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Abstract In this paper, we study via the monotone iterative technique posi-
tive solutions for a class of Hadamard type fractional-order differential systems
with coupled Hadamard type fractional-order integral boundary value condi-
tions on an infinite interval. Schemes are constructed to approximate extremal
positive solutions of the coupled differential system. Examples are given to
illustrate the theory.
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1. Introduction
Fractional differential equations arise in diffusion processes, engineering mechan-
ics, chaos, biomathematics, fractional dynamic system and are a natural gener-
alization of integer-order differential equations so improve modeling accuracy; see
[2,4,5,10–16,19,20,24]. Usually authors discuss three fractional derivatives: Caputo
type, Riemann-Liouville type, and Hadamard type. The Hadamard type fractional
derivative and integral was introduced in [7] in 1892 and contains the logarith-
mic function in its definition and arises in fracture analysis and image processing;
see [2, 3, 5, 13,18,20] and the references therein.
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Usually to establish existence results for Hadamard type fractional differential
equations researchers use fixed point theorems [1, 3, 6, 8, 9, 20, 28, 31]. For example,
using the Banach contraction fixed point theorem and the Leray-Schauder alter-
native, the authors in [1] established the existence of solutions for the following
differential system with uncoupled Hadamard type integral boundary conditions:

HDαu(t) = f(t, u(t), v(t)), 1 < t < e, 1 < α ≤ 2,
HDβv(t) = g(t, v(t), u(t)), 1 < t < e, 1 < β ≤ 2,

u(1) = 0, u(e) = HIru(σ1) =
1

Γ(r)

∫ σ1

1

(log σ1 − log s)
r−1

u(s)
ds
s
,

v(1) = 0, v(e) = HIru(σ2) =
1

Γ(r)

∫ σ2

1

(log σ2 − log s)
r−1

v(s)
ds
s
,

(1.1)

where r > 0, 1 < σ1, σ2 < e,HDα and HDβ denote Hadamard type fractional
order derivatives, and HIr denotes a Hadamard type fractional order integral, f, g :
[1, e]×R×R are given continuous functions. Using the fixed point index the authors
in [29] established the existence of solutions for the following system with uncoupled
multi-point boundary value problems:

HDqu(t) + f1(t, u(t), v(t)) = 0, 1 < t ≤ e, 2 < q ≤ 3,
HDqv(t) + f2(t, u(t), v(t)) = 0, 1 < t ≤ e, 2 < q ≤ 3,

u(1) = δu(1) = 0, u(e) =

m−1∑
i=1

aiu(ξi),

v(1) = δv(1) = 0, v(e) =

n−1∑
j=1

bjv(ηj),

(1.2)

where HDq denotes the q-order Hadamard type fractional derivative and δ rep-
resents the delta derivative, i.e., δu(1) = (tdu/dt)|t=1, v(1) = (tdv/dt)|t=1, fi ∈
C([1, e]×R+ ×R+,R+),R+ = [0,+∞), i = 1, 2. The real constants ai, bj , ξi, ηj(i =
1, 2, . . . ,m− 1, j = 1, 2, . . . , n− 1,m, n > 2) satisfy the following: ai, bj > 0, ξi, ηj ∈
(1, e) with

∑m−1
i=1 ai(log ξi)

q−1 ∈ [0, 1) and
∑n−1
j=1 bj(log ηj)

q−1 ∈ [0, 1).
For results on Hadamard type fractional differential equations on the infinite

interval we refer the reader to [5, 13, 14, 17, 18, 21, 22, 25, 26]. In [18] the authors
established the existence of positive solutions and constructed two explicit monotone
iterative sequences which converge to the extremal positive solutions of

HDαu(t) + f(t, u(t),HIγu(t),HDα−1u(t)) = 0, 1 < a ≤ 2, t ∈ (1,+∞),

u(1) = 0, HDa−1u(+∞) =

m∑
i=1

λi
HIαiu(η).

(1.3)

where HDα is a Hadamard type fractional derivative of order α and HI(·) is a
Hadamard type fractional order integral, r, βi, λi ≥ 0(i = 1, 2, · · · ,m) are preset
constants and α, η, βi, λi satisfy

∑m
i=1

λi(log η)
α+βi−1

Γ(α+βi)
< 1. Motivated by results of

literature [1] and [18], the authors in [33] use the monotone iterative technique to
investigate the existence of extreme positive solutions of the fractional differential
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coupled system on an infinite interval

Dαu(t) + φ(t, u(t), v(t), Dβ−1v(t)) = 0, 2 < α ≤ 3,

Dβv(t) + ψ(t, u(t), v(t), Dα−1u(t)) = 0, 2 < β ≤ 3,

u(1) = u′(1) = 0, Dα−1u(+∞) =

∫ +∞

1

h(t)v(t)dt,

v(1) = v′(1) = 0, Dβ−1v(+∞) =

∫ +∞

1

g(t)u(t)dt,

(1.4)

where Dα, Dβ are Riemann-Liouville fractional derivatives, and the nonlinear terms
φ,ψ include coupled unknown functions and the lower-order fractional derivative
of unknown functions. Recently the authors in [23] apply fixed point theorems to
establish the existence of multiple positive solutions of the Hadamard type fractional
differential system with coupled integral boundary conditions:

HDpx(t) + a(t)f(t, x(t), y(t)) = 0, 1 < p ≤ 2, t ∈ [1,+∞),
HDqy(t) + b(t)g(t, x(t), y(t)) = 0, 1 < q ≤ 2, t ∈ [1,+∞),

x(1) = 0, HDp−1x(+∞) =

m∑
i=1

λi
HIαiy(η),

y(1) = 0, HDq−1y(+∞) =

n∑
j=1

σj
HIβjx(ξ),

(1.5)

where HDϕ are Hadamard fractional derivatives of ϕ ∈ {p, q},f, g ∈ C([1,∞) ×
R+ × R+,R+), Iυ are Hadamard fractional integrals of υ ∈ {αi, βi}, λi, σj > 0, i =
1, 2, . . . ,m, j = 1, . . . , n. We note that the integral boundary conditions involve
coupled unknown functions, but the nonlinearity terms f, g do not include the
lower-order fractional derivative of unknown functions.

It is of interest to note that coupled systems involving lower-order Hadamard
type fractional derivatives of unknown functions and coupled integral boundary
conditions are rarely considered. Motivated by the above we consider the following
Hadamard type fractional differential system:

HDpx(t) + f1(t, x(t), y(t),
HDp−1x(t),HDq−1y(t)) = 0,

1 < p ≤ 2, 1 < q ≤ 2, t ∈ R+,
HDqy(t) + f2(t, x(t), y(t),

HDp−1x(t),HDq−1y(t)) = 0,

1 < p ≤ 2, 1 < q ≤ 2, t ∈ R+,

x(1) = 0,HDp−1x(∞) =

m∑
i=1

λi
HIαiy(η), η ∈ R+,

y(1) = 0,HDq−1y(∞) =

n∑
j=1

σj
HIβjx(ξ), ξ ∈ R+,

(1.6)

where R+ = [1,+∞),H Dϕ are Hadamard fractional derivatives of ϕ ∈ {p, q},f1, f2 ∈
C([1,+∞) × R+ × R+ × R+ × R+,R+), Iψ are Hadamard fractional integrals of
ψ ∈ {αi, βi}. λi, σj > 0, i = 1, 2, . . . ,m, j = 1, . . . , n. Our aim in this paper is to
obtain in Section 3 two pairs of explicit monotone iterative schemes to approximate
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the extremal positive solutions. The idea is to extend iterative methods to a system
via the definition of a partial order in product spaces, which is quite different from
[25–27,30,32]. Finally examples are given to illustrate our results.

2. Preliminaries
First we list some definitions and results concerning Hadamard type fractional frac-
tional derivatives and integrals.
Definition 2.1(see [10]). The Hadamard type fractional derivative of order q is
given by

HDqg(t) =
1

Γ(n− q)

(
t
d

dt

)n ∫ t

1

(log t− log s)
n−q−1

g(s)
ds
s
, n− 1 < q < n,

where g : [1,∞) → R is a integrable function, [q] denotes the integer part of the
real number q, n = [q] + 1 and log(·) = loge(·).

Definition 2.2(see [10]). The Hadamard type fractional integral of order q is given
by

HIqg(t) =
1

Γ(q)

∫ t

1

(log t− log s)
q−1

g(s)
ds
s
, q > 0,

where g : [1,∞) → R is a integrable function, and log(·) = loge(·).

Lemma 2.1. Let hi ∈ C[1,∞) with 0 <

∫ ∞

1

hi(s)
ds
s

< ∞, i = 1, 2 and Ω =

Γ(p)Γ(q) − Λ1Λ2 > 0 with Λ1 and Λ2 given below. Then the following coupled
Hadamard type fractional differential system

HDpx(t) + h1(t) = 0, 1 < p ≤ 2, t ∈ R+,
HDqy(t) + h2(t) = 0, 1 < q ≤ 2, t ∈ R+,

x(1) = 0,HDp−1x(∞) =

m∑
i=1

λi
HIαiy(η),

y(1) = 0,HDq−1y(∞) =

n∑
j=1

σj
HIβjx(ξ),

(2.1)

is equivalent to the integral system
x(t) =

∫ +∞

1

G1(t, s)h1(s)
ds
s

+

∫ +∞

1

G2(t, s)h2(s)
ds
s
,

y(t) =

∫ +∞

1

G3(t, s)h2(s)
ds
s

+

∫ +∞

1

G4(t, s)h1(s)
ds
s
,

(2.2)

where the Green’s functions Gk(t, s), k = 1, 2, 3, 4 are given by

G1(t, s) = gp(t, s) +
Λ1(log t)

p−1

Ω

n∑
j=1

σjg
p
βj
(ξ, s)

Γ(p+ βj)
,

G2(t, s) =
Γ(q)(log t)p−1

Ω

m∑
i=1

λig
q
αi
(η, s)

Γ(q + αi)
,
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G3(t, s) = gq(t, s) +
Λ2(log t)

q−1

Ω

m∑
i=1

λig
q
αi
(η, s)

Γ(q + αi)
,

G4(t, s) =
Γ(p)(log t)q−1

Ω

n∑
j=1

σjg
p
βj
(ξ, s)

Γ(p+ βj)
,

with
Λ1 =

m∑
i=1

λiΓ(q)(log η)
q+αi−1

Γ(q + αi)
, Λ2 =

n∑
j=1

σjΓ(p)(log ξ)
p+βj−1

Γ(p+ βj)
,

and

gϕ(t, s) =
1

Γ(ϕ)

{
(log t)ϕ−1 − (log t− log s)ϕ−1, 1 ≤ s ≤ t < +∞,

(log t)ϕ−1, 1 ≤ t ≤ s < +∞,
(2.3)

gϕψ(ρ, s) =

{
(log ρ)ϕ+ψ−1 − (log ρ− log s)ϕ+ψ−1, 1 ≤ s ≤ ρ < +∞,

(log ρ)ϕ+ψ−1, 1 ≤ ρ ≤ s < +∞.
(2.4)

Proof. Apply Lemmas 2.5 and Lemma 2.6 in [23], and we can deduce the above
results by direct observation.

Lemma 2.2. Let hi ∈ C(R+) with 0 <

∫ ∞

1

hi(s)
ds
s

< ∞, i = 1, 2 and Ω =

Γ(p)Γ(q) − Λ1Λ2 > 0 with Λ1 and Λ2 given in Lemma 2.1. Then the following
expression can be obtained from the integral equations (2.2)

HDp−1x(t) =

∫ +∞

1

G∗
1(t, s)h1(s)

ds
s

+

∫ +∞

1

G∗
2(t, s)h2(s)

ds
s
,

HDq−1y(t) =

∫ +∞

1

G∗
3(t, s)h2(s)

ds
s

+

∫ +∞

1

G∗
4(t, s)h1(s)

ds
s
,

(2.5)

where the Green’s functions G∗
k(t, s), 1, 2, 3, 4 are defined by

G∗
1(t, s) = G0(t, s) +

Λ1Γ(p)

Ω

n∑
j=1

σjg
p
βj
(ξ, s)

Γ(p+ βj)
,

G∗
2(t, s) =

Γ(p)Γ(q)

Ω

m∑
i=1

λig
q
αi
(η, s)

Γ(q + αi)
,

G∗
3(t, s) = G0(t, s) +

Λ2Γ(q)

Ω

m∑
i=1

λig
q
αi
(η, s)

Γ(q + αi)
,

G∗
4(t, s) =

Γ(p)Γ(q)

Ω

n∑
j=1

σjg
p
βj
(ξ, s)

Γ(p+ βj)
,

and

G0(t, s) =

{
0, 1 ≤ s ≤ t < +∞,

1, 1 ≤ t ≤ s < +∞.
(2.6)

Proof. Using Lemma 2.5 of of [23], we can obtain

HDp−1x(t) = −
∫ t

1

h1(s)
ds
s

+ c1Γ(p),
HDq−1y(t) = −

∫ t

1

h2(s)
ds
s

+ k1Γ(q),
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where

c1 =
Γ(q)

Ω

∫ ∞

1

h1(s)
ds
s

− Γ(q)

Ω

m∑
i=1

λi
Γ(q + αi)

∫ η

1

(log η − log s)q+αi−1h2(s)
ds
s

+
Λ1

Ω

∫ ∞

1

h2(s)
ds
s

− Λ1

Ω

n∑
j=1

σj
Γ(p+ βj)

∫ ξ

1

(log ξ − log s)p+βj−1h1(s)
ds
s
,

and

k1 =
Γ(p)

Ω

∫ ∞

1

h2(s)
ds
s

− Γ(p)

Ω

n∑
j=1

σj
Γ(p+ βj)

∫ ξ

1

(log ξ − log s)p+βj−1h1(s)
ds
s

+
Λ2

Ω

∫ ∞

1

h1(s)
ds
s

− Λ2

Ω

m∑
i=1

λi
Γ(q + αi)

∫ η

1

(log η − log s)q+αi−1h2(s)
ds
s
.

Since Ω = Γ(p)Γ(q)− Λ1Λ2 we have
HDp−1x(t)

=−
∫ t

1

h1(s)
ds
s

+ Γ(p)
[Γ(q)

Ω

∫ ∞

1

h1(s)
ds
s

− Γ(q)

Ω

m∑
i=1

λi
Γ(q + αi)

×
∫ η

1

(log η − log s)q+αi−1h2(s)
ds
s

+
Λ1

Ω

∫ ∞

1

h2(s)
ds
s

− Λ1

Ω

n∑
j=1

σj
Γ(p+ βj)

∫ ξ

1

(log ξ − log s)p+βj−1h1(s)
ds
s

]
+

∫ ∞

1

h1(s)
ds
s

−
∫ ∞

1

h1(s)
ds
s

=

∫ ∞

1

G0(t, s)h1(s)
ds
s

+
Λ1Λ2

Ω

∫ ∞

1

h1(s)
ds
s

− Γ(p)Λ1

Ω

n∑
j=1

σj
Γ(p+ βj)

×
∫ ξ

1

(log ξ − log s)p+βj−1h1(s)
ds
s

+
Γ(p)Λ1

Ω

∫ ∞

1

h2(s)
ds
s

− Γ(p)Γ(q)

Ω

m∑
i=1

λi
Γ(q + αi)

∫ η

1

(log η − log s)q+αi−1h2(s)
ds
s

=

∫ ∞

1

G0(t, s)h1(s)
ds
s

+
Γ(p)Λ1

Ω

n∑
j=1

σj
Γ(p+ βj)

∫ ∞

1

(log ξ)p+βj−1h1(s)
ds
s

− Γ(p)Λ1

Ω

n∑
j=1

σj
Γ(p+ βj)

∫ ξ

1

(log ξ − log s)p+βj−1h1(s)
ds
s

+
Γ(p)Γ(q)

Ω

m∑
i=1

λi
Γ(q + αi)

∫ ∞

1

(log η)q+αi−1h2(s)
ds
s

− Γ(p)Γ(q)

Ω

m∑
i=1

λi
Γ(q + αi)

∫ η

1

(log η − log s)q+αi−1h2(s)
ds
s

=

∫ ∞

1

G0(t, s)h1(s)
ds
s

+
Γ(p)Λ1

Ω

n∑
j=1

σj
Γ(p+ βj)

∫ ∞

1

gpβj
(ξ, s)h1(s)

ds
s
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+
Γ(p)Γ(q)

Ω

m∑
i=1

λi
Γ(q + αi)

∫ ∞

1

gqαi
(η, s)h2(s)

ds
s

=

∫ ∞

1

G∗
1(t, s)h1(s)

ds
s

+

∫ ∞

1

G∗
2(t, s)h2(s)

ds
s
,

which shows that the first expression is satisfied in (2.5). In an analogous way, we
have

HDq−1y(t)

=−
∫ t

1

h2(s)
ds
s

+ Γ(q)
[Γ(p)

Ω

∫ ∞

1

h2(s)
ds
s

− Γ(p)

Ω

n∑
j=1

λj
Γ(p+ βj)

×
∫ ξ

1

(log ξ − log s)p+βj−1h1(s)
ds
s

+
Λ2

Ω

∫ ∞

1

h1(s)
ds
s

− Λ2

Ω

m∑
i=1

λi
Γ(q + αi)

×
∫ η

1

(log η − log s)q+αi−1h2(s)
ds
s

]
+

∫ ∞

1

h2(s)
ds
s

−
∫ ∞

1

h2(s)
ds
s

=

∫ ∞

1

G0(t, s)h2(s)
ds
s

+
Λ1Λ2

Ω

∫ ∞

1

h2(s)
ds
s

− Γ(q)Λ2

Ω

m∑
i=1

λi
Γ(q + αi)

∫ η

1

(log η − log s)q+αi−1h2(s)
ds
s

+
Γ(q)Λ2

Ω

∫ ∞

1

h1(s)
ds
s
−Γ(p)Γ(q)

Ω

n∑
j=1

λj
Γ(p+ βj)

∫ ξ

1

(log ξ − log s)p+βj−1h1(s)
ds
s

=

∫ ∞

1

G∗
3(t, s)h2(s)

ds
s

+

∫ ∞

1

G∗
4(t, s)h1(s)

ds
s
,

which shows that the second expression is also satisfied in (2.5), so we are finished.
For brevity, we introduce the following symbols and results:

M1 =
1

Γ(p)
+

Λ1

Ω

n∑
j=1

σj(log ξ)
p+βj−1

Γ(p+ βj)
=

Γ(q)

Ω
,

M2 =
Γ(q)

Ω

m∑
i=1

λi(log η)
q+αi−1

Γ(q + αi)
=

Λ1

Ω
,

M3 =
1

Γ(q)
+

Λ2

Ω

m∑
i=1

λi(log η)
q+αi−1

Γ(q + αi)
=

Γ(p)

Ω
,

M4 =
Γ(p)

Ω

n∑
j=1

σj(log ξ)
p+βj−1

Γ(p+ βj)
=

Λ2

Ω
,

N1 = 1 +
Λ1Γ(p)

Ω

n∑
j=1

σj(log ξ)
p+βj−1

Γ(p+ βj)
=

Γ(p)Γ(q)

Ω
,

N2 =
Γ(p)Γ(q)

Ω

m∑
i=1

λi(log η)
q+αi−1

Γ(q + αi)
=

Γ(p)Λ1

Ω
,

N3 = 1 +
Γ(q)Λ2

Ω

m∑
i=1

λi(log η)
q+αi−1

Γ(q + αi)
=

Γ(p)Γ(q)

Ω
,
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N4 =
Γ(p)Γ(q)

Ω

n∑
j=1

σj(log ξ)
p+βj−1

Γ(p+ βj)
=

Γ(q)Λ2

Ω
.

Lemma 2.3 (see [23]). The Green functions Gk(t, s), k = 1, 2, 3, 4 defined in (2.2)
has the following properties:
(A1) Gk(t, s) are continuous and Gk(t, s) ≥ 0 for all (t, s) ∈ R+×R+, k = 1, 2, 3, 4;

(A2) Gk(t, s)

1 + (log t)p−1 + (log t)q−1
≤Mk for all (t, s) ∈ R+ × R+, k = 1, 2, 3, 4.

Lemma 2.4. The Green functions Gk(t, s) and G∗
k(t, s), k = 1, 2, 3, 4 defined in

(2.2) and (2.5) have the following properties:
(B1) Gk(t, s) ≤Mk(log t)

p−1, k = 1, 2;Gk(t, s) ≤Mk(log t)
q−1, k = 3, 4 for (t, s) ∈

R+ × R+;
(B2) 0 ≤ G∗

k(t, s) ≤ Nk, k = 1, 2, 3, 4 for (t, s) ∈ R+ × R+.

Proof. From (2.3) and (2.4), it is easy to see that

gp(t, s) ≤
(log t)p−1

Γ(p)
, gpβj

(ξ, s) ≤ (log ξ)p+βj−1,

gqαi
(η, s) ≤ (log η)q+αi−1, (t, s) ∈ R+ × R+,

and then

G1(t, s)≤ [
1

Γ(p)
+
Λ1

Ω

n∑
j=1

σj(log ξ)
p+βj−1

Γ(p+βj)
](log t)p−1=M1(log t)

p−1, (t, s)∈R+ × R+,

G2(t, s) ≤
Γ(q)

Ω

m∑
i=1

λi(log η)
q+αi−1

Γ(q + αi)
(log t)p−1 =M2(log t)

p−1, (t, s) ∈ R+ × R+.

In a analogous way, we can obtain Gk(t, s) ≤Mk(log t)
q−1 for (t, s) ∈ R+×R+, k =

3, 4, so property (B1) holds. From the Green functions G∗
k(t, s), k = 1, 2, 3, 4 in

Lemma 2.2, it is easy to observe that property (B2) holds.
Define two spaces of continuous functions on R+:

X =
{
x ∈ C(R+),

HDp−1x ∈ C(R+) : sup
t∈R+

|x(t)|
1 + (log t)p−1 + (log t)q−1

< +∞,

sup
t∈R+

|HDp−1x(t)| < +∞
}
,

Y =
{
y ∈ C(R+),

HDq−1y ∈ C(R+) : sup
t∈R+

|y(t)|
1 + (log t)p−1 + (log t)q−1

< +∞,

sup
t∈R+

|HDq−1y(t)| < +∞
}

equipped with the norms

∥x∥X = max
{

sup
t∈R+

|x(t)|
1 + (log t)p−1 + (log t)q−1

, sup
t∈R+

|HDp−1x(t)|
}
,

∥y∥Y = max
{

sup
t∈R+

|y(t)|
1 + (log t)p−1 + (log t)q−1

, sup
t∈R+

|HDq−1y(t)|
}
.



1564 Y. Li, S. Bai & D. O’Regan

Lemma 2.5 (see [21]). (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) are Banach spaces.
Moreover, it is easy to see the product space (X × Y, ∥ · ∥X×Y ) is also a Banach

space with the norm
∥ · ∥X×Y = max{∥x∥X , ∥y∥Y }.

Lemma 2.6 (see [22]). Let U ⊂ X be a bounded set. Then U is relatively compact
in X if the following hold:
(i) For any x ∈ U,

x(t)

1 + (log t)p−1 + (log t)q−1
and HDp−1x(t) are equicontinuous on

any compact interval of R+;
(ii) For any ε > 0, there is a constant C = C(ε) > 0 such that∣∣∣∣ x(t1)

1 + (log t1)p−1 + (log t2)q−1
− x(t2)

1 + (log t2)p−1 + (log t2)q−1

∣∣∣∣ < ε

and |HDp−1x(t1)− HDp−1x(t2)| < ε for any t1, t2 ≥ C and x ∈ U .

3. Main results
Now we define the cone P ⊂ X × Y as

P = {(x, y) ∈ X × Y |x(t) ≥ 0, y(t) ≥ 0,HDp−1x(t) ≥ 0,HDq−1y(t) ≥ 0, t ∈ R+},

and the operator 𝟋 : P → X × Y as 𝟋(x, y)(t) = (𝟋1(x, y)(t),𝟋2(x, y)(t)) for all
t ∈ R+, where the operators 𝟋1 : P → X × Y and 𝟋2 : P → X × Y are given by

(
𝟋1(x, y)(t)

𝟋2(x, y)(t)

)
=


∫ +∞

1

G1(t, s)f1(x,y)(s)
ds
s

+

∫ +∞

1

G2(t, s)f2(x,y)(s)
ds
s∫ +∞

1

G3(t, s)f2(x,y)(s)
ds
s

+

∫ +∞

1

G4(t, s)f1(x,y)(s)
ds
s

 ,

(3.1)
for x, y ∈ P, t ∈ R+, where{

f1(x,y)(s) = f1(s, x(s), y(s),
HDp−1x(s),HDq−1y(s)),

f2(x,y)(s) = f2(s, x(s), y(s),
HDp−1x(s),HDq−1y(s)).

From Lemma 2.2 and (3.1), for x, y ∈ P, t ∈ R+, we have

(
HDα−1𝟋1(x, y)(t)
HDβ−1𝟋2(x, y)(t)

)
=


∫ +∞

1

G∗
1(t, s)f1(x,y)(s)

ds
s
+

∫ +∞

1

G∗
2(t, s)f2(x,y)(s)

ds
s∫ +∞

1

G∗
3(t, s)f2(x,y)(s)

ds
s
+

∫ +∞

1

G∗
4(t, s)f1(x,y)(s)

ds
s

 .

(3.2)
From Lemma 2.1 it is clear that (x, y) is a pair of positive solutions for the

fractional differential system (1.6) if and only if (x, y) ∈ P is a pair of positive
fixed points of the operator 𝟋. We consider the existence of the fixed points of the
operator 𝟋.

Throughout this paper we assume that f1, f2 satisfy the following hypotheses:
(H1) f1, f2 ∈ C(R+ × R× R× R×R,R+) and Ω = Γ(p)Γ(q)− Λ1Λ2 > 0.
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(H2) The nonnegative functions ai(t), bi(t) ∈ L[1,+∞)(i = 0, 1, 2, 3, 4) and the
nonnegative constants 0 ≤ ςk, τk < 1(k = 1, 2, 3, 4) satisfy

|f1(t, x, y, w, z)| ≤ a0(t) + a1(t)|x|ς1 + a2(t)|y|ς2 + a3(t)|w|ς3 + a4(t)|z|ς4 ,
x, y, w, z ∈ R,∀t ∈ R+,

with ∫ +∞

1

a0(t)
dt
t

= a∗0 < +∞,∫ +∞

1

a1(t)[1 + (log t)p−1 + (log t)q−1]ς1
dt
t

= a∗1 < +∞,∫ +∞

1

a2(t)[1 + (log t)p−1 + (log t)q−1]ς2
dt
t

= a∗2 < +∞,∫ +∞

1

a3(t)dt = a∗3 < +∞,

∫ +∞

1

a4(t)
dt
t

= a∗4 < +∞,

and

|f2(t, x, y, w, z)| ≤ b0(t) + b1(t)|x|τ1 + b2(t)|y|τ2 + b3(t)|w|τ3 + b4(t)|z|τ3 ,
x, y, w, z ∈ R,∀t ∈ R+,

with ∫ +∞

1

b0(t)
dt
t

= b∗0 < +∞,∫ +∞

1

b1(t)[1 + (log t)p−1 + (log t)q−1]τ1
dt
t

= b∗1 < +∞,∫ +∞

1

b2(t)[1 + (log t)p−1 + (log t)q−1]τ2
dt
t

= b∗2 < +∞,∫ +∞

1

b3(t)
dt
t

= b∗3 < +∞,

∫ +∞

1

b4(t)
dt
t

= b∗3 < +∞.

(H3) f1(t, x, y, w, z) and f2(t, x, y, w, z) are increasing with respect to the vari-
ables x, y, w, z, and f1(t, 0, 0, 0, 0) ̸≡ 0, f2(t, 0, 0, 0, 0) ̸≡ 0,∀t ∈ R+.

Lemma 3.1. If hypotheses (H1) and (H2) are satisfied, then∫ +∞

1

|f1(x,y)(s)|
ds
s

≤ a∗0 +

4∑
k=1

a∗k||(x, y)||
ςk
X×Y ,∀(x, y) ∈ X × Y,

and ∫ +∞

1

|f2(x,y)(s)|
ds
s

≤ b∗0 +

4∑
k=1

b∗k||(x, y)||
τk
X×Y ,∀(x, y) ∈ X × Y.

Proof. For all (x, y) ∈ X × Y , by hypotheses (H1) and (H2) we have∫ +∞

1

|f1(x,y)(s)|
ds
s
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≤
∫ +∞

1

(
a0(s) + a1(s)|x(s)|ς1 + a2(s)|y(s)|ς2 + a3(s)|HDp−1x(s))|ς3

+ a4(s)|HDq−1y(s))|ς4
)ds
s

≤a∗0 +
∫ +∞

1

a1(s))[1 + (log s)p−1 + (log s)q−1]ς1
|x(s)|ς1

[1 + (log s)p−1 + (log s)q−1]ς1
ds
s

+

∫ +∞

1

a2(s))[1 + (log s)p−1 + (log s)q−1]ς2
|y(s)|ς2

[1 + (log s)p−1 + (log s)q−1]ς2
ds
s

+

∫ +∞

1

a3(s)|HDp−1x(s)|ς3 ds
s

+

∫ +∞

1

a4(s)|HDq−1y(s)|ς4 ds
s

≤a∗0 + a∗1||x||
ς1
X + a∗2||y||

ς2
Y + a∗3||x||

ς3
X + a∗4||y||

ς4
Y

≤a∗0 +
4∑
k=1

a∗k||(x, y)||
ςk
X×Y

and∫ +∞

1

|f2(x,y)(s)|
ds
s

≤
∫ +∞

1

(
b0(s) + b1(s)|x(s)|τ1 + b2(s)|y(s)|τ2 + b3(s)|HDp−1x(s))|τ3

+ b4(s)|HDq−1y(s))|τ4
)ds
s

≤b∗0 +
∫ +∞

1

b1(s))[1 + (log s)p−1 + (log s)q−1]τ1
|x(s)|τ1

[1 + (log s)p−1 + (log s)q−1]τ1
ds
s

+

∫ +∞

1

b2(s))[1 + (log s)p−1 + (log s)q−1]τ2
|y(s)|τ2

[1 + (log s)p−1 + (log s)q−1]τ2
ds
s

+

∫ +∞

1

b3(s)|HDp−1x(s)|τ3 ds
s

+

∫ +∞

1

b4(s)|HDq−1y(s)|τ4 ds
s

≤b∗0 + b∗1||x||
τ1
X + b∗2||y||

τ2
Y + b∗3||x||

τ3
X + b∗4||y||τ4y

≤b∗0 +
4∑
k=1

b∗k||(x, y)||
τk
X×Y .

Lemma 3.2. If hypotheses (H1) and (H2) are satisfied, then the operator 𝟋 : P →
P is continuous and completely continuous.

Proof. Since Gk(t, s) ≥ 0, G∗
k(t, s) ≥ 0, k = 1, 2, 3, 4 and f1, f2 ≥ 0, we obtain

𝟋1(x, y)(t) ≥ 0,𝟋2(x, y)(t) ≥ 0,HDp−1𝟋1(x, y)(t) ≥ 0,HDq−1𝟋2(x, y)(t) ≥ 0 for
any (x, y) ∈ P, t ∈ R+, so 𝟋 : P → P .

Let U = {(x, y)|(x, y) ∈ P, ||(x, y)||X×Y ≤ ∆} for some ∆ > 0. For all (x, y) ∈
U , from Lemma 3.1, Lemma 2.3 and (3.1), we have

sup
t∈R+

|𝟋1(x, y)(t)|
1 + (log t)p−1 + (log t)q−1

≤ sup
t∈R+

∣∣∣ ∫ +∞

1

G1(t, s)

1 + (log t)p−1 + (log t)q−1
f1(x,y)(s)

ds
s

∣∣∣
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+ sup
t∈J

∣∣∣ ∫ +∞

1

G2(t, s)

1 + (log t)p−1 + (log t)q−1
f2(x,y)(s)

ds
s

∣∣∣
≤M1

∫ +∞

1

|f1(x,y)(s)|
ds
s

+M2

∫ +∞

1

|f2(x,y)(s)|
ds
s

≤(M1 +M2)
[
a∗0 +

4∑
k=1

a∗k||(x, y)||
ςk
X×Y + b∗0 +

4∑
k=1

b∗k||(x, y)||
τk
X×Y

]
≤(M1 +M2)

[
a∗0 + b∗0 +

4∑
k=1

(a∗k∆
ςk + b∗k∆

τk)
]
, (3.3)

and from Lemma 2.3, Lemma 3.1 and (3.2) we have

sup
t∈R+

|HDp−1𝟋1(x, y)(t)|

≤ sup
t∈R+

∣∣∣ ∫ ∞

1

G∗
1(t, s)f1(x,y)(s)

ds
s

∣∣∣+ sup
t∈R+

∣∣∣ ∫ ∞

1

G∗
2(t, s)f2(x,y)(s)

ds
s

∣∣∣
≤N1

∫ +∞

1

|f1(x,y)(s)|
ds
s

+N2

∫ +∞

1

|f2(x,y)(s)|
ds
s

≤(N1 +N2)
[
a∗0 +

4∑
k=1

a∗k||(x, y)||
ςk
X×Y + b∗0 +

4∑
k=1

b∗k||(x, y)||
τk
X×Y

]
≤(N1 +N2)

[
a∗0 + b∗0 +

4∑
k=1

(a∗k∆
ςk + b∗k∆

τk)
]
. (3.4)

Then for all (x, y) ∈ U we have

||𝟋1(x, y)||X

=max
{

sup
t∈R+

|𝟋1(x, y)(t)|
1 + (log t)p−1 + (log t)q−1

, sup
t∈R+

|HDp−1𝟋1(x, y)(t)|
}

≤max{M1 +M2, N1 +N2}
[
a∗0 + b∗0 +

4∑
k=1

(a∗k∆
ςk + b∗k∆

τk)
]
, (3.5)

and similarly

||𝟋2(x, y)||Y ≤ max{M3 +M4, N3 +N4}
[
a∗0 + b∗0 +

4∑
k=1

(a∗k∆
ςk + b∗k∆

τk)
]
,

so

||𝟋(x, y)||X×Y

=max
{
∥𝟋1(x, y)∥X , ∥𝟋2(x, y)∥Y

}
≤max

{
M1 +M2, N1 +N2,M3 +M4, N3 +N4}

[
a∗0 + b∗0 +

3∑
k=1

(a∗k∆
ςk + b∗k∆

τk)
]
,

(3.6)

i.e. 𝟋U is uniformly bounded.
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Next let I ⊂ R+ be any compact interval. For all t1, t2 ∈ I, t2 > t1 and
(x, y) ∈ U , we have∣∣∣ 𝟋1(x, y)(t2)

1 + (log t2)p−1 + (log t2)q−1
− 𝟋1(x, y)(t1)

1 + (log t1)p−1 + (log t1)q−1

∣∣∣
≤
∫ +∞

1

∣∣∣ G1(t2, s)

1+(log t2)p−1+(log t2)q−1
− G1(t1, s)

1+(log t1)p−1+(log t1)q−1

∣∣∣∣∣f1(x,y)(s)∣∣ds
s

+

∫ +∞

1

∣∣∣ G2(t2, s)

1+(log t2)p−1+(log t2)q−1
− G2(t1, s)

1+(log t1)p−1+(log t1)q−1

∣∣∣|f2(x,y)(s)|ds
s
.

(3.7)

Note the functionsG1(t2, s)/(1+(log t2)
p−1+(log t2)

q−1)−G1(t1, s)/(1+(log t1)
p−1+

(log t1)
q−1) and G2(t2, s)/(1+(log t2)

p−1+(log t2)
q−1)−G2(t1, s)/(1+(log t1)

p−1+
(log t1)

q−1) are uniformly continuous for any (t1, s), (t2, s) ∈ I × I. In fact, for all
s ∈ I and s ≤ t, we have

G1(t2, s)

1 + (log t2)p−1 + (log t2)q−1
− G1(t1, s)

1 + (log t1)p−1 + (log t1)q−1

=
gp(t2, s)

1 + (log t2)p−1 + (log t2)q−1
+

Λ1(log t2)
p−1

Ω[1 + (log t2)p−1 + (log t2)q−1]

×
n∑
j=1

σjg
p
βj
(ξ, s)

Γ(p+ βj)
− gp(t1, s)

1 + (log t1)p−1 + (log t1)q−1

− Λ1(log t1)
p−1

Ω[1 + (log t1)p−1 + (log t1)q−1]

n∑
j=1

σjg
p
βj
(ξ, s)

Γ(p+ βj)

=
(log t2)

p−1 − (log t2 − log s)p−1

Γ(p)[1 + (log t2)p−1 + (log t2)q−1]
+

Λ1(log t2)
p−1

Ω[1 + (log t2)p−1 + (log t2)q−1]

×
n∑
j=1

σj [log ξ)
p+βj−1 − (log ξ − log s)p+βj−1]

Γ(p+ βj)

− (log t1)
p−1 − (log t1 − log s)p−1

Γ(p)[1 + (log t1)p−1 + (log t1)q−1]
− Λ1(log t1)

p−1

Ω[1 + (log t1)p−1 + (log t1)q−1]

×
n∑
j=1

σj [log ξ)
p+βj−1 − (log ξ − log s)p+βj−1]

Γ(p+ βj)
,

so G1(t2, s)/(1 + (log t2)
p−1 + (log t2)

q−1)−G1(t1, s)/(1 + (log t1)
p−1 + (log t1)

q−1)
is continuous in any compact interval I, so uniformly continuous for any s ∈ I. In
a similar way, for all s ∈ I and s ≤ t, we have

G2(t2, s)

1 + (log t2)p−1 + (log t2)q−1
− G2(t1, s)

1 + (log t1)p−1 + (log t1)q−1

=
Γ(q)(log t2)

p−1

Ω[1 + (log t2)p−1 + (log t2)q−1]

m∑
i=1

λig
q
αi
(η, s)

Γ(q + αi)

− Γ(q)(log t1)
p−1

Ω[1 + (log t1)p−1 + (log t1)q−1]

m∑
i=1

λig
q
αi
(η, s)

Γ(q + αi)
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=
Γ(q)(log t2)

p−1

Ω[1 + (log t2)p−1 + (log t2)q−1]

m∑
i=1

λi[log η)
q+αi−1 − (log η − log s)q+αi−1]

Γ(q + αi)

− Γ(q)(log t1)
p−1

Ω[1 + (log t1)p−1 + (log t1)q−1]

m∑
i=1

λi[log η)
q+αi−1 − (log η − log s)q+αi−1]

Γ(q + αi)
,

which is also uniformly continuous for any s ∈ I.
In addition, note

G1(t2, s)

1 + (log t2)p−1 + (log t2)q−1
− G1(t1, s)

1 + (log t1)p−1 + (log t1)q−1

=
(log t2)

p−1

Γ(p)[1 + (log t2)p−1 + (log t2)q−1]

+
Λ1(log t2)

p−1

Ω[1 + (log t2)p−1 + (log t2)q−1]

n∑
j=1

σj log ξ)
p+βj−1

Γ(p+ βj)

− (log t1)
p−1

Γ(p)[1 + (log t1)p−1 + (log t1)q−1]

− Λ1(log t1)
p−1

Ω[1 + (log t1)p−1 + (log t1)q−1]

n∑
j=1

σj log ξ)
p+βj−1

Γ(p+ βj)
,

is independent of s for s ≥ t, so the function G1(t2, s)/(1+(log t2)
p−1+(log t2)

q−1)−
G1(t1, s)/(1+(log t1)

p−1+(log t1)
q−1) is uniformly continuous on R+/I. In a similar

way, for all s ∈ R+/I and s ≥ t, we have

G2(t2, s)

1 + (log t2)p−1 + (log t2)q−1
− G2(t1, s)

1 + (log t1)p−1 + (log t1)q−1

=
Γ(q)(log t2)

p−1

Ω[1 + (log t2)p−1 + (log t2)q−1]

m∑
i=1

λi log η)
q+αi−1

Γ(q + αi)

− Γ(q)(log t1)
p−1

Ω[1 + (log t1)p−1 + (log t1)q−1

m∑
i=1

λi log η)
q+αi−1

Γ(q + αi)
,

which is independent of s so the function G2(t2, s)/(1 + (log t2)
p−1 + (log t2)

q−1)−
G2(t1, s)/(1 + (log t1)

p−1 + (log t1)
q−1) is uniformly continuous on R+/I.

Thus, for all s ∈ R+ and t1, t2 ∈ I, we have

∀ϵ > 0,∃δ(ϵ) such that if |t1 − t2| < δ, then∣∣∣ G1(t2, s)

1 + (log t2)p−1 + (log t2)q−1
− G1(t1, s)

1 + (log t1)p−1 + (log t1)q−1

∣∣∣ < ϵ,∣∣∣ G2(t2, s)

1 + (log t2)p−1 + (log t2)q−1
− G2(t1, s)

1 + (log t1)p−1 + (log t1)q−1

∣∣∣ < ϵ.

(3.8)

From Lemma 3.1, (3.7) and (3.8), for all s ∈ R+, (x, y) ∈ U and t1, t2 ∈ I, we
have ∣∣∣ 𝟋1(x, y)(t2)

1 + (log t2)p−1 + (log t2)q−1
− 𝟋1(x, y)(t1)

1 + (log t1)p−1 + (log t1)q−1

∣∣∣
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≤
[
a∗0 +

4∑
k=1

a∗k∆
ςk + b∗0 +

4∑
k=1

b∗k∆
τk
]
ϵ,

so the function 𝟋1(x, y)(t)/(1 + (log t)p−1 + (log t)q−1) is equicontinuous on I.
Also

HDp−1𝟋1(x, y)(t) =

∫ +∞

1

G∗
1(t, s)f1(x,y)(s)

ds
s

+

∫ +∞

1

G∗
2(t, s)f2(x,y)(s)

ds
s

and from the representations of the Green functions G∗
1(t, s), G

∗
2(t, s) ∈ C(R+ ×

R+) then HDp−1𝟋1(x, y)(t) is equicontinuous on I. In the same way we have
𝟋2(x, y)(t)/(1 + (log t)p−1 + (log t)q−1) and HDq−1𝟋2(x, y)(t) are equicontinuous.
Thus hypothesis (i) of Lemma 2.6 is satisfied.

Next we show the operator 𝟋1,𝟋2 are equiconvergent at +∞. Since

lim
t→+∞

G1(t, s)

1 + (log t)p−1 + (log t)q−1
= 0, lim

t→+∞

G2(t, s)

1 + (log t)p−1 + (log t)q−1
= 0,

then for any ϵ > 0, there exists a sufficiently large constant C = C(ϵ) > 0, such
that for any t1, t2 ≥ C and s ∈ R+, we have∣∣∣ G1(t2, s)

1 + (log t2)p−1 + (log t2)q−1
− G1(t1, s)

1 + (log t1)p−1 + (log t1)q−1

∣∣∣ < ϵ,∣∣∣ G2(t2, s)

1 + (log t2)p−1 + (log t2)q−1
− G2(t1, s)

1 + (log t1)p−1 + (log t1)q−1

∣∣∣ < ϵ.

From Lemma 3.1 and (3.7), we conclude that 𝟋1(x, y)(t)/(1+(log t)p−1+(log t)q−1)
are equiconvergent at +∞. Furthermore from the representations of the Green
functions G∗

1(t, s), G
∗
2(t, s) we have that HDp−1𝟋1(x, y)(t) is equiconvergent at +∞.

Similarly, 𝟋2(x, y)(t)/(1+(log t)p−1+(log t)q−1) and HDq−1𝟋2(x, y)(t) are equicon-
vergent at +∞. Thus hypothesis (ii) of Lemma 2.6 is hold.

From the above we can apply Lemma 2.6 so 𝟋 : P → P is completely continuous.
Next we prove 𝟋 : P → P is continuous. Let (xn, yn), (x, y) ∈ P, such that

(xn, yn) → (x, y)(n→ ∞). Then ||(xn, yn)||X×Y < +∞, ||(x, y)||X×Y < +∞. Simi-
lar to (3.3) and (3.4), we obtain

sup
t∈J

|𝟋1(xn, yn)(t)|
1 + (log t)p−1 + (log t)q−1

≤(M1 +M2)
[
a∗0 + b∗0 +

4∑
k=1

(
a∗k||(xn, yn)||

ςk
X×Y + b∗k||(xn, yn)||

τk
X×Y

)]
< +∞,

and

sup
t∈J

|HDp−1𝟋1(xn, yn)(t)|

≤(N1 +N2)
[
a∗0 + b∗0 +

4∑
k=1

(
a∗k||(xn, yn)||

ςk
X×Y + b∗k||(xn, yn)||

τk
X×Y

)]
< +∞.

Since the functions f1, f2 are continuous, we have

lim
n→∞

𝟋1(xn, yn)(t)

1 + (log t)p−1 + (log t)q−1
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= lim
n→∞

[ ∫ +∞

1

G1(t, s)

1 + (log t)p−1 + (log t)q−1
f1(xn,yn)(s)

ds
s

+

∫ +∞

1

G2(t, s)

1 + (log t)p−1 + (log t)q−1
f2(xn,yn)(s)

ds
s

]
=

∫ +∞

1

G1(t, s)

1 + (log t)p−1 + (log t)q−1
f1(x,y)(s)

ds
s

+

∫ +∞

1

G2(t, s)

1 + (log t)p−1 + (log t)q−1
f2(x,y)(s)

ds
s

=
𝟋1(x, y)(t)

1 + (log t)p−1 + (log t)q−1
,

and

lim
n→∞

HDp−1𝟋1(xn, yn)(t)

= lim
n→∞

[ ∫ +∞

1

G∗
1(t, s)f1(xn,yn)(s)

ds
s

+

∫ +∞

1

G∗
2(t, s)f2(xn,yn)(s)

ds
s

]
=

∫ ∞

1

G∗
1(t, s)f1(x,y)(s)

ds
s

+

∫ +∞

1

G∗
2(t, s)f2(x,y)(s)

ds
s

=HDp−1𝟋1(x, y)(t).

Then from the Lebesgue dominated convergence theorem

sup
t∈R+

|𝟋1(xn, yn)(t)−𝟋1(x, y)(t)|
1 + (log t)p−1 + (log t)q−1

≤ sup
t∈R+

∫ +∞

1

G1(t, s)

1 + (log t)p−1 + (log t)q−1

∣∣f1(xn,yn)(s)− f1(x,y)(s)
∣∣ds
s

+ sup
t∈R+

∫ +∞

1

G2(t, s)

1 + (log t)p−1 + (log t)q−1

∣∣f2(xn,yn)(s)− f2(x,y)(s)
∣∣ds
s

≤(M1 +M2)
[ ∫ +∞

1

∣∣f1(xn,yn)(s)− f1(x,y)(s)
∣∣ds
s

+

∫ +∞

1

∣∣f2(xn,yn)(s)− f2(x,y)(s)
∣∣ds
s

]
→ 0 as n→ ∞;

note∣∣f1(xn,yn)(s)− f1(x,y)(s)
∣∣

≤|f1(xn,yn)(s)|+ |f1(x,y)(s)|
≤2a0(s) + a1(s))[1 + (log s)p−1 + (log s)q−1]ς1

(
||(xn, yn)||ς1X×Y + ||(x, y)||ς1X×Y

)
+ a2(s))[1 + (log s)p−1 + (log s)q−1]ς2

(
||(xn, yn)||ς2X×Y + ||(x, y)||ς2X×Y

)
+ a3(s)

(
||(xn, yn)||ς3X×Y + ||(x, y)||ς3X×Y

)
+ a4(s)

(
||(xn, yn)||ς4X×Y + ||(x, y)||ς4X×Y

)
and ∣∣f2(xn,yn)(s)− f2(x,y)(s)

∣∣
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≤2b0(s) + b1(s))[1 + (log s)p−1 + (log s)q−1]τ1
(
||(xn, yn)||τ1X×Y + ||(x, y)||τ1X×Y

)
+ b2(s))[1 + (log s)p−1 + (log s)q−1]τ2

(
||(xn, yn)||τ2X×Y + ||(x, y)||τ2X×Y

)
+ b3(s)

(
||(xn, yn)||τ3X×Y + ||(x, y)||τ3X×Y

)
+ b4(s)

(
||(xn, yn)||τ4X×Y + ||(x, y)||τ4X×Y

)
.

Also note from the Lebesgue dominated convergence theorem that

sup
t∈R+

|HDp−1𝟋1(xn, yn)(t)− HDp−1𝟋1(x, y)(t)|

≤ sup
t∈R+

∫ +∞

1

G∗
1(t, s)

∣∣f1(xn,yn)(s)− f1(x,y)(s)
∣∣ds
s

+ sup
t∈R+

∫ +∞

1

G∗
2(t, s)

∣∣f2(xn,yn)(s)− f2(x,y)(s)
∣∣ds
s

≤(N1 +N2)
[ ∫ +∞

1

∣∣f1(xn,yn)(s)− f1(x,y)(s)
∣∣ds
s

+

∫ +∞

1

∣∣f2(xn,yn)(s)− f2(x,y)(s)
∣∣ds
s

]
→ 0 as n→ ∞.

Thus

∥𝟋1(xn, yn)−𝟋1(x, y)∥X

=max
{

sup
t∈R+

|𝟋1(xn, yn)(t)−𝟋1(x, y)(t)|
1 + (log t)p−1 + (log t)q−1

,

sup
t∈R+

|HDp−1𝟋1(xn, yn)(t)− HDp−1𝟋1(x, y)(t)|
}
→ 0, n→ ∞,

so 𝟋1 is continuous. In a similar way we can show that 𝟋2 is continuous. Thus 𝟋
is continuous.

Consequently 𝟋 : P → P is continuous and completely continuous.
Define a partial order on the product space:x1

y1

 ≥

x2
y2


if x1(t)≥x2(t), y1(t)≥ y2(t), HDp−1x1(t)≥HDp−1x2(t), HDq−1y1(t)≥Dq−1y2(t),
t ∈ R+.

Theorem 3.3. Suppose hypotheses (H1),(H2) and (H3) are satisfied. Then sys-
tem (1.6) have two pairs of positive solutions (x∗, y∗) and (w∗, z∗) satisfying 0 ≤
∥(x∗, y∗)∥X×Y ≤ R and 0 ≤ ∥(w∗, z∗)∥X×Y ≤ R with limn→∞(xn, yn) = (x∗, y∗)
and limn→∞(wn, zn) = (w∗, z∗), where R is a given real constant, (xn, yn) and
(wn, zn) can be defined via the following two pairs of iterative schemes(

xn(t)

yn(t)

)
=

(
𝟋1(xn−1, yn−1)(t)

𝟋2(xn−1, yn−1)(t)

)
, n = 1, 2, . . . , with

(
x0(t)

y0(t)

)
=

(
R(log t)p

R(log t)q

)
(3.9)



Monotone iterative positive solutions for a fractional differential system 1573

and(
wn(t)

zn(t)

)
=

(
𝟋1(wn−1, zn−1)(t)

𝟋2(wn−1, zn−1)(t)

)
, n = 1, 2, . . . , with

(
w0(t)

z0(t)

)
=

(
0

0

)
. (3.10)

Furthermore they have the following monotonicity properties:(
w0(t)

z0(t)

)
≤

(
w1(t)

z1(t)

)
≤ · · · ≤

(
wn(t)

zn(t)

)
≤ · · · ≤

(
w∗(t)

z∗(t)

)

≤ · · · ≤

(
x∗(t)

y∗(t)

)
≤ · · · ≤

(
xn(t)

yn(t)

)

≤ · · · ≤

(
x2(t)

y2(t)

)
≤

(
x1(t)

y1(t)

)
≤

(
x0(t)

y0(t)

)
(3.11)

and (
HDp−1w0(t)
HDq−1z0(t)

)
≤

(
HDp−1w1(t)
HDq−1z1(t)

)
≤ · · · ≤

(
HDp−1wn(t)
HDq−1zn(t)

)

≤ · · · ≤

(
HDp−1w∗(t)
HDq−1z∗(t)

)
≤ · · · ≤

(
HDp−1x∗(t)
HDq−1y∗(t)

)

≤ · · · ≤

(
HDp−1xn(t)
HDq−1yn(t)

)
≤ · · · ≤

(
HDp−1x2(t)
HDq−1y2(t)

)

≤

(
HDp−1x1(t)
HDq−1y1(t)

)
≤

(
HDp−1x0(t)
HDq−1y0(t)

)
. (3.12)

Proof. Recall 𝟋(P ) ⊂ P .
Let

R ≥ max
{
10Λa∗0, 10Λb

∗
0, (10Λa

∗
k)

1/(1−ςk), (10Λb∗k)
1/(1−τk), k = 1, 2, 3,

}
where

Λ = max
{
M1 +M2, N1 +N2,M3 +M4, N3 +N4

}
.

Set UR = {(x, y) ∈ P : ||(x, y)||X×Y ≤ R}. For any (x, y) ∈ UR, similar to (3.3)
and (3.4), we have

sup
t∈R+

|𝟋1(x, y)(t)|
1 + (log t)p−1 + (log t)q−1

≤ Λ
[
a∗0 + b∗0 +

4∑
k=1

(a∗kR
ςk + b∗kR

τk)
]
≤ R

and

sup
t∈R+

|HDp−1x(t)| ≤ Λ
[
a∗0 + b∗0 +

4∑
k=1

(a∗kR
ςk + b∗kR

τk)
]
≤ R,

which infers that ||𝟋1(x, y)||X ≤ R. In a similar way, ||𝟋2(x, y)||Y ≤ R for all
(x, y) ∈ UR. Thus for all (x, y) ∈ UR we have

||𝟋(x, y)||X×Y =
{
∥𝟋1(x, y)∥X , ∥𝟋2(x, y)∥Y

}
≤ R.
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That is, 𝟋(UR) ⊂ UR.
From (3.9) and (3.10), we see that (x0(t), y0(t)), (w0(t), z0(t)) ∈ UR. Now we

define two pairs of (xn, yn) and (wn, zn) as (xn, yn) = 𝟋(xn−1, yn−1), (wn, zn) =
𝟋(wn−1, zn−1) for n=1, 2, . . . . Since 𝟋(UR)⊂UR, we can see that (xn, yn), (wn, zn)∈
𝟋(UR) for n=1, 2, . . . .

From Lemma 2.5, (3.1) and (3.9), for arbitrarily t ∈ R+, we have

x1(t) = 𝟋1(x0, y0)(t) ≤ Λ
[
a∗0 +

4∑
k=1

a∗kR
ςk + b∗0 +

4∑
k=1

b∗kR
τk
]
(log t)p−1

≤ R(log t)p−1 = x0(t)

and

y1(t) = 𝟋2(x0, y0)(t) ≤ Λ
[
b∗0 +

4∑
k=1

b∗kR
τk + a∗0 +

4∑
k=1

a∗kR
ςk
]
(log t)q−1

≤ R(log t)q−1 = y0(t),

that is (
x1(t)

y1(t)

)
=

(
𝟋1(x0, y0)(t)

𝟋2(x0, y0)(t)

)
≤

(
R(log t)p−1

R(log t)q−1

)
=

(
x0(t)

y0(t)

)
. (3.13)

From (3.13) and Lemma 2.4, we see
HDp−1x1(t) =

HDp−1𝟋1(x0, y0)(t)

=

∫ +∞

0

G∗
1(t, s)f1(x0,y0)(s)

ds
s

+

∫ +∞

0

G∗
2(t, s)f2(x0,y0)(s)

ds
s

≤ Λ
[
a∗0 +

4∑
k=1

a∗kR
ςk + b∗0 +

4∑
k=1

b∗kR
τk
]
≤ R = HDp−1x0(t),

HDq−1y1(t) =
HDq−1𝟋2(x0, y0)(t)

=

∫ +∞

0

G∗
3(t, s)f2(x0,y0)(s)

ds
s

+

∫ +∞

0

G∗
4(t, s)f1(u0,v0)(s)

ds
s

≤ Λ
[
a∗0 +

3∑
k=1

a∗kR
ςk + b∗0 +

3∑
k=1

b∗kR
τk
]
≤ R = HDq−1y0(t),

that is(
HDp−1x1(t)
HDq−1y1(t)

)
=

(
HDp−1𝟋1(x0, y0)(t)
HDq−1𝟋2(x0, y0)(t)

)
≤

(
R

R

)
=

(
HDp−1x0(t)
HDq−1y0(t)

)
. (3.14)

From (3.13) and (3.14) and (H3) for all t ∈ R+, we do the second iterationx2(t)
y2(t)

 =

𝟋1(x1, y1)(t)

𝟋2(x1, y1)(t)

 ≤

𝟋1(x0, y0)(t)

𝟋2(x0, y0)(t)

 =

x1(t)
y1(t)

 ,

HDp−1x2(t)

HDq−1y2(t)

 =

HDp−1𝟋1(x1, y1)(t)

HDq−1𝟋2(x1, y1)(t)

 ≤

HDp−1𝟋1(x0, y0)(t)

HDq−1𝟋2(x0, y0)(t)


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=

HDp−1x1(t)

HDq−1y1(t)

 .

For t ∈ R+, recursively, we have(
xn+1(t)

yn+1(t)

)
≤

(
xn(t)

yn(t))

)
,

(
HDp−1xn+1(t)
HDq−1yn+1(t)

)
≤

(
HDp−1xn(t)
HDp−1xn(t)

)
. (3.15)

Now 𝟋 : P → P completely continuous guarantees a (x∗, y∗) ∈ UR and a subse-
quence S of N with (xn, yn) → (x∗, y∗) as n → ∞ in S. This with (3.15) enables
us to deduce that (xn, yn) → (x∗, y∗) as n → ∞. Now the continuity of 𝟋 and
(xn+1, yn+1) = 𝟋(xn, yn) yields (x∗, y∗) = 𝟋(x∗, y∗), i.e. (x∗, y∗) is a pair of fixed
point of 𝟋.

For {(wn, zn)}∞n=0, via a similar argument, we havew1(t)

z1(t)

 =

𝟋1(w0, z0)(t)

𝟋2(w0, z0)(t)



=


∫ +∞

1

G1(t, s)f1(w0,z0)(s)
ds
s

+

∫ +∞

1

G2(t, s)f2(w0,z0)(s)ds∫ +∞

0

G3(t, s)f2(w0,z0)(s)
ds
s

+

∫ +∞

1

G4(t, s)f2(w0,z0)(s)
ds
s


≥

0

0

 =

w0(t)

z0(t)

 ,

HDp−1w1(t)

HDq−1z1(t)

 =


∫ +∞

1

G∗
1(t, s)f1(w0,z0)(s)

ds
s

+

∫ +∞

1

G∗
2(t, s)f2(w0,z0)(s)

ds
s∫ +∞

1

G∗
3(t, s)f2(w0,z0)(s)

ds
s

+

∫ +∞

1

G∗
4(t, s)f1(w0,z0)(s)

ds
s


≥

0

0

 =

HDp−1w0(t)

HDq−1z0(t)

 .

From (H3) we havew2(t)

z2(t)

 =

𝟋1(w1, z1)(t)

𝟋2(w1, z1)(t)

 ≥

𝟋1(w0, z0)(t)

𝟋2(w0, z0)(t)

 =

w1(t)

z1(t)

 ,

HDp−1w2(t)

HDq−1z2(t)

 =

HDp−1𝟋1(w1, z1)(t)

HDq−1𝟋2(w1, z1)(t)

 ≥

HDp−1𝟋1(w0, z0)(t)

HDq−1𝟋2(w0, z0)(t)


=

HDp−1w1(t)

HDq−1z1(t)

 .

Similar, for n = 1, 2, . . . and t ∈ R+, we have
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zn+1(t)

 ≥

wn(t)
zn(t)

 ,

HDp−1wn+1(t)

HDq−1zn+1(t)

 ≥

HDp−1wn(t)

HDq−1zn(t)

.

Using (wn+1, zn+1) = 𝟋(wn, zn) and the complete continuity property of the oper-
ator 𝟋, we see that (wn, zn) → (w∗, z∗) and 𝟋(w∗, z∗) = (w∗, z∗). Thus (w∗, z∗) is
also one pair fixed points of 𝟋.

Finally we show that (x∗, y∗) and (w∗, z∗) are two pairs of extreme positive
solutions for the system (1.6). Assume that (ξ(t), η(t)) is a pair of positive solutions
for the system (1.6). Then 𝟋(ξ(t), η(t)) = (ξ(t), η(t)) and

w0(t)

z0(t)

 =

0

0

 ≤

ξ(t)
η(t)

 ≤

R(log t)p−1

R(log t)q−1

 =

x0(t)
y0(t)

 ,

HDp−1w0(t)

HDq−1z0(t)

 ≤

HDp−1ξ(t)

HDq−1η(t)

 ≤

HDp−1x0(t)

HDq−1y0(t)

 .

From the monotone property of the operator 𝟋, we have

w1(t)

z1(t)

 =

𝟋1(w0, z0)(t)

𝟋2(w0, z0)(t)

 ≤

ξ(t)
η(t)

 ≤

𝟋1(x0, y0)(t)

𝟋2(x0, y0)(t)

 =

x1(t)
y1(t)

 ,

HDp−1w1(t)

HDq−1z1(t)

 ≤

HDp−1ξ(t)

HDq−1η(t)

 ≤

HDp−1x1(t)

HDq−1y1(t)

 .

Repeating the above process, we have

wn(t)
zn(t)

 ≤

ξ(t)
η(t)

 ≤

xn(t)
yn(t)


HDp−1wn(t)

HDq−1zn(t)

 ≤

HDp−1ξ(t)

HDq−1η(t)

 ≤

HDp−1xn(t)

HDq−1yn(t)

 .

From lim
n→∞

(wn, zn) = (w∗, z∗) and lim
n→∞

(xn, yn) = (x∗, y∗), the results in (3.11) and
(3.12) hold.

Now f1(t, 0, 0, 0, 0) ̸= 0 and f2(t, 0, 0, 0, 0) ̸= 0 for all t ∈ R+, so the system (1.6)
has no zero solution. From (3.11) and (3.12), it is clear that (w∗, z∗) and (x∗, y∗)
are two pairs of extreme positive solutions for system (1.6), which are given via
two pairs of monotone iterative schemes in (3.9) and (3.10). Therefore the proof is
completed.

Example 3.4. Consider the following coupled fractional differential system on an



Monotone iterative positive solutions for a fractional differential system 1577

infinite interval

− HD1.5x(t) = f1(t, x(t), y(t),
HDp−1x(t),HDq−1y(t)),

− HD1.1y(t) = f2(t, x(t), y(t),
HDp−1x(t),HDq−1y(t)),

x(1) = 0, HD0.5x(+∞) =
1

10
I

1
2 y(

7

4
) +

1

20
I

3
2 y(

7

4
),

y(1) = 0, D1.1y(+∞) =
1

8
I

1
3x(

1

3
) +

1

7
I

2
3x(

1

3
) +

1

12
I

4
3x(

1

3
).

(3.16)

where p = 1.5, q = 1.1 and

f1(x,y) =
2t

(9 + t)2
+

te−t|x(t)|0.1

[1 + (log t)0.5 + (log t)0.1]0.1
+

te−2t|y(t)|0.3

[1 + (log t)0.5 + (log t)0.1]0.3

+ te−10t|HD0.5x(t)|0.4 + t|HD0.1y(t)|0.1

1 + t2
,

f2(x,y) =
t

20(1 + t2)
+

te−3t|x(t)|0.2

[1 + (log t)0.5 + (log t)0.1]0.2
+

te−4t|y(t)|0.4

[1 + (log t)0.5 + (log t)0.1]0.4

+
3t3|HD0.5x(t)|0.2

(3 + t3)2
+
t|HD0.1y(t)|0.3

10(1 + t2)
,

and ς1 = 0.1, ς2 = 0.3, ς3 = 0.4, ς4 = 0.1, τ1 = 0.2, τ2 = 0.4, τ3 = 0.2, τ4 = 0.3, λ1 =
1
10 , λ2 = 1

20 , α1 = 1
2 , α2 = 3

2 , η = 7
4 , σ1 = 1

8 , σ2 = 1
7 , σ3 = 1

12 , β1 = 1
3 , β2 = 2

3 , β3 =
4
3 , ξ = 1

3 ,Γ(1.5) = 0.886227,Γ(1.1) = 0.951351,Λ1 = 0.088302,Λ2 = 0.141864,Ω =
Γ(1.5)Γ(1.1)− Λ1Λ2 > 0. Thus hypothesis (H1) holds.

Also we have

|f1(x,y)| ≤
2t

(9 + t)2
+

te−t|x|0.1

[1 + (log t)0.5 + (log t)0.1]0.1
+

te−2t|y|0.3

[1 + (log t)0.5 + (log t)0.1]0.3

+ te−10t|w|0.4 + t|z|0.1

1 + t2

= a0(t) + a1(t)|x|0.1 + a2(t)|y|0.3 + a3(t)|w|0.4 + a4(t)|z|0.1,

|f2(x,y)| ≤
t

20(1 + t2)
+

te−3t|x|0.2

[1+(log t)0.5+(log t)0.1]0.2
+

te−4t|y|0.4

[1+(log t)0.5+(log t)0.1]0.4

+
3t3|w|0.2

(3 + t3)2
+

t|z|0.3

10(1 + t2)

= b0(t) + b1(t)|x|0.2 + b2(t)|y|0.4 + b3(t)|w|0.2 + b3(t)|z|0.3

and

a∗0 =

∫ +∞

1

a0(t)
dt
t

= 0.200000,

a∗1 =

∫ +∞

1

a1(t)[1 + (log t)0.5 + (log t)0.1]0.1
dt
t

= 0.367879,

a∗2 =

∫ +∞

1

a2(t)[1 + (log t)0.5 + (log t)0.1]0.3
dt
t

= 0.183940,

a∗3 =

∫ +∞

1

a3(t)
dt
t

= 0.036788, a∗4 =

∫ +∞

1

a4(t)
dt
t

= 0.785398,
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b∗0 =

∫ +∞

1

b0(t)
dt
t

= 0.039200,

b∗1 =

∫ +∞

1

b1(t)[1 + (log t)0.5 + (log t)0.1]0.2
dt
t

= 0.122626,

b∗2 =

∫ +∞

1

b2(t)[1 + (log t)0.5 + (log t)0.1]0.4
dt
t

= 0.091970,

b∗3 =

∫ +∞

1

b3(t)
dt
t

= 0.250000, b∗4 =

∫ +∞

1

b4(t)
dt
t

= 0.078540

so hypothesis (H2) holds.
It is easy to verify that f1, f2 are increasing with respect to the variables x, y, w, z

and f1(t, 0, 0, 0, 0) ̸≡ 0, f2(t, 0, 0, 0, 0) ̸≡ 0,∀t ∈ R+. Thus hypothesis (H3) holds.
From Theorem 3.3, it follows that the fractional differential system (3.16) have two
pairs of positive solutions, which can be given via two pairs of monotone iterative
schemes in (3.9) and (3.10).

4. Conclusion
In this paper, we apply the monotone iterative technique to study a class of Hadamard
type fractional differential systems in an infinite interval, which involves lower-order
coupled Hadamard type fractional derivatives of unknown functions and coupled
Hadamard type fractional integral boundary conditions. Two pairs of explicit mono-
tone iterative schemes converging to the extremal positive solutions are presented.
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