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MULTIPLE SOLUTIONS FOR A
KIRCHHOFF-TYPE FRACTIONAL COUPLED
PROBLEM WITH P-LAPLACIAN
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Abstract In this paper, we look at a class of two-parameters coupled Kirchhoff-
type fractional differential equations. Two differentiated methods are used to
prove the existence of two solutions to the equation. The fundamental differ-
ence between the two methods is that the first provides asymptotic conditions
for the non-linear terms on the right-hand side of the equation, while the
second provides algebraic conditions; both methods combine substantial A-R
conditions.
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1. Introduction

The following coupled Kirchhoff-type fractional differential problem with p-Laplacian
is investigated in this paper.

Afu(®)( mﬂﬁmmwwtau(tm + Oy (u(t)))
= At u(),v(8)) + pgu(t,u(t), o(t)),

B0 ( DRy 6y (0D (1)) + Ea(0)6, (0(1)))

2(t)
= )‘fv (tv u(t>7 U(t)) + /u'gv(t7 u(t)v U(t))a
u(0) =u(T) =0, v(0)=v(T)=0,

(1.1)

where

Alut)) = (a+b /0 B Ol DFu(t) + (0)u()Pdr)

T p—1
B®) = (e+d [ m@bDbol + Glora)
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a, B, ¢, d > 0and p > 1 are constants, oDy, ODf and ; DT, th are the left and right
Riemann-Liouville fractional derivatives of order o, 8 € (%, 1], respectively. ¢,(s) =
|s|P=2s(s # 0), ¢p(0) = 0, iy, hy € L>=([0,T],R) with h{ = essinfyr) hi(t) >
0, M = ess SUp[o, 7] hi(t), hY = ess infpo 7y ho(t) > 0, h = ess S ha(t), £,
ly € C([0,T],R) with £ = essinfigr)£1(t) > 0, £} = esssupyli(t), €9 =
essinflg ) Lo(t) > 0, £5 = esssupyg 7y 2(t), f(t, u(t),v(t)), g(t,u(t),v(t)) : [0,T]x R?
are C! functions, f; and g, denote the paitial derivatives of f and g with respect
to s, A, i are two positive real parameters.

The variational method and the critical point theorem have yielded substantial
results in the study of the existence and multiplicity of solutions to fractional order
differential equations in recent years. Of these, two main types of fractional order
differential equations have been extensively studied. One type is called the fractional
advection dispersion equation, which was developed thanks to the modelling of
contaminant transport in groundwater by Fix and Roop in [4]. We can turn to the
literature for additional investigations of this type of problems, such as [6, 15,17,
18,24]. In [6], Jiao and Zhou originally demonstrated that critical point theory is
a useful tool for investigating the existence of solutions to the fractional advection
dispersion equation below.

drl DB 1 -6 _
= (5 oD (W @) + 5 PP (W (1)) + VE(tu(t) =0, ae.te0.T],
u(0) =u(T) =0,

(1.2)

where oD, A and tD;ﬂ are the left and right Riemann-Liouville fractional integrals
of order 0 < B < 1, respectively, F : [0,7] x RY — R is a given function and
VF(t,z) is the gradient of F' at x. A differential equation with mixed fractional
order derivatives is another type; see, for example, [5,8,9,13,26].

Unlike the two types of fractional order differential equations listed above, the
Kirchhoff-type fractional order differential equations discussed in this study have
received less attention to my knowledge (see [2,3,10,12,19] and references therein).
In these articles, just certain asymptotic conditions for the non-linear terms on the
right-hand side of the equation are given to derive the existence and multiplicity
results for the equation’s solutions, ignoring the geometric conditions for the non-
linear terms, which are addressed in this paper. For instance, Chen et al. deduced
in [3] that the following equation has at least one non-trivial weak solution when
f(t,z) is (p? — 1)-superlinear or (p? — 1)-sublinear in x at infinity and possesses
infinitely many nontrivial weak solutions when f(t,z) is (p? — 1)-sublinear in = at
infinity.

(a+b [ loDpuPar)™ iDRgyDru(v) = ftult). e O.T)

u(0) =u(T) =0,

(1.3)

where a, b > 0 and p > 1 are constants, ¢ Dy and ;D7 are the left and right Riemann-
Liouville fractional derivatives of order a € (1%, 1], respectively, and ¢, : R — R is
p-Laplacian defined by ¢,(s) = |s|P~2s(s # 0), ¢,(0) =0, and f € C([0,T] x R, R).
In contrast to equation (1.3), we investigate a new complex equation (1.1) and ex-
plore the case of two equations with the non-linear term including two perturbation
parameters, as well as the nonlocal terms A(u(t)), B(v(t)) on the left-hand side
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of the equation. The variational structure of equation (1.1) becomes more com-
plex and difficult to investigate as a result of these factors. As a result, our work
complements and improves Chen et al. [3] and Kang et al. [10]. Specifically, when
a=é¢=1b=d=p=0,(t) = l(t) = { are constant functions then equation
(1.1) is equivalent to the following equation

f,D%(ﬁ%(fh(t)thaU(t))) +Z¢p(u(t)) = Mu(t,u(t), v(t)),
th'q(W%(ﬁQ(t)onv(t))) + Z(ﬁp(v(t)) = Afou(t, u(t),v(t)), (1.4)

u(0)=u(T)=0, v(0)=o(T)=0.

In [13], using a three-critical point theorem, Li et al. discovered that there are at
least three weak solutions for the type of problem mentioned above.

The idea behind this article is as follows. In Section2, some important definitions
and lemmas are given in this section. In Section 3, we conclude that there are
at least two different weak solutions to the equation (1.1) by combining Lemma
2.5 and Lemma 2.6, rather than using the traditional mountain pass theorem as
in [3,6,10,19,26], and then Theorem 2.1 is used to show that the problem has at
least two non-trivial solutions based on geometric considerations. Finally, we bring
the paper to a close in Section 4.

2. Preliminaries and lemmas

In this section we give some important definitions and lemmas to facilitate the
discussion in subsequent articles, and we also establish the problem (1.1) function
space and variational structure.

Definition 2.1 ( [11,20]). Let function u(t) be defined on [a, b]. The left and right
Riemann-Liouville fractional derivatives with order 0 < 4 < 1, respectively are
defined by

D) = 55 oD ult) = gy g [ (=9 Tuls)ds
~ ~ b N
+Dju(t) = —% D) u(t) = —ﬁ%/t (s — ) Tu(s)ds.

Definition 2.2 ( [11,20]). Let 0 < 4 < 1, and u € AC([a,b]). Then, the left and
right Caputo fractional derivatives with order ¥, respectively are defined by

1
r1-7)
1 b .
_— — )77/ (s)ds.
Lemma 2.1 ([11,22]). Let 4 >0,p>1,¢>1, s+ <1+ orp#1,q#1,
Ly l=1+44. IfueL”([a,b],R), ve L [a,b], R), then

eDJu(t) = oD (1) =

[t=owsas

cDlu(t) = — D) M/ (t) = —

b ) b )
[ @i = [ 6Dy vt
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Let C5°([0,T], RY) be the set of all functions u € C°°([0, T] RY) With u(0) =
u(T) = 0 and the norm [|uflec = max,ejo,7 [u(t)|, |lullzr = fo lu(t)|Pdt)

In the following we establish the function space and variational btructure of
problem (1.1).

Definition 2.3. Let 0 < o <1 and 1 < p < oo. The fractional derivative space
E§ = C§°([0,T], R) with the weighted norm

T T 1
gy = (| mlDzuora+ [ a@uera)’. @)

Remark 2.1 ( [24]). For u € Eg, we have u, oDu € LP([0,T], R). Tt is well know
that the space Ef is a reflexive and separable Banach space.

Lemma 2.2 ( [7]). Let 0 <o <1, 1 < p < co. For any u € E, we have
[ullze < Axljullga, (2.2)
moreover, if a > % with % + % =1, then

lulloo < Afllull . (2:3)

~ Q*l

T x T P
1 A - 1 R
P(a+1)(min{h9.69}) 7 P(a) ((a—1)g+1) 7 (min{hY,})7

where /~\1 =

Analogous to the definition and properties of E37 we define the fractional deriva-
tive space B = C5°([0,T], R) with the weighted norm

gy = ([ m@woporas [ aopora)’. @
0
Similar with (2.2) and (2.3), we have

[ollzr < Azllvll g, (2.5)
moreover, if 5 > % with % + % =1, then
[vlloe < A;“UHEga (2.6)

B—

~ s ~
where Ay = T A = T

P8+ min{n.81)7 2 D(B)(8-1)a+1)7 (min{n3.e3))F
Now, for any u € EO, v E EO, we define a space E’3 = Ea X Eﬁ with the norm

‘E

1 ~
I o)l = (lullfy + 0le)7, ¥(w,v) € E5.
Define ||(u,v)||oo = maxecio, 7y |u(t)| + maxicio 1y [v(t)]. When o, B > %, we have

1, 0)lloo <Afllull go + Asllvllge < A*(lull gg + 0l gp)

<27 A7 (u, 0) | e (2.7)

where A* = max{A}, A3}
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Lemma 2.3 ( [14]). For o, <1, and 1 < p < oco. The fractional derivative space

E? is a reflexive separable Banach space.

Lemma 2.4 ( [7]). Let % <a,B<1,1<p<oco. Assume that the sequence {uy}
converges weakly to u in E§ or Eg, i.e., up — u, then uxp, — u in C([0,T],R).

Definition 2.4. The function (u,v) € EF is a weak solution of problem (1.1) if the
identity
(a + 6||u||p / O ha(t)o D7 u(t))o Dy ()
() ult >|P 2y (t)a( >dt
+ (e dplr, / oo (oD )0 DYu(r)
+ Lo(t)[o(t )|p “u(t)y (2.8)

.\ / Fult w(t), o(£)a () + folt, ut), v(t))y(t)dt
T
it [ () o)1) + g 0,000, o0)y(e)dt =0

holds for any (x,y) € EF.

Define the functional @y, <i>, ' Eg — R as follow:

Ga(u,v) = O(u,v) — A (u, v), (2.9)
T P ap
bu,0) = (a4 [ (aOLDRUOP + GO P)) -5
Lo o f" p P P &
dpQ(Hd/o (s (DD o) + Eo(6) o0) )t i 2
1 N )
(a+b||u|| o)’ 2 +dp (e+d| ||Eﬁ) et
(u,v) /ftu t))dt+X/0 g(t,u(t),v(t))dt. (2.11)

Clearly, ¢y, ®, ¥ € C'(Ef, R) and for all (u,v) € Ef, we have

(A, (@) = (@/(,0), (2,)) = M (w,0). (.9)), (212
« ~ p—1 (T 1
@ (.0). (@) = (a4 51l ) [ g oD u0)o D)
OO u(t)e(1)de
p—1 (T
+(e+diol) | st 0D D

DL
+ L) |v(®)[P2u(t)y(t)dt,
(2.13)
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(W' (u,0), (2, 9)) =/ Ju(tu(t), v(t)z(t) + folt u(t), v(t))y(t)dt
0 (2.14)

T
+§/0 gu(t, ut), v())a(t) + go(t ult), v(B)y(t)dt.

Therefore, the critical point of functional ¢y is a weak solution of (1.1).

Definition 2.5 ( [21]). Let E be a real Banach space and ¢ € C'(E,R). We
say that v satisfies the Palais-Smale condition(denoted by P.S.condition), if any
sequence {ur} C E for which {¢(ug)} is bounded and ¢'(ux) — 0 as k — 0
possesses a convergent subsequence.

Lemma 2.5 ( [16]). Let E is a real Banach space and ¢ € C*(E,R), and
satisfies the P.S.condition. Assume that there exist ug, u1 € E and a bounded open
neighborhood Q of uy such that u; € E\ Q and

max{y(uo), Y(u1)} < inf (v).
Let

~inf ,
o = inf max ¥(j(s)),

where T = {jlj € C([0,1], E) : j(0) = ug, j(1) = u1}. Obviously, o is a critical

value of v, i.e. there exists u* € E such that ¢'(u*) = 0, Y(u*) = o with o >

max{y(uo), P (u1)}

Lemma 2.6 (Theorem 38.A, [25]). For the functional ¢ : B C E — R with B not
empty, & = min,cp Y (u) admits a solution in the following hold:

(i) E is a real reflexive Banach space;

(i) B is bounded and weak sequentially closed, i.e., for each {ux} C B such that
up — u as k — oo, we have u € B;

(#ii) v is weakly sequentially lower semi-continous in B, i.e., for each {u;} C B
such that up, — u as k — 0o, we have P(u) < liminfy_ oo ¥(ug).

Theorem 2.1 (Theorem 1.3, [1]). Let E be a real Banach space. Cf),A\il E— R
be two continously Gdteauz differentiable functionals such that infp ® = ®(0) =
U(0) = 0. Assume that there exist r € R and @ € E, with 0 < ®(4) < r, such that
S Y(W) (@)

¥ T S @)
(i) for each X € A =28 [ the functional 5 = & — A\ is un-

(@) sup(i)(u)gy,\ll(u)
bounded from below and satisfies P.S.condition.

o

Then, for each A\ € A, the functional ) = ® — AU has at least two distinct critical
points in E.

3. Main Results

In this section we study multiple solutions of problem (1.1) by Lemmas 2.5, 2.6 and
Theorem 2.1.
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Theorem 3.1. Let % <a,f<1,1<p<oo, f(t,0,0) = g(t,0,0) = 0. Assume
that

(Hy) For anyt € [0,T), (u,v) € E? there exist nonnegative constants L, 01, 0 with
max{6y,0:} < p% such that

0 < F(t,u(t), (1)) < 0 (fult u@), v(O)ult) + ot u(t), o(e)o()) | (w,0)] > L,

0 < (1, u(t), (1)) < B (gult, ), o)) u(t) + g0 (1, u(e), v(0))o(0)). 0,0 > .
(Hy) For any t € [0,T), (u,v) € Ef such that
= lim

i Lu0.00) gtt0).(0)
lu(t)—0  |u(t)|P T p@l=o |u(t)P

(Hs) For any t € [0,T), (u,v) € EE, there exists a constant 5 > p* such that

o JEA000) L gleu.00)
[u(t)|—o0 \u(t)|’7 lv(t)| =00 |U(t)|7

Then, problem (1.1) admits at least two weak solutions.

Proof. We complete the proof by three steps:
Step I. We show that ¢, : B — R satisfies the P.S. condition.
First, assume that {(ug,v;)}3, C EZ is a sequence such that

1Ga(un, vi)| < C, @ (ur,vr) = 0, as k — oo, (3.1)

where C' > 0 is a constant. We prove that {(uy, vE) 152, is a bounded sequence in
EB. From the continuity of f(£,u(t), v(t))—61 fu(t, u(t), v(£))u(t) — b1 fo (£, u(t), v(t))v(t),
gl u(t), v(1)) — Fagu(t, u(t), o())u(t) — Bagolt, u(t), v(t))o(t) for any ¢ € [0, ],
|(u,v)| < L, and (Hy), there exist constants ¢;, ¢2 such that

Ft,ut),v(t) < 0, (fu(t,u(t),v(t))u(t) + fv(t,u(t),v(t))v(t)) +¢1,VY|(u,v)| € R,
g(t,u(t),v(t)) < 05 (gu(t,u(t),v(t))u(t) + gv(t,u(t),v(t))v(t)> + G2, V| (u,v)| € R?,

which together with (2.9), (2.10), (2.11) and (3.1), we have

C >@x(up, vi)

1 /. -
P (a—l—bHUk

P aP 1 o
%m) ——+ = <é+d||’Uk
0 bp?  dp?

P )p_ &
ES dp2

T T
—)\/0 f(t,uk(t),vk(t))dt—u/o gt un(t), ve () dt
dp?

1 /. - p aP
>_ (a+buukufia) oy
bp? 0

1 ~ p
— (& + dljog|” ) —
bp> de‘(CJr ol

o T
— max{fy, 92}()\/0 S (8, ug (8), 05 (8)ur () + fo, (8 ur(t), vi())vg(t)dt

T
+ u /O Guy, (t’ U (t)’ Vg (t))uk (t) + Gu,, (ta Uk (t)’ Vg (t))vk (t)dt>
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— Ang — MEQT
(A—F?)H P )P ar n 1 <A+d|| P )P c
=—\a ug ||; ——+-—|¢ vE || - =
Flligg bp? | dp? Mg dp?
— mane{fy, B} (@ Bl )7 el + (@ o) ol
EO 0 EO EO

- <(p&(ukavk)a (ukavk») - AElT — 'LLEQT
1

. p—1 N ~ ~
— (A p o P _ P
=(@+ Bueliy, ) (5 5@+ Hluely,) = max(Br,Ga} s, )

o tot? Yo (LA l? a. . P
(e diuliyy ) (5 5+ dlonly) - max( 02} ol )
o ar e -
+ max{01, 02 }{(P\ (ug, v), (ug, v)) — — — — — X T — pceT
bp?  dp?
> (a - buslt, ) (G — mas (@B el + )
B o p? ’ & bp?
R p—1 1 ~ o~ C
o p - P
+ (e diodly, )" (g —max(@r,B)loeliy, + 25)
o a e .
—max{0y, 02} ||\ (ur, )| - |(ur, vi)|| gp — == — == — AaT — pcT
“ bp2  dp?
> min{a? ™, @1} (=5 — max{f, 02}) (e, w17,
o aP cP ~ ~
= max{fr, 05 }| @5 (e, v - | (e vl g = 75 — 5 — AOT = o,
“  bp?  dp?

Since ¢\ (ux, vi) — 0, there exist Ny € N, for k > Ny such that

O | ~
C >min{aP~ ", é? 1}(1?—max{ﬂl,ﬁg})ﬂ(uk,vk)ﬂ%g

ar cP ~ ~
— Uk, Vi e _Ai_Ai_A61T_'LLCQT.
o)l = 5= = 5

Then, it follows from max{6;,0,} < p% that {(ug,vs)} is bounded in EF.

In the following, we prove that the sequence {(ug,vx)}72, has a convergent
subsequence in E. Since E? is a reflexive Banach space, there exists a weakly
convergent subsequence with (uy,,vg,) — (u,v) in E. For the sake of discussion,

we note {(ug,,vi,)} as {(ug, vk)}, thus (ug,vp) — (u,v) in B8, then we have
@I)\(uka vk) - @I)\(uav)a (Uk,’l)k) - (U,U)>

@I)\(ukv vk)? (uka Uk) - (u,v)) - <¢l)\(uav)v (ukavk) - (U,’U)>

G (e, o) [ - [l (e, v&) = (s 0) | g = (D2 (w, 0), (u 0) = (u, ) (3.2)

—0, ask— oo.

(
(

<|

Additionally, from (2.7) and Lemma 2.4, we get that the {(ug,vg)} is bounded in
C([0,T], R)? and ||(ug,v) — (u,v)| s — 0, hence

T
| (o), ) = £t ). 00 ) () = ()
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(o (b (0, 0(6)) = ol u(®), 0(8))) (00 () = v(D)dE — 0, as k= 00, (3.3)
and
T
/0 (9 (1 a0, 0(8)) = gt u(t), 0(0) ) (u(8) = u(2))
(g (8 un(8), 00(8)) = 9ot u(0), v(0) ) (0 (1) = v(E)dt 0, as k= 0. (3.4)
Then, by straightforward calculation from (2.12), (2.13) and (2.14) we have
(5 (ur, v) — P\ (u, v), (ug, vi) — (u,v))
+2 / (o (6 0k (1), 08 () = fult, w(t), 0(8)) ) () = u(t))
(o (8 ur (8), 08(8)) = 8, u(t), o) ) (0 (8) — w(2)) e
—i—u/o (guk(t,uk(t) k(1) — gu(t, u(t),v(t )
(g (80 (8), 04(8)) — g0 (8, (), 0(1)) ) (08 () — 0(2))dt
. N |
—(a+ bl ) et Oo Dk (O) o Diun(t) = oDfu(t)
0 ) [ ()P 20k () (i (1) — (1))t
+ (e dlo,) [ L haoDE () (oD k(t) — oDEu(t)
E[‘f 0 h2(t)p72 p t t t
+ Lo () ok (1) [P~ 20k () (0 () — (1) )t
N 2 P p=1 T 1 a o «
— (a+bluly, ) / = Or (Do D ul) o Df ua(t) = oD ul®))
3 8) ()P () (i (£) — u(t))dt
cvdioe) [ ho(t)oDPv(t)) (oD vy (t) — oDPu(t
~ (e dioli)™ [ e 0DZ )6 D) = oDfu(t)
+ Lo (8) [0 (£) P20 (1) (vk (1) — v(1))
~ 7 D p—1 r 1 «
=(a bl ) [ (rmaont o Du(e)
~ Tt i (DoDFu(0)) 0 Dfuslt) — oDFu(r)
+ (GO 2u(t) = GOROP2u(t)) (ur(t) - ut))dt
e NP [ ]
+(erdinliyy) [ (Gammatea0Dfu®)
- W%(hz(t)Ova(t)))(()vak(t) — oD}Ju(t))

+ (GOl OF20x(t) = OGP 200) (04(1) - o)t
+ ((@+ bllunl, )7~ = @+ bl )"
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T
/ iz oo Qo DZu(®) (o Dfus(t) = oD ult)
OO u(t) (i (1) — u(e))de
+ (@4 dloglige = = @+ dloli, )

/ W%(@<t>onv<t>><onvk<t> = oD{u(1))

+ Lo () |v(®) [P0 (t) (vr(t) — v(t))dt,
considering that a weak convergence of {(uy(t),vx(t))}, we have
((@+ Bllusl ) = @+ bllully, )7
T 1 @ @ e
x /0 W%(hl(t)th u(®))(oDfur(t) = oDiu(t))

+ (O )P u(t) (un(t) — u(t))dt

=((@+ bl 7= = @+ bllull )7~ ) (e (), un(6) = u(t))

— 0, ask — oo,

and
(@+dlvl )= = @+ dlvlin, )
< [ Pl DI o) 6D () — oD (1)
) hg(t)p_2 p2(l)oVt U oVt Vg oy v
L (8) o ()P~ 20 (1) (0 (£) — v(t)) dt
= (e dllenl2, )7~ = @+ dllvlh 7~ ) (Phalo(®), vilt) - v(t))
— 0, ask — oo,
where

enu®) = ([ m@OLDrura+ [ a@puopae).

b 1 ’ p g p
era®) = ([ mDZoOPa+ [ b)),
by (3.2) to (3.7), we obtain

T ) )
/0 (W%(hl(t)ol)t uk(t))

i (00D u(0) ) 0 D7 uelt) — oD u(r)
+ (GOl 2un®) = GOLOP2u(t)) (u(t) = a@)de -0,

T ) ) y
/0 (Wqﬁp( 2(t)o Dy vi(t))

(3.5)

(3.6)

(3.8)
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1
= = o007 () ) 0D} ok(t) = oDJv()
+ (BP0 — BOROP00) @@ —o0)d 0. (39)

Based on a notorious inequality in [23], for any 51, 5o € R, there exists a constant

a > 0 such that

alsy — ss?, D> 2,

<|§1|P— — [$2]P~ 52,31—52>>  F—®P

=T 1<p<2
(I51] + [52])>=»

then by (3.10), there exist constants Eivl, Jg, 337 (L > 0 such that

T 1 X . )
A <h1( ) ¢ (hl( )ODt Uk(t)) - W(bp(hl(t)ODt u(t)))
x (oDffun(t) — oDfu(t))dt
o {dl fo i (t YT |1 (t)o D8 ug (t) — hy(t)oDu(t)|Pdt, p > 2,

s (1) D s (£) — i ()0 DS u(1) 2
d1 [y e T e e et 1<p <2,

/0 (@l 2u(t) = 6Ol 2u(®) ) (s (1) = u(t))dt

>{d2f0 GOlu(®) —uOPdt,  p=2,

s (1) — (1) 2
da o 0t e dt, 1<p<2,

st Df (1))

' ! ho(t)oDP
/()( OB op(h2(t)o tvk(t))_W

t)p—
x (oD vk(t) — oDJu(t))dt
ds fy st ha(®)oDfvi(t) — ha(t)o DY v(t)Pdt, p > 2,

T T __ 1 |2 (t)o D vy (£) =Rz (t)o D v(t)|?
U)o T TraeDTen O o pter 70 TSP,

/0 (E2@lon ()P 20u(t) = L@@~ 20(t) ) (va (1) — v(t))dt

. {J Jy COlox(t) —e@Pdt,  p>2,

7T v () —v (1)
d4 fO E2(t)mdt, 1 < p S 2

When 1 < p < 2, one has

T
/ hl (t)|0Dfuk(t) — 0Df‘u(t)|pdt
0

T m®eDfuk(t) — h(DeDfuP o\
§</o R T Drer 1+ T B Dra )

(0D U (D) + I (e D utr) )

| |1 (t)o DS u (t) — By (t)o D u(t)|? %
S(/o R (o Drer T T G Dr e )

(3.10)



1546 Y. Wang, L. Tian & M. Dong

2—p
2

T
x 2=DE5E (1) 252 (/ lo D uk ()P + |oD?u(t)|pdt)
0

therefore we infer that

[ (st ®uDF ) 3kl D7)
; W% 1(t)o Dy ug, W% 1(t)oDf'u
* (oDiua(t) = oDfu(t))dt
>20 =05 (1) 57 Ay (o Dfur (DN, + o D u(®)|,) 7
x(/o B (t)|oD%ur(t) — oDEult)[Pdt)s . (3.11)

A similar calculation yields

/51 Mug(t) — u(t)|Pdt

() O ¥ e e
g(/ B o= /el )(ue(t)] + u(H)])7de)

[uk(t) —u(®) N3
<(f aomE p‘“)
T
w202 )5 ([l + o)) 7
therefore we infer that
T
/0 (OO 2u(t) = 6Ol 2u(t) ) (r () = u(t))dt

p—2

220705 ()57 & (Jun (O, + Ju(Oll, ) 7 (3.12)

X (/0 01 () g () —u(t)|pdt>%.

From (3.11) and (3.12), it follows that

T 1 N
| Grgmasom®oDz o)
1 (e} « «
- W%(ﬁl (t)o Dy U(t)))(th ug(t) — oDj'u(t))
+ (El(t)|uk(t)|p*2uk(t) — Ly (8)]u(t) PP (t)>(Uk(t) —u(t))dt

T
ZK1((/0 hiy (t) o Dffup (t) — oDfu(t)|Pdt)» + /El () ur(t) — u(t |pdt)5)

3

22" R / ha (8o D% un () — oDlu(t |Pdt+/ 00 ue(t) — u(t) P
2% R lun() - u) (3.13)

where

Ry =205 min{(h}) "7 di (o Df us (015, + o Df u(d)17,) 7
1 1Ul0~ Urlt) e T lloHt Lp )
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()7 ol (B} + (I} }-
When P > 2, one has

T 1 .
/O <h1( = 5 Op(ha ()0 DF ur(t))
~ Tt (oD u(0)) 0 Dfuslt) = oDFu(r)
+ (G Oh @) 2u(t) = G OROP2u(t)) (ur(t) = u(t))dt
T 1 . . ) T _ )
> /0 @ M (D0DF e (0) = (o DF )Pt + /0 dot (B s (1) — ()Pl
> min{dy, da e (t) - w5, (3.14)

Likewise, when 1 < p < 2, one has

(b maeD o)
/0 hz() 2\l)ol/y Uk

1
O T Op(ha(t )onU(t)))(onvk(t) — oD2u(1))

+ (0o 20u(t) = GO0 ) (0x(t) - o)t

T T
= / ha()]o D7 oi(t) = oDfu()Pdt)? + ( / La()lon(t) = v () Pdt) >

N—

o T T B
ZQTKQ(/ ha ()]0 D2 vy (t) — 0Dfu(t)|?dt+/ €g(t)|vk(t)—v(t)|pdt)
0 0
=2 Kallu(t) = v(t) %, (3.15)
where

ot 2-p . p=2 ~ p—2
Ky = 20775 min{(hy) 7 ds(lo D/ vk ()7, + o DY v(D)17,) 7,
p=2 ~ p=2
(£2) "7 da(lor )70 + [o®I7) 7 3
When P > 2, one has

! L B (t)oD?
| Ggmatota®on? o)
hQ(l) 36p(ha(1)0Df (1)) ) (0D ui(t) — oDu(1)
+ (GO OF20(t) = OGP 200) (04(0) - o)t
> /0 J?,sz(t)wfuk(t)—hg(t)opfv(t)wdw /0 dyly(t)|vg () — v(t)|Pdt
> min{ds, di}|[on(t) = o], (3.16)
Therefore, it follows from (3.8) and (3.9) with (3.13) to (3.16) that

[l (t) — u(t)||E3 =0, |ve(t)— v(t)HEéa —0, ask— oo
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This show that |[(ux(t), vk(t)) — (u(t),v(t))[[zs — 0. Hence, 4y satisfies the P.S.
condition and the first step of the proof is completed.

Stepll. We will show that there exists an 7 > 0 such that the functional ¢ has
a local minimum (ug, v) € Oz : {(u,v) € EF : [(w, )] g <7}

Apparently, O3 is a bound and real reflexive Banach space. In addition, we can
show that O is weak sequentially closed. In fact, let {(ug,vx)} C O such that
(ug,vr) — (u,v), by the Mazur theorem [16], there exists a sequence of convex

combinations

k k
ﬂkzzsijj, ngjzl’ Ek; >0, j€N,
Jj=1 Jj=1

k k
U= kv Y. sk =1 & >0, jEN,
i=1 i=1

such that uy — v in E’g‘, U — v in Eg, i.e., (Ug,vx) — (u,v). Since Of is a closed
convex set, so (Ug,x) C Of and (u,v) € O Next, we show that ¢y is weakly
sequentially lower semi-continous in Oy. Assuming (ug,vy) — (u,v) in EZ, from
the Lemma 2.4, then (ug, vg) uniformly converges (u, v) in C([0,T], R)2. So ¥(u,v)
is weakly sequentially continuous. Apparently ‘i(u, v) is a convex and continuous
function, we have that ﬁ)(u,v) is weakly sequentially lower semi-continous. Then

P is weakly sequentially lower semi-continous in ©z. i.e.

LU S [T
bp? | dp? kilgs

1 o
1ikn_1)gf¢)\(uk,vk) :likrgirolf BP?(& + b||ug] %g)p -

dp?
T T

Y / F (b un(t), vn ()t — g / ot u (1), vk (1)) dt

>@a(u,v).

Therefore, it follows from Lemma 2.6 that ¢ has a local minimum. Without loss of
generality, we assume @y (ug, vy) = ming, s, pa(u,v). Next we will demonstrate
that
oa(up,vg) < (u,vi)%fae; oa(u, v). (3.17)
If (3.17) holds, the proof of Step II is completed.
There we choose 7' = 7y > 0, from (Hy), there exist 0 < & < min{1, §, i} and
6> 0, for any t € [0,T), (u,v) € E?, with |u(t)| <4, |v(t)| < 8, such that

ftu(t), v(t) < (@), gt u(t),v(t)) < w(®)[". (3.18)

So, for any (u,v) € 005, by (2.2), (2.5), (2.9), (2.10), (2.11) and (3.18), we have

a? 1

ISpQ cin

A ¢
s dlfo|P, )P — <
@+ ol —



Multiple solutions for a Kirchhoff-type fractional coupled problem 1549

ar—1 et i vt
> ANk — t)|Pdt
’ lu(®)Il5, + ||v(>||Eﬁ Y /0 [u(t)|

~p—1 T
e / (bt
0

pAb

~p—1 op— ap—

||v( Was = () 5o

(O, +
_ v(t)Hf;g

~p—1

(1= 28 @), + (1 = ) el

7P
>min{a?" (1 — X&), P 1 (1 — Ma};o.

Noticing $x(0,0) = 0, then @y (uf, vg) < ¢2(0,0) < @a(u,v) for any (u,v) € 00z,.
So (3.17) holds and (ug, v§) € O,
StepIIl. We will demonstrate that there exist an (uf,v}) with ||(uf,v])| ¢
such that @y (uf,v}) < inf(u,v)e@@;o Palu,v).
Considering that (H3), there exist nonnegative constants J*{, ~§, J§ and (z*; such
that for any ¢ € 0,7, (u,v) € EP,

F(tul)v(t) = dilu@®)” = d3,  g(t,u(t),v(t) = dslo(t)]” — di. (3.19)

So, for any (u,v) € E8 \ (0,0), since 3 > p?, by (3.19), we have

aP
+
2

1 1 -
oa(Eu, ) = b —(a+ bf”\lﬂllp )= PR (&+dePllolls)? — =

~ ~ T ~
A / £t ult). Eo(t)dt — / olt, Eult), Eu(t))dt

o I
(@ + 6 |[ull, ) + (Tpg(cﬂL dﬁpllvll%g)”

1
<z
bp?

T T
F / u(t)Fdt + ST — pds / Eo(t)Tdt + pdiT
0

1 an
=i (@ + 0" |[ullz, ) + (C+d€ loll%s)? (3.20)

= i lu()]]5 — Md§5||v(t)||2a + 3T + pdiT
— —o00, as £— oo.
Then the (3.20) implies that there exists £§ sufficiently large with [|({gu, {50 gs >
7o, PA(§gu, §gv) < 0. Therefore we take (uf, vi) = (§Fu, {v) with [[(uf, v)| g > 7o
and @x(uf,v]) < 0 which implied that ¢x(ui,v}) < inf(,.)epe,, $r(u,v). Then
Steplll is proved.

It follows from Lemma 2.5 that the critical value

o= _inf max 90,\(]1( )7}2(5))7
(J1,J2)€T s€[0,1]
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where

={(h(s ), J2(s))|(1(5), J2(5)) € C([0,1], B)® : (j1(0), j2(0)) = (ug, vp),
(3( 1),j2(1)) = (uf, v})},

then, there exists a critical point (7*,7*) € E?, such that @} (7*,7*) = 0. In addi-

tion, by Lemma 2.6, we know that (uj, vg) is also a critical point, therefore, (u*,v*)

and (ug,v) are two different critical points of ¢ and they are weak solutions of

(1.1). Proof of Theorem 3.1 is completed. O
Before we begin the following proof, we give some notations.

1 er (1—a)p (1-a)T 11—« 1—a\p
Gl(a» 0) :W(/o hl(t)t dt + /QT Iy (t)(t —(t—oT) ) dt

- /( B0 = (b= oT)' " = (t = (1 = o)T)~*)7dr)

1—0)T

— o oT (1-o)T
n <F(29T))p/o O (t)tPde + (T(2 — a))p/g b (t)dt

T

e s

ol (1-9T
Ga(p0) = ([ 0O [ a7 — (= gy
. e
b R D) (e (= o))
r'2-p) ) oT ) ) (1-o)T
+ (2 [T wwpaswe-py [ 7 b
F(Q_ﬁ) P r _ +\P
el OO
M= max{#A’{p, A3,

@) = {(u,v) € R? ];W + 5'”'p <1},

T
= [ max gl
0 (u,0)eQ(?)

go = inf t,u,v),
0= o 1ix0r-aim x o a-s)ws T )

_ 1 . 1 .
G" = —(a+bw(G1(a,0))" + = (¢ + dwyGa(B, 0))",
bp? dp?
-2 fOT max,, &z f(t u,v)dt + <
" =min{ — M
g
A [GTOT F(, T2 - @)@, T2 — B)wa)dt + G
Tgo )

Theorem 3.2. Let zl) <a,B<1, f(t,0,0) = g(¢,0,0) = 0. Assume that (H1) and
(H3) hold and there exist three positive constants ¢, wy, wa such that
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(H7)
i > Al (& + baP Gy (e, 0))P + Al (¢ + dwbGa(B, 0))P = G*;
M bp? ! ’ dp? 2 ' '
(H3)
(1—o)T
/ f, (2 - a)wy, ['(2 — B)ws)dt > 0;
oT
T F(Q — a)wl P(2 - /B)WQ
£, £, t)dt
| et )
T I'2—-a)w;, T'(2-PB)w;
4 Tt t, t)dt > 0;
0 A oT or )
(H3)
M [T = fltu0)dt (ST £, T(2 T(2 dt
fo max , ) ea @ ft,u,v) _ ng f&T(2 - a)w, (2 - B)w2)
¢ O+ :
Then, for each
G ¢
A€ ( (1—o)T s~ T )a
ng fT(2—a)w, (2 — B)ws)dt Mfo max ., .\ed() ft,u,v)dt

and p € (0,12*), the problem (1.1) has at least two non trivial solutions.
weps 2(0,0) = ¥(0,0) = 0. Besides, &, U:E SR
are two continously Gateaux differentiable functionals and ®’, ¥’ can be seen in
(2.13), (2.14).

Set r = % and consider the following two functions @, (t) € Eg, i,(t) € E
defined by

Proof. It is clear that inf(u

(2 - a)w
T’Z t € [0, o7,
ay(t) = { D2 - a)m, t € [oT, (1 - o)T], (3.21)
(2 - a)o
QT (T - t)v te [(1 - @)T’ T]a
and
T b t €10, 7],
by (t) := { (2 = B)wwa, te[oT, (1 0)T], (3.22)
o7 (T—-1t), te[l-0T,T).

Clearly ’111(0) = ﬁl(T) = @1(0) = f}l(T) =0, ﬂl(t), f}l(t) S LP[O,T]. By the
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definition 2.1, we have

%tl—% t e [0, oT),
Doy (1) = 4 L (t1= — (t — oT)1—) t € [oT, (1 — o)T)
0 tU1(t) = QT 0 ) oL, 0 )
%(tl-a —(t—oT)" — (t— (1 - 0)T)'™®), te(l-o)T,T),
and
2, t€ [0, 7).
o
w
on’LA)l(t) = ?;(tl_ﬂ - (t - QT)I_ﬁ)a t S [QT7 (1 - Q)T]a
%w-ﬂ —(t—oT)"F = (t— (1- 9)T)'F), te[(1-o)T.T].
So that

()11 =/0 ha ()]0 Di"an (8)[Pdt + (8] (1) |Pdt

oT (1—o)T T
- / 4 / 4 / P (®)loD§an (B)F + 2 ()]s (D)t
0 0 (

T 1-0)T
:w:fGl (Oé, Q)7

101 (t)

T
o = [ maOWDEOF + 00

oT (1—o)T T
= / + / + / o () [0 D61 (8)|P + £o(8) |01 (8)[Pdt
0 0 (

T 1-0)T
Then, by (H]) we have
(

0 <®(a1(t),01(t))
L a4 507G1 (0,0 — L 4+ L (e 4 dobs(8, 0)) — =
== w , — — + = w , - =
bp? 1ol 0 bp? | dp? 2627, 0 dp?
1 . 1 . ¢
<—(a+ bt Gi(a, 0))? + — (6 + dwb G (B, 0))F < = =7
bp2( 1G1(a, 0)) dp2( 5G2(8, 0)) T
Now, using that
{(u,v) € B : ®(u,v) <r}
—{(w,0) € BE (bl ) — 4 e dul, ) - — <}
L 7 pp2 o bp2  dp? B dp? ~
. ap—1 cp—1
{(u,v) € ES ull®, + [ol%s <7}
P 0 0
oarl 1 =11
{(u,v) € ES [Jull5 + ~— vl <7}

p AP P AP
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e}

. p
ST P U Py
p p
Due to u € (0, 1*), we have

T ¢
-, max, & f(t w,v)dt + <

M
w < ~ )
30
then, the following inequality holds:
T
SUPG(yy<p V(U 0) [ max, 5o f(tu,v)dt+ 550
B (uw)< ¥(u,v) < Mfo (4,0)€0@ o1 (3.23)
r c A
In addition, due to p € (0, 7*), we have
A5 OT F(E T2 - )@, T(2 — B)wa)dt + G
< T )
then, the following inequality holds:
. 1— T ~
\I/( (t f( 0) 2 — a)wl,F(Q — ﬁ)WQ)dt + %Tgo - l (3 24)
(i (1), 1(t)) G A

By (3.23) and (3.24), the hypothesis (i) of Theorem 2.1 holds. In addition, note
that when (H1) holds, StepI in the proof of Theorem 3.1 shows that @) = d— AT
satisfies P.S.condition. When (H3) holds, the (3.20) implies that ¢y = & — AF
is unbounded from blow on E’g . Then, the hypothesis (ii) of Theorem 2.1 holds.
Therefore, all the assumptions of Theorem 2.1 are satisfied.

Hence, Theorem 3.2 implies that for each

G* o

A (o o7 V=T );
f 2 - a)wlv F(2 - ﬂ)WQ)dt Mfo maX(u,U)Eﬁ(a f(ta u, U)dt

and p € (0, "), the functional ¢ has least two non-zero critical point that are non
trivial solutions of (1.1). O

4. Conclusions

In this paper we study the fractional-order Kirchhoff-type coupled equation with
p-Laplacian operators in two approaches, obtaining results on the existence of two
solutions to the equation under important A-R conditions. To the best of my
knowledge, there has been relatively little research on such equations. Therefore,
we are inclined to continue to explore such problems in the future.

References

[1] G. Bonanno, Relations between the mountain pass theorem and local minima,
Adv. Nonlinear Anal., 2012, 1(3), 205-220.



1554

Y. Wang, L. Tian & M. Dong

2]

[3]

[4]

[5]

(6]

[9]

[10]

[13]

[14]

[15]

G. Chai and W. Liu, Existence of solutions for the fractional Kirchhoff equations
with sign-changing potential, Bound. Value Probl., 2018. DOI: 10.1186/s13661-
018-1046-3.

T. Chen, W. Liu and H. Jin, Nontrivial solutions of the Kirchhoff-type
fractional p-Laplacian Dirichlet problem, J. Funct. Spaces, 2020. DOLI:
10.1155/2020/8453205.

G. Fix and J. Roop, Least squares finite-element solution of a fractional order
two-point boundary value problem, Comput. Math. Appl., 2004, 48(7-8), 1017—
1033.

S. Heidarkhani and A. Salari, Nontrivial solutions for impulsive fractional dif-
ferential systems through variational methods, Math. Meth. Appl. Sci., 2020,
43(10), 6529-6541.

F. Jiao and Y. Zhou, Ezistence of solutions for a class of fractional boundary
value problems via critical point theory, Comput. Math. Appl., 2011, 62(3),
1181-1199.

F. Jiao and Y. Zhou, Ezistence results for fractional boundary value problem
via critical point theory, Int. J. Bifurcation Chaos, 2012, 22(4), 1250086.

F. Kamache, R. Guefaifia and S. Boulaaras, Ezistence of three solutions for
perturbed nonlinear fractional p-Laplacian boundary value systems with two
control parameters, J. Pseudo-Differ. Oper. Appl., 2020, 11(4), 1781-1803.

F. Kamache, R. Guefaifia, S. Boulaaras and A. Alharbi, Ezistence of weak
solutions for a new class of fractional p-Laplacian boundary value systems,
Mathematics, 2020, 8(4), 475.

D. Kang, C. Liu and X. Zhang, Ezistence of solutions for Kirchhoff-type
fractional Dirichlet problem with p-Laplacian, Mathematics, 2020. DOLI:
10.3390/math8010106.

A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional
Differential Equations, Elsevier, Amsterdam, 2006.

M. Kratou, Ground state solutions of p-Laplacian singular Kirchhoff prob-
lem involving a Riemann-Liowville fractional derivative, Filomat, 2019, 33(7),
2073-2088.

D. Li, F. Chen and Y. An, The multiplicity of solutions for a class of nonlinear
fractional Dirichlet boundary value problems with p-Laplacian type via varia-
tional approach, Int. J. Nonlinear Sci. Numer. Simul., 2019, 20(3—4), 361-371.

D. Li, F. Chen and Y. An, FEzistence and multiplicity of nontrivial solutions
for nonlinear fractional differential systems with p-Laplacian via critical point
theory, Math. Meth. Appl. Sci., 2018, 41(8), 3197-3212.

D. Ma, L. Liu and Y.Wu, Ezistence of nontrivial solutions for a system of
fractional advection-dispersion equations, Rev. Real Acad. Cienc. Exactas Fis.
Nat. Ser. A-Mat., 2019, 113(2), 1041-1057.

J. Mawhin and M.Willem, Critical Point Theory and Hamiltonian Systems,
Springer, Berlin, 1989.

D. Min and F. Chen, Three solutions for a class of fractional impulsive
advection-dispersion equations with Sturm-Liouville boundary conditions via
variational approach, Math. Meth. Appl. Sci., 2020, 43(15), 9151-9168.



Multiple solutions for a Kirchhoff-type fractional coupled problem 1555

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

N. Nyamoradi and E. Tayyebi, Existence of solutions for a class of frac-
tional boundary value equations with impulsive effects via critical point theory,
Mediterr. J. Math., 2018, 15(3), 1-25.

N. Nyamoradi, Y. Zhou, E. Tayyebi, B. Ahmad and A. Alsaedi, Nontrivial
solutions for time fractional nonlinear Schriodinger-Kirchhoff type equations,
Discrete Dyn. Nat. Soc., 2017. DOI: 10.1155/2017/9281049.

I. Podlubny, Fractional Differential FEquations, Academic Press, San Diego,
1999.

P. Rabinowitz, Minimaz Methods in Critical Point Theory with Applications
to Differential Equations, American Mathematical Society, Providence, 1986.

S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives:
Theory and Application, Gordon and Breach Science Publishers, New York,
1993.

J. Simon, Régularité de la solution d’un probléeme aux limites non linéaires,
Ann. Fac. Sci. Toulouse, 1981, 3, 247-274.

Y. Tian and J. Nieto, The applications of critical-point theory to discontinuous
fractional-order differential equations, Proc. Edinb. Math. Soc., 2017, 60(4),
1021-1051.

E. Zeidler, Nonlinear Functional Analysis and its Applications, I1I: Variational
Methods and Optimization, Springer, New York, 1985.

Y. Zhao, C. Luo and H. Chen, Ezistence results for non-instantaneous impulsive
nonlinear fractional differential equation via variational methods, Bull. Malays.
Math. Sci. Soc., 2020, 43(3), 2151-2169.



	Introduction
	Preliminaries and lemmas
	Main Results
	Conclusions

