 ∪∆′

1) \ N ′, we have∣∣λj1 + · · ·+ λj14

∣∣ ≥ m2

4n3
3

. (2.52)

Proof. This lemma is equivalent to prove that, for j1, · · · , j14 ∈ N+ and σ1, · · · ,
σ14 ∈ {1,−1}, if (σ1j1, · · · , σ14j14) ∈ (∆′

0 ∪∆′
1) \ N ′, then we have

∣∣ 14∑
l=1

σlλjl

∣∣ ≥ m2

4n3
3

. (2.53)

Similarly to (2.24) and (2.28) in Lemma 2.1, we may assume
14∑
l=1

σljl = 0 (2.54)

and
σkjk + σljl 6= 0, 1 ≤ k, l ≤ 14. (2.55)

Now our aim is to prove (2.52) for (σ1j1, · · · , σ14j14) ∈ (∆′
0 ∪ ∆′

1) \ N ′ with
(2.54) and (2.55). It is obvious (∆′

0 ∪∆′
1) \N ′ = (∆′

0 \N ′)∪∆′
1 and no element in

∆′
0 \ N ′ fulfills (2.54). In the remaining proof, we consider ∆′

1.
For (j1, · · · , j14) ∈ ∆′

1, denote the unique index different with n1, n2, n3 in
{j1, · · · , j14} as a, the maximum and minimum indices in {j1, · · · , j14} \ {a} as
nν , nν′ respectively.

Case 1: nν′ = nν . By (2.54) and (2.55), we have a = 13nν . Thus in view of
(2.26), we get ∣∣ 14∑

l=1

σlλjl

∣∣ = 13f(nν)− f(a) > 12f(nν). (2.56)

Case 2: nν > nν′ . By the definition of nν , all indices in {j1, · · · , j14} \ {a, nν}
are smaller than nν−1. By (2.51) and (2.54),

a ≥ nν − 12nν−1 ≥ 42nν−1 ≥ 27nν′ . (2.57)
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Subcase 2.1: There is only one nν′ in {j1, · · · , j14}\{a}. Recall the definition of
nν′ , we conclude that all indices in {j1, · · · , j14} \ {nν′ , a} are bigger than nν′+1 ≥
54nν′ . Therefore, using Lemma 4.1, (2.26) and (2.57), we have

∣∣ 14∑
l=1

σlλjl

∣∣ ≥ f(nν′)− 12f(nν′+1)− f(a)

≥ f(nν′)− 12f(54nν′)− f(27nν′)

≥ f(nν′)−
√
10 + 3

27
f(nν′)−

√
10 + 3

162
f(nν′)

≥ 1

2
f(nν′). (2.58)

Subcase 2.2: There are at least two nν′ in {j1, · · · , j14} \ {a}. Due to (2.55), we re-
mark that these two nν′ have the same signs. Moreover, all indices in {j1, · · · , j14}\
{nν′ , a} are bigger than nν′+1 ≥ 54nν′ . Therefore, using Lemma 4.1, (2.26) and
(2.57), we have

∣∣ 14∑
l=1

σlλjl

∣∣ ≥ 2f(nν′)− 11f(nν′+1)− f(a)

≥ 2f(nν′)− 11f(54nν′)− f(27nν′)

≥ 2f(nν′)− 11(
√
10 + 3)

324
f(nν′)−

√
10 + 3

162
f(nν′)

≥ f(nν′). (2.59)

It is easy to check that the right hands of (2.56), (2.58), (2.59) are larger that m2

4n3
3
.

Hence (2.53) holds true for (σ1j1, · · · , σ14j14) ∈ ∆′
1.

Therefore, we can obtain the following result:

Theorem 2.2. Suppose 0 < m ≤ 1
9 and the indices n1, n2, n3 ∈ N+ satisfy

nl+1 ≥ 6n3
l

m
, l = 1, 2. (2.60)

Then by another symplectic change of coordinates Γ2, which is the time-1-map of
the flow of a Hamiltonian vector field XF̃ and is real analytic in some neighborhood
of the origin in `a,sb , the Hamiltonian H ◦ Γ1 in (2.47) is taken into

(H ◦ Γ1) ◦ Γ2 = Λ+ Ḡ+ Ĝ+ K̄ + K̂ + T, (2.61)

where K̄ is of the form

K̄ =
∑

l1,l2,l3∈N
l1+l2+l3=7

Kl1l2l3 |zn1
|2l1 |zn2

|2l2 |zn3
|2l3 (2.62)

with coefficients Kl1l2l3 real and depending only on n1, n2, n3 and m, and

|K̂| = O(‖z‖12a,s‖ẑ‖2a,s), (2.63)
|T | = O(‖z‖20a,s), (2.64)

ẑ = (zj)j∈N+\{n1,n2,n3}. Moreover, XK̄ , XK̂ , XT ∈ A(`a,sb , `a,s+1
b ).
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3. Proof of Theorem 1.1
By the last section there exist two real analytic, symplectic changes of coordinates
Γ1,Γ2 which takes H into H ◦ Γ1 ◦ Γ2 = Λ + Ḡ + Ĝ + K̄ + K̂ + T, where Λ is in
(2.9), Ḡ is in (2.12), Ĝ is in (2.14), K̄ is in (2.62), K̂ is in (2.63), T is in (2.64). Let
I = (|zj |2 : j ∈ N+), then we have

Λ =
∑
j≥1

λjIj , (3.1)

Ḡ =
35

8π3

( 3∑
l=1

35I4nl

64λ4
nl

+
∑
l,l′
l̸=l′

5I3nl
Inl′

λ3
nl
λnl′

+
∑
l,l′
l ̸=l′

81I2nl
I2nl′

8λ2
nl
λ2
nl′

+
∑
l,l′,l′′

l̸=l′,l̸=l′′,l′ ̸=l′′

27I2nl
Inl′ Inl′′

λ2
nl
λnl′λnl′′

)

+
35

4
(

b∑
l=1

GnlnlnljI
3
nl

+ 9
∑
l,l′
l ̸=l′

Gnlnlnl′ jI
2
nl
Inl′

+ 18
∑
l,l′,l′′

l ̸=l′,l ̸=l′′,l′ ̸=l′′

Gnlnl′nl′′ jInl
Inl′ Inl′′ )Ij ,

(3.2)

K̄ =
∑

l1,l2,l3∈N
l1+l2+l3=7

Kl1l2l3I
l1
n1
I l2n2

I l3n3
. (3.3)

Moreover, we know

|Ĝ| = O(‖z‖5a,s‖ẑ‖3a,s), |K̂| = O(‖z‖12a,s‖ẑ‖2a,s), |T | = O(‖z‖20a,s). (3.4)

Step 1: New coordinates. We introduce symplectic polar and real coordinates
(x, y, u, v) by setting

znl
=

√
ξ

1
3

l + yle
−ixl , l = 1, 2, 3

zj =
1√
2
(uj + ivj), j 6= n1, n2, n3,

(3.5)

i
∑
j≥1

dzj ∧ dz̄j =

3∑
i=1

dxi ∧ dyi +
∑

j ̸=n1,n2,n3

duj ∧ dvj

and 
Inl

= ξ
1
3

l + yl, l = 1, 2, 3,

Ij =
1

2
(u2

j + v2j ), j 6= n1, n2, n3.

Up to a constant depending only on ξ, the normal form Λ + Ḡ+ K̄ becomes

〈ω(ξ), y〉+ 1

2
〈Ω(ξ), u2 + v2〉+Q

with tangential frequencies

ωl(ξ) =λnl
+

1225ξl
128π3λ4

nl

+
525

4π3

∑
l′ ̸=l

ξ
2
3

l ξ
1
3

l′

λ3
nl
λnl′

+
525

8π3

∑
l′ ̸=l

ξl′

λnl
λ3
nl′

(3.6)
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+
2835

16π3

∑
l′ ̸=l

ξ
1
3

l ξ
2
3

l′

λ2
nl
λ2
nl′

+
945

4π3

∑
l′,l′′ ̸=l,
l′ ̸=l′′

ξ
1
3

l ξ
1
3

l′ ξ
1
3

l′′

λ2
nl
λnl′λnl′′

+
945

4π3

∑
l′,l′′ ̸=l
l′ ̸=l′′

ξ
2
3

l′ ξ
1
3

l′′

λnl
λ2
nl′

λnl′′

+ 7K0···070···0ξ
2
l + 6

∑
jl=6
j
l′=1

Kj1···jbξ
5
3

l ξ
1
3

l′ + 5
∑
jl=5

j
l′+j

l′′=2

Kj1···jbξ
5
3

l ξ
j
l′
3

l′ ξ
j
l′′
3

l′′

+ 4
∑
jl=4

j
l′+j

l′′+j
l′′′=3

Kj1···jbξ
4
3

l ξ
j
l′
3

l′ ξ
j
l′′
3

l′′ ξ
j
l′′′
3

l′′′

+ 3
∑
jl=3

j
l′+j

l′′+j
l′′′+j

l(4)
=4

Kj1···jbξlξ
j
l′
3

l′ ξ
j
l′′
3

l′′ ξ
j
l′′′
3

l′′′ ξ
j
l(4)

3

l(4)

+ 2
∑
jl=2

j
l′+j

l′′+j
l′′′+j

l(4)
+j

l(5)
=5

Kj1···jbξ
2
3

l ξ
j
l′
3

l′ ξ
j
l′′
3

l′′ ξ
j
l′′′
3

l′′′ ξ
j
l(4)

3

l(4)
ξ

j
l(5)

3

l(5)

+
∑
jl=1

j
l′+j

l′′+j
l′′′+j

l(4)
+j

l(5)
+j

l(6)
=6

Kj1···jbξ
1
3

l ξ
j
l′
3

l′ ξ
j
l′′
3

l′′ ξ
j
l′′′
3

l′′′ ξ
j
l(4)

3

l(4)
ξ

j
l(5)

3

l(5)
ξ

j
l(6)

3

l(6)
,

normal frequencies

Ωj(ξ) =λj +
35

4
(

b∑
l=1

Gnlnlnljξl + 9
∑
l,l′
l ̸=l′

Gnlnlnl′ jξ
2
3

l ξ
1
3

l′ (3.7)

+ 18
∑
l,l′,l′′

l ̸=l′,l ̸=l′′,l′ ̸=l′′

Gnlnl′nl′′ jξ
1
3

l ξ
1
3

l′ ξ
1
3

l′′), j 6= n1, n2, n3

and remainder
Q = O(|y|2) +O(|y| · ‖u2 + v2‖). (3.8)

The total Hamiltonian H = N + P with

N = 〈ω(ξ), y〉+ 1

2
〈Ω(ξ), u2 + v2〉, (3.9)

P = Q+ Ĝ+ K̂ + T. (3.10)

Now let r > 0 and consider the phase space domain

D(2, r) : |Imx| < 2, |y| < r2, ‖u‖a,s + ‖v‖a,s < r (3.11)

and the parameter domain

Π = {ξ = (ξ1, ξ2, ξ3) : r
6
5 ≤ ξ1, ξ2, ξ3 ≤ 6

5
r

6
5 }. (3.12)

Step 2: Checking assumption A of Theorem 5.1. Let

ω̂ = TΛ1(ω − ω0), (3.13)
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where

T =


−1 1 1

1 −1 1

1 1 −1

 , (3.14)

Λ1 = diag( 128π3

35 λnl
: 1 ≤ l ≤ 3) and ω0 = (λnl

)1≤l≤3. Denote

η = Λ−1
2 ξ, (3.15)

where Λ2 = diag(λ3
nl

: 1 ≤ l ≤ 3). From (3.13) and (3.15), we get

∂ω

∂ξ
= Λ−1

1 T−1 ∂ω̂

∂η
Λ−1
2 . (3.16)

Calculate directly, we have

ω̂l =445ηl + 35(ηl′ + ηl′′) + 1032η
2
3

l (η
1
3

l′ + η
1
3

l′′) + 696η
1
3

l (η
2
3

l′ + η
2
3

l′′)

+ 264(η
1
3

l′ η
2
3

l′′ + η
2
3

l′ η
1
3

l′′) + 1728η
1
3

l η
1
3

l′ η
1
3

l′′ ,

l = 1, 2, 3, 1 ≤ l′, l′′ ≤ 3, l′, l′′ 6= l, l′ 6= l′′

and

∂ω̂i

∂ηj
= 445 + 688η

− 1
3

j (η
1
3

l′ + η
1
3

l′′) + 232η
− 2

3
j (η

2
3

l′ + η
2
3

l′′)

+ 576η
− 2

3
j η

1
3

l′ η
1
3

l′′ +O(r
4
3 ), i = j, 1 ≤ l′, l′′ ≤ 3, l′, l′′ 6= j, l′ 6= l′′, (3.17)

∂ω̂i

∂ηj
= 35 + 344η

2
3
i η

− 2
3

j + 464η
1
3
i η

− 1
3

j + 88(η
− 2

3
j η

2
3

l′ + 2η
− 1

3
j η

1
3

l′ )

+ 576η
1
3
i η

− 2
3

j η
1
3

l′ +O(r
4
3 ), i 6= j, 1 ≤ l′ ≤ 3, l′ 6= i, j. (3.18)

In order to estimate |ω|LΠ and |ω−1|Lω(Π), we estimate ||∂ω∂ξ ||ℓ1→ℓ1 and ||(∂ω∂ξ )
−1||ℓ1→ℓ1

in the following. From (3.17) and (3.18), we have

||∂ω̂
∂η

||ℓ1→ℓ1 = max
1≤i≤3

3∑
j=1

|∂ω̂i

∂ηj
|

≤ 515 + 576 max
1≤i≤b

η
− 2

3
i

∑
l,l′

η
1
3

l η
1
3

l′ + 344 max
1≤i≤3

η
− 2

3
i

∑
l

η
2
3

l

+ 688 max
1≤j≤b

η
− 1

3
j

∑
l

η
1
3

l +O(r
4
3 )

≤ 6000λn3

λn1

(3.19)

and
|∂ω̂j

∂ηj
| − |

∑
i ̸=j

∂ω̂j

∂ηj
| ≥ 410 +O(r

4
3 ) ≥ 409 > 0, j = 1, 2, 3. (3.20)
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Then applying Lemma 4.4 to (∂ω̂∂η ), we have

||(∂ω̂
∂η

)−1||ℓ1→ℓ1 ≤ 1

409
. (3.21)

By direct calculation, we have

T−1 =
1

4


0 2 2

2 0 2

2 2 0

 , (3.22)

||T ||ℓ1→ℓ1 = max
1≤i≤3

3∑
j=1

|Tij | = 3 (3.23)

and

||T−1||ℓ1→ℓ1 = max
1≤i≤3

3∑
j=1

|T−1
ij | = 1. (3.24)

From (3.16) (3.19) (3.21) (3.23) and (3.24), we can obtain the estimate of the
Lipschitz semi-norm of ω and ω−1:

|ω|LΠ ≤ | ∂ω
∂ξ1

|Π + · · ·+ | ∂ω
∂ξ3

|Π

≤ max{|∂ω1

∂ξ1
|Π, |

∂ω2

∂ξ1
|Π, |

∂ω3

∂ξ1
|Π}+ · · ·+max{|∂ω1

∂ξ3
|Π, |

∂ω2

∂ξ3
|Π, |

∂ω3

∂ξ3
|Π}

≤ 3||∂ω
∂ξ

||ℓ1→ℓ1

= 3||Λ−1
1 T−1 ∂ω̂

∂η
Λ−1
2 ||ℓ1→ℓ1

≤ 3||Λ−1
1 ||ℓ1→ℓ1 ||T−1||ℓ1→ℓ1 ||

∂ω̂

∂η
||ℓ1→ℓ1 ||Λ−1

2 ||ℓ1→ℓ1

≤ 3 · 35

128π3λn1

· 1 · 6000λn3

λn1

· 1

λn3
1

=
39375λn3

π3λ5
n1

,

(3.25)

|ω−1|Lω(Π) ≤ 3||(∂ω
∂ξ

)−1||ℓ1→ℓ1

= 3||Λ2(
∂ω̂

∂η
)−1TΛ1||ℓ1→ℓ1

≤ 3||Λ2||ℓ1→ℓ1 ||(
∂ω̂

∂η
)−1||ℓ1→ℓ1 ||T ||ℓ1→ℓ1 ||Λ1||ℓ1→ℓ1

≤ 3 · λ3
n3

· 1

409
· 3 · 128π

3λn3

35

< π3λ4
n3
.

(3.26)
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Step 3: Checking assumption B of Theorem 5.1. By (3.7) we know Ω̄j = λj ,

Ω̂j =
35

4
(

b∑
l=1

Gnlnlnljξl+9
∑
l,l′
l̸=l′

Gnlnlnl′ jξ
2
3

l ξ
1
3

l′ +18Gn1n2n3jξ
1
3
1 ξ

1
3
2 ξ

1
3
3 ), j 6= n1, n2, n3.

(3.27)
From (2.6), we get

Gnlnlnlj =


7

4π3λ3
nl

λj
, j = 2nl;

19
8π3λ3

nl
λj
, j = 3nl;

5
2π3λ3

nl
λj
, j 6= n1, n2, n3, 2nl, 3nl,

(3.28)

Gnlnlnl′ j =



5
4π3λ2

nl
λn

l′
λj
, j = 2nl;

1
4π3λ2

nl
λn

l′
λj
, j = nl ± nl′ l > l′;

13
8π3λ2

nl
λn

l′
λj
, j = 2nl ± nl′ l > l′;

3
2π3λ2

nl
λn

l′
λj
, j 6= n1, n2, n3, nl ± nl′ , nl ± nl′ , 2nl, 2nl ± nl′ , l > l′,

(3.29)

Gn1n2n3j =


3

4π3λn1λn2λn3λj
, j = n2 ± n1, n3 ± n2, n3 ± n1,

9
8π3λn1

λn2
λn3

λj
, j = n1 + n2 + n3, n3 + n2 − n1, n3 − n2 − n1,

1
π3λn1

λn2
λn3

λj
, j 6= n1, n2, n3, nl ± n1′ , n1 + n2 + n3,

n3 + n2 − n1, n3 − n2 − n1, l > l′.

We can easily see that Ω̂ is a Lipschitz map from Π to `1∞, here `p∞ the space of all
complex sequences with finite norm |w|p = supj |wj ||j|p, and by calculation we can
get

|Ω|L1,Π <
∑

1≤l,l′,l′′≤3

10

π3λnl
λl′λnl′′

≤ 270

π3λ3
n1

. (3.30)

In view of (3.25) (3.26) and (3.30), denoting

M =
39375λn3

π3λ5
n1

+
270

π3λ3
n1

, L = π3λ4
n3
, (3.31)

then the assumptions (5.1) in Theorem 5.1 are satisfied. Finally, observing that
λj =

√
j2 +m = j + m

2j +O(j−3) and 1
λj

= 1
j +O(j−3). We know the assumption

(5.2) in Theorem 5.1 is satisfied with κ = 2.
Step 4: Checking assumption C and smallness condition (5.5) of Theorem 5.1.

Observing (3.10) for the perturbation P , it can be easily checked that P is real
analytic in the space coordinates and Lipschitz in the parameters, and for each
ξ ∈ Π its hamiltonian vector field XP is an analytic map from Pa,p to Pa,p̄ with
p̄ = p+1. In the following we check the smallness condition (5.5). In view of (3.8),
we have

|Q| = O(r4). (3.32)

In view of (3.4) and |ξ| = O(r
6
5 ), we have

|Ĝ| = O((r
1
5 )5r3) = O(r4), (3.33)
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|K̂| = O((r
1
5 )12r2) = O(r

22
5 ), (3.34)

|T | = O((r
1
5 )20) = O(r4). (3.35)

From (3.10), (3.33)-(3.35), we know |P | = O(r4) and thus

|XP |r,D(s,r)×Π = O(r2). (3.36)

Since XP is real analytic in ξ, we have

|XP |Lr,D(s,r)×Π = O(r2r−
6
5 ) = O(r

4
5 ). (3.37)

We choose
α = r

15
8 γ−1, (3.38)

where γ is taken from the KAM theorem. It¡¯s obvious that when r is small enough,

ε := ||XP ||r,D(s,r)×Π +
α

M
||XP ||Lr,D(s,r)×Π = O(r2) ≤ γα, (3.39)

which is just the smallness condition (5.5). Till now there only remains the assump-
tion (5.6) of Theorem 5.1.

Step 5: Checking assumption (5.6) Theorem 5.1. For convenience, we introduce

ζ = (ζ1, ζ2, ζ3) ∈ Θ,

as parameters with ζ1 =
ξ

1
3
1

λn1
, ζ2 =

ξ
1
3
2

λn2
, ζ3 =

ξ
1
3
3

λn3
, where

Θ = {ζ = (ζ1, ζ2, ζ3) : r
2
5 ≤ λn1

ζ1, λn2
ζ2, λn3

ζ3 ≤ 3

√
6

5
r

2
5 }.

In view of (5.3), denoting

R̃kl(α) = {ζ ∈ Θ : |〈k, ω(ζ)〉+ 〈l,Ω(ζ)〉| < α
〈l〉
Ak

}, (3.40)

then to prove the assumption (5.6) is equivalent to prove

|
⋃

(k,l)∈X

R̃kl(α̂)| ≤ cr
4
5α

κ
3(κ+1−χ/4) (3.41)

where α̂ = α
κ+1−χ

κ+1−χ/4 , 0 ≤ χ < 1, and c is a positive constant. We only need to give
the proof of the most difficult case that l has two non-zero components of opposite
sign. In this case, rewrite R̃kl(α) in (3.35) as

R̃kij(α) = {ζ ∈ Θ : |〈k, ω(ζ)〉+Ωi(ζ)− Ωj(ζ)| < α
|i− j|
Ak

}, (3.42)

where k ∈ Z3 and i, j ∈ N+ \ {n1, n2, n3}, i 6= j. In view of (5.4), it is sufficient to
prove

|
⋃

0<|k|<K∗
0<i+j<L∗

R̃kl(α̂)| ≤ cr
4
5α

κ
3(κ+1−χ/4) , (3.43)
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where K∗, L∗ are defined in the KAM theorem and here they satisfy

K∗ = 16LM ≤ 64× 104, (3.44)
L∗ = 36(|ω|Π + 1)LM/β < 108λ7

n3
. (3.45)

From (3.6) (3.7), we have, for 0 < |k| < K∗, 0 < i+ j < L∗,

〈k, ω(ζ)〉+Ωi(ζ)− Ωj(ζ)

=k1λn1
+ k2λn2

+ k3λn3
+ λi − λj

+
35

128π3

3∑
l=1

(35
kl
λnl

+ 240
∑
l′ ̸=l

kl′

λnl′

+ 32π3λ3
nl
(Gnlnlnli −Gnlnlnlj))ζ

3
l

+
315

16π3

∑
l′,l′′
l′ ̸=l′′

(9
kl
λnl

+12
∑

l ̸=l′,l′′

kl
λnl

+4π3λ2
nl′

λnl′′λnl′ (Gnl′nl′nl′′ i−Gnl′nl′nl′′ j))ζ
2
l′ζl′′

+
315

4π3

3∑
l,l′,l′′

l̸=l′,l′′,l′ ̸=l′′

(3
kl
λl

+ 2(Gnlnl′nl′′ i −Gnlnl′nl′′ j))ζlζl′ζl′′

+O(r
12
5 ).

If for every 0 < |k| < K∗, 0 < i+ j < L∗, at least one of the following 4 inequalities
holds: ∣∣k1λn1 + k2λn2 + k3λn3 + λi − λj

∣∣ ≥ 1

4λn3

, (3.46)∣∣35 kl
λnl

+ 240
∑
l′ ̸=l

kl′

λnl′

+ 32π3λ3
nl
(Gnlnlnli −Gnlnlnlj)

∣∣ ≥ 1

4λn3

, (3.47)

then for r small enough, either
∣∣〈k, ω(ζ)〉+Ωi(ζ)− Ωj(ζ)

∣∣ or

∣∣ ∂3

∂ζ3l
(〈k, ω(ζ)〉+Ωi(ζ)− Ωj(ζ))

∣∣
is bigger than 1

8λn3
. If

∣∣〈k, ω(ζ)〉+Ωi(ζ)− Ωj(ζ)
∣∣ > 1

8λn3
, then

|R̃kij(α̂)| = 0.

If
∣∣ ∂3

∂ζ3
l
(〈k, ω(ζ)〉+Ωi(ζ)− Ωj(ζ))

∣∣ > 1
8λn3

for some 1 ≤ l ≤ 3, by using Lemma 4.5
in the next section and noting that |k|, i, j can be bounded by a positive constant
depending only on λn3

, we get

|R̃kij(α̂)| = 2(2 + 3 + 8λn3)(α̂
|i− j|
Ak

)
1
3 (diamΘ)2 = O(α̂

1
3 r

4
5 ). (3.48)

Since the number of (k, i, j) satisfying 0 < |k| < K∗, 0 < i+ j < L∗ can be bounded
by a positive constant depending only on λn3

, we finally get∣∣ ∪ 0<|k|<K∗
0<i+j<L∗

R̃kij(α̂)
∣∣ = O(α̂

1
3 r

4
5 ) = O(α̂

1
3 r

4
5 ) = O(α

κ+1−χ
κ+1−χ/4 r

4
5 ), (3.49)
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which is less than the right hand of (3.41) by the fact χ < 1. Therefore, till now
the only remaining task is to prove that at least one of the 4 inequalities in (3.46)
(3.47) holds. Supposing this not true, then we have∣∣k1λn1 + k2λn2 + k3λn3 + λi − λj

∣∣ < 1

4λn3

, (3.50)∣∣35 kl
λnl

+ 240
∑
l′ ̸=l

kl′

λnl′

+ 32π3λ3
nl
(Gnlnlnli −Gnlnlnlj)

∣∣ < 1

4λn3

, l = 1, 2, 3. (3.51)

We will discuss (3.50) (3.51) in three different cases in the following. We also
mention that k ∈ Z3, 0 < |k| < K∗ and i, j ∈ N+\{n1, n2, n3}, i 6= j, 0 < i+j < L∗.

Case 1. Both i and j are not in {2n1, 2n2, 2n3, 3n1, 3n2, 3n3}. Then (3.51)
becomes

∣∣− 205
kl
λnl

+ 240

3∑
l′=1

kl′

λnl′

+
80

λi
− 80

λj

∣∣ < 1

4λn3

, l = 1, 2, 3. (3.52)

Eliminating 80
λi

− 80
λj

, we get

205| kl
λnl

− kl′

λnl′

| < 1

2λn3

, 1 ≤ l, l′ ≤ 3. (3.53)

As k = (k1, k2, k3) 6= 0, we may assume kl 6= 0 for some 1 ≤ l ≤ b. Without loss
of generality, suppose kl > 0. We claim that kl′ > 0 for all 1 ≤ l′ ≤ 3. Otherwise,
there exits some 1 ≤ l′ ≤ 3, l′ 6= l such that kl′ ≤ 0, and then we have

205
∣∣ kl
λnl

− kl′

λnl′

∣∣ ≥ 205
kl
λnl

>
4

λn3

, (3.54)

which contradicts with (3.53). Noting that λi − λj and 80
λi

− 80
λj

=
80(λj−λi)

λiλj
have

different signs, we discuss in the following two cases:
Subcase 1.1: If λi − λj > 0, then we have

∣∣k1λn1
+ k2λn2

+ k3λn3
+ λi − λj

∣∣ > k1λn1
+ k2λn2

+ k3λn3
>

1

4λn3

, (3.55)

which contradicts with (3.50).
Subcase 1.2: If λi − λj < 0, then we have

∣∣− 205
kl
λnl

+ 240

3∑
l′=1

kl′

λnl′

+
80

λi
− 80

λj

∣∣ > 35
kl
λnl

+
∑
l′ ̸=l

240
kl′

λnl′

>
1

4λn3

, (3.56)

which contradicts with (3.52).
Case 2: Both i and j are in {2n1, 2n2, 2n3}. Then (3.51) becomes

∣∣− 205
kl
λnl

+ 240

3∑
l′=1

kl′

λnl′

+
56

λi
− 56

λj

∣∣ < 1

4λn3

, l = 1, 2, 3. (3.57)

In the same way as Case 1, we can derive contradictions.
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Case 3: Both i and j are in {3n1, 3n2, 3n3}. Then (3.51) becomes

∣∣− 205
kl
λnl

+ 240

3∑
l′=1

kl′

λnl′

+
76

λi
− 76

λj

∣∣ < 1

4λn3

, l = 1, 2, 3. (3.58)

In the same way as Case 1, we can derive contradictions.
Case 4. i = 2nl̄ for some 1 ≤ l̄ ≤ 3 and j = 3nl̄′ for some 1 ≤ l̄′ ≤ 3.
Subcase 4.1. l̄ = l̄′. Then (3.51) becomes

∣∣− 205
kl
λnl

+ 240

3∑
l′=1

kl′

λnl′

+
80

λ2nl̄

− 80

λ3nl̄

∣∣ < 1

4λn3

, 1 ≤ l ≤ 3, l 6= l̄, (3.59)

∣∣− 205
kl
λnl

+ 240

3∑
l′=1

kl′

λnl′

+
56

λi
− 76

λj

∣∣ < 1

4λn3

, 1 ≤ l ≤ 3, l = l̄. (3.60)

Eliminating 80
λi

− 80
λj

by (3.59), we get

205| kl
′

λnl′

− kl′′

λnl′′

| < 2

λn3

, l′, l′′ 6= l̄. (3.61)

By (3.59) and (3.60), we get

∣∣205( kl′

λnl′

− kl̄
λnl̄

) +
24

λ2nl̄

− 4

λ3nl̄

∣∣ < 1

2λn3

, l′ 6= l̄. (3.62)

If kl̄ ≥ 0, then from (3.62), we get

205
kl′

λnl′

≥ 205
kl̄
λnl̄

− 24

λ2nl̄

+
4

λ3nl̄

− 1

2λn3

> 0, (3.63)

which means kl′ > 0, and from (3.61) we get

205
kl′′

λnl′′

≥ 205kl′

λnl′

− 1

2λn3

≥ 205

λnl′

− 1

2λn3

> 0, (3.64)

which means kl′′ > 0. Otherwise if kl̄ < 0, then from (3.62), we get

205
kl′

λnl′

≤ 205
kl̄
λnl̄

− 24

λ2nl̄

+
4

λ3nl̄

+
1

2λn3

< 0, (3.65)

which means kl′ < 0, and from (3.61) we get

205
kl′′

λnl′′

≤ 205kl′

λnl′

+
1

2λn3

≤ − 205

λnl′

+
1

2λn3

< 0, (3.66)

which means kl′′ < 0. In the same way as Subcase 1.2, we can derive contradictions.
Subcase 4.2. l̄ 6= l̄′. Then (3.51) becomes

∣∣− 205
kl
λnl

+ 240

3∑
l′=1

kl′

λnl′

+
80

λ2nl̄

− 80

λ3nl̄′

∣∣ < 1

4λn3

, 1 ≤ l ≤ 3, l 6= l̄, l̄′, (3.67)
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∣∣− 205
kl̄
λnl̄

+ 240

3∑
l′=1

kl′

λnl′

+
56

λ2nl̄

− 80

λ3nl̄′

∣∣ < 1

4λn3

, (3.68)

∣∣− 205
kl̄′

λnl̄′

+ 240

3∑
l′=1

kl′

λnl′

+
80

λ2nl̄

− 76

λ3nl̄′

∣∣ < 1

4λn3

. (3.69)

Eliminating 80
λ3n

l̄′
by (3.67) (3.68), we get

|205( kl
λnl

− kl̄
λnl̄

)− 24

λ2nl̄

| < 1

2λn3

. (3.70)

Eliminating 80
λ2nl̄

by (3.67) (3.69), we get

|205( kl
λnl

− kl̄′

λnl̄′

) +
4

λ3nl̄′

| < 1

2λn3

. (3.71)

By (3.68) and (3.69), we get

|205( kl̄′

λnl̄′

− kl̄
λnl̄

)− 24

λ2nl̄

− 4

λ3nl̄′

| < 1

2λn3

. (3.72)

If kl̄ > 0, then from (3.72), we get

205
kl̄′

λnl̄′

> 205
kl̄
λnl̄

+
24

λ2nl̄

+
4

λ3nl̄′

− 1

2λn3

> 0, (3.73)

which means kl̄′ > 0, and from (3.70), we get

205
kl
λnl

> 205
kl̄
λnl̄

+
24

λ2nl̄

− 1

2λn3

> 0, (3.74)

which means kl > 0. Otherwise if kl̄ < 0, then from (3.70), we get

205
kl̄′

λnl̄′

< 205
kl̄
λnl̄

+
24

λ2nl̄

+
1

2λn3

< 0, (3.75)

which means kl̄′ < 0, and from (3.71), we get

205
kl
λnl

< 205
kl̄′

λnl̄′

− 4

λ3nl̄′

+
1

2λn3

< 0, (3.76)

which means kl̄′ < 0. In the same way as Subcase 1.1 and Subcase 1.2, we can
derive contradictions.

Till now, all the assumptions in the KAM theorem have been checked. Taking
χ = 4

5 , in view of (5.7), the measure of the excluding set of parameters is

O(r
12
5 α

κ
κ+1−χ/4 ) = O(r

12
5 r

75
56 ),

which is of higher order than O(r
18
5 ). This means that, when r is small enough, the

rotational tori persist for most of ξ ∈ Π. Thus Theorem 1.1 follows from Theorem
5.1 in Appendix.
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4. Technical Lemmas
In this section, the first four lemmas are estimates of the function

f(t) =
m√

t2 +m+ t
, (4.1)

which are used to perform Birkhoff normal form in Section 2.

Lemma 4.1. For f(t) in (4.1) and 0 < m ≤ 1
9 , we have

f(t) ≤ λf(λt) ≤
√
10 + 3

6
f(t), λ ≥ 1, t ≥ 1. (4.2)

Proof. This is Lemma 4.1 in [13] with 0 < m ≤ 1
9 .

Lemma 4.2. For f(t) in (4.1) and 0 < m ≤ 1
9 , we have

|f(a)− f(n)| ≥ m

2((n+ 1)2 +m)
, a, n ∈ N+, a 6= n. (4.3)

Proof. This is Lemma 4.2 in [13] with 0 < m ≤ 1
9 .

Lemma 4.3. For f(t) in (4.1) and 0 < m ≤ 1
9 , we have

|f(a)− lf(n)| ≥ m2

2n3
, a, n ∈ N+, l = 2, 3, 4, 5. (4.4)

Proof. For l = 2, 3, this is Lemma 4.3 and Lemma 4.4 in [13] with 0 < m ≤ 1
9

respectively. We only need to prove it for l = 4 and l = 5.
Note that

|f(a)− 4f(n)| = m| 1√
a2 +m+ a

− 1√
(n4 )

2 + m
16 + n

4

|. (4.5)

If n = 4k, then for all a ∈ N+,

|f(a)− 4f(n)| ≥ |f(k)− 4f(4k)|

=
m√

k2 + m
16 + k

− m√
k2 +m+ k

=
15m2

16

1

(
√
k2 + m

16 + k)(
√
k2 +m+ k)(

√
k2 + m

16 +
√
k2 +m)

>
m2

64k3

=
m2

n3
. (4.6)

If n = 4k + 1, then for all a ∈ N+,

|f(a)− 4f(n)| ≥ |f(k)− 4f(4k + 1)|

=
m√

k2 +m+ k
− m√

(k + 1
4 )

2 + m
16 + (k + 1

4 )
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≥ m

4(
√
(k + 1

4 )
2 + m

16 + k + 1
4 )(

√
k2 +m+ k)

≥ m

64(k + 1
4 )

2

=
m

4n2
. (4.7)

If n = 4k + 2, then for all a ∈ N+,

|f(a)− 4f(n)| ≥ |f(k + 1)− 4f(4k + 2)|

=
m√

(k + 1
2 )

2 + m
16 + (k + 1

2 )
− m√

(k + 1)2 +m+ k + 1

≥ m

4(
√

(k + 1
2 )

2 + m
16 + k + 1

2 )(
√

(k + 1)2 +m+ k + 1)

≥ m

64(k + 1
2 )

2

=
m

4n2
. (4.8)

If n = 4k + 3, then for all a ∈ N+,

|f(a)− 4f(n)| ≥ |f(k + 1)− 4f(4k + 3)|

=
m√

(k + 3
4 )

2 + m
16 + (k + 3

4 )
− m√

(k + 1)2 +m+ k + 1

≥ m

4(
√

(k + 3
4 )

2 + m
16 + k + 3

4 )(
√

(k + 1)2 +m+ k + 1)

≥ m

64(k + 3
4 )

2

=
m

4n2
. (4.9)

Now from (4.6), (4.7), (4.8) and (4.9), we obtain (4.4). For l = 5, the proof is
similar, we omit it here.

Lemma 4.4. Suppose that A = (aij)n×n is a matrix of order n which satisfies

τij = |ajj | −
∑
i ̸=j

|aij | > 0, j = 1, · · · , n (4.10)

then
||A−1||ℓ1→ℓ1 ≤ ( min

1≤j≤n
τj)

−1. (4.11)

Proof. This is Lemma 4.5 in [11].
The next lemma is a special case of Lemma 2.1 in [21], which is used to estimate

the measure of parameters in Section 3.

Lemma 4.5. Suppose that g(x) is a 3-th differentiable function on the closure Ī
of I, where I ⊂ R is an interval. Let Ih = {x : |g(x)| < h, x ∈ I}, h > 0. If on I,
|d

3g(x)
dξ3 | ≥ d ≥ 0, where d is a constant, then |Ih| ≤ 2(2 + 3 + · · ·+m+ d−1)h

1
3 .
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5. Appendix: A KAM Theorem
Consider small perturbations of a family of linear integrable hamiltonians

N =
∑

1≤j≤n

ωj(ξ)yj +
1

2

∑
j≥1

Ωj(ξ)(u
2
j + v2j ), 1 ≤ n < ∞

on a phase space

Pa,p = Tn × Rn × `a,p × `a,p 3 (x, y, u, v)

with symplectic structure
∑

1≤j≤n dxj ∧ dyj +
∑

j≥1 duj ∧ dvj , The frequencies
ω = (ω1, · · · , ωn) and Ω = (Ω1,Ω2, · · · ) depend on n-parameters ξ ∈ Π ⊂ Rn, with
Π a closed bounded set of positive Lebesgue measure. For each ξ there is an invariant
n-torus T0 = Tn × {0, 0, 0} with frequencies ω(ξ). In its normal space described by
the uv-coordinates the origin is an elliptic fixed point with characteristic frequencies
Ω(ξ). The aim is to prove the persistence of a large portion of this family linearly
stable rotational tori under small perturbations H = N + P of N . To this end the
following assumptions are made.

Assumption A: Nondegeneracy. The map ξ 7→ ω(ξ) between Π and its image is
a homeomorphism which is Lipschitz continuous in both directions. Moreover,

〈l,Ω(ξ)〉 6= 0 on Π

for all integer vectors l ∈ Z∞ with 1 ≤ |l| ≤ 2.
Assumption B: Spectral Asymptotics. There exists δ < 0 such that

Ωj(ξ) = j + · · ·+O(jδ),

where the dots stand for fixed lower order terms in j, allowing also negative expo-
nents. More precisely, there exists a fixed, parameter-independent sequence Ω̄ with
Ω̄j = j + · · · such that Ω̂j = Ωj − Ω̄j give rise to a Lipschitz map

Ω̂ : Π → `−δ
∞

with `p∞ the space of all complex sequences with finite norm |w|p = supj |wj |jp.
Assumption C: Regularity. The perturbation P is real analytic in the space

coordinates and Lipschitz in the parameters, and for each ξ ∈ Π its hamiltonian
vector field XP = (Py,−Px, Pv,−Pu)

T defines near T0 a real analytic map

XP : Pa,p → Pa,p̄, p̄ > p.

To make this more precise we introduce complex neighbourhoods

D(s, r) : |Imx| < s, |y| < r2, ||u||a,p + ||v||a,p < r

of T0 and weighted norms

|(x, y, u, v)|r = |(x, y, u, v)|p̄,r = |x|+ 1

r2
|y|+ 1

r
||u||a,p̄ +

1

r
||v||a,p̄,

where |·| is the sup-norm for complex vectors. Then we assume that the hamiltonian
vector field XP is real analytic on D(s, r) for some s and r uniformly in ξ with finite



1532 M. Gao

norm |XP |r,D(s,r) = supD(s,r) |XP |r, and that the same holds for its Lipschitz semi-
norm

|XP |Lr = sup
ξ ̸=ζ

|∆ξζXP |r
|ξ − ζ|

,

where ∆ξζXP = XP (·, ξ)−XP (·, ζ), and where the supremum is taken over Π.
To state the KAM theorem we also assume that

|ω|LΠ + |Ω̂|L−δ,Π ≤ M < ∞, |ω−1|Lω(Π) ≤ L < ∞, (5.1)

where the Lipschitz semi-norms are defined analogously to |XP |Lr . Let κ > 0 be the
largest exponent such that

Ωi − Ωj

i− j
= 1 +O(j−κ), i > j, (5.2)

uniformly on Π. Without loss of generality, we can assume that −δ ≤ κ by increasing
δ if necessary. Moreover, we introduce

Rkl(α) = {ξ ∈ Π : |〈k, ω(ξ)〉+ 〈l,Ω(ξ)〉| < α
〈l〉
Ak

}, (5.3)

where 〈l〉 = max(1, |
∑

jlj |), Ak = 1 + |k|τ , τ ≥ (n+ 3) δ−1
δ . Finally let

X = {(k, l) ∈ Zn × Z∞ : 0 < |k| < K∗, 0 < |l|σ < L∗}, (5.4)

where K∗ = 16LM , σ = min(1,−δ), |l|σ =
∑

|lj |jσ, L∗ = 36(|ω|Π + 1)LM/β with
β the largest positive constant such that |〈l,Ω〉| ≥ 27

2 β〈l〉 for every 1 ≤ |l| ≤ 2.

Theorem 5.1. Suppose H = N + P satisfies assumptions A, B, C, and

ε = |XP |r,D(s,r)×Π +
α

M
|XP |Lr,D(s,r)×Π ≤ γα, (5.5)

where 0 < α ≤ 1 is another parameter, and γ depends on n, τ, s. Then there
exists a Cantor set Πα ⊂ Π, a Lipschitz continuous family of torus embeddings
Φ : Tn × Πα → Pa,p̄, and a Lipschitz continuous map ω̃ : Πα → Rn, such that for
each ξ ∈ Πα the map Φ restricted to Tn × {ξ} is a real analytic embedding of a
rotational torus with frequencies ω̃(ξ) for the hamiltonian H at ξ.

Each embedding is real analytic on |Imx| < s/2, and

|Φ− Φ0|r +
α

M
|Φ− Φ0|Lr ≤ cε

α
,

|ω̃ − ω|+ α

M
|ω̃ − ω|L ≤ cε,

uniformly on that domain and Πα, where Π0 : Tn×Π → T0 is the trivial embedding,
and c ≤ γ−1 depends on the same parameter as γ.

Moreover, denoting α̂ = α1−3w, w = χ
4κ+4−χ with χ any fixed number in 0 ≤

χ < min(p̄− p, 1), then if

|
⋃

(k,l)∈X

Rkl(α̂)| ≤ c1ρ
n−1α

κ
κ+1−χ/4 (5.6)

for all sufficiently small α, where ρ = diamΠ, and the constant c1 depends on χ
and p̄− p, then we have

|Π \Πα| ≤ c2ρ
n−1α

κ
κ+1−χ/4 , (5.7)

where the constant c2 also depends on χ and p̄− p.
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This theorem is copied from [12], which is a combination of Theorem A and
Theorem D in [19] with some modifications.
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