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Abstract The generalized quasiarithmetic mean is generated by two func-
tions and one probability measure, and includes quasiarithmetic, Cauchy and
Bajraktarević meas. In this paper, we investigate the invariance of the arith-
metic mean with respect to generalized quasiarithmetic means and get some
solutions of it under high-order differentiability assumptions.
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1. Introduction
Throughout this paper, let I ⊆ R be a nonempty open interval. In the sequel, the
classes of continuous strictly monotone and continuous positive real-valued functions
defined on I will be denoted by CM(I) and CP(I), respectively.

The weighted quasi-arithmetic mean Aφ,λ : I2 → I is defined as

Aφ;λ(x, y) := φ−1 (λφ(x) + (1− λ)φ(y)) , x, y ∈ I,

where λ ∈ (0, 1) and φ ∈ CM(I).
Let t, s ∈ R+, the weighted two-variable Bajraktarević mean Bf,g : I2 → I

[2, 15,17] is defined by

Bf,g;t,s(x, y) :=

(
f

g

)−1(
tf(x) + sf(y)

tg(x) + sg(y)

)
, x, y ∈ I,

where f, g : I → R are two continuous functions such that g ∈ CP(I) and the ratio
function f/g ∈ CM(I). Letting t = s and α = f

g , the above Bajraktarević mean
can been rewritten by

Bα
g (x, y) = α−1

(
g(x)

g(x) + g(y)
α(x) +

g(y)

g(x) + g(y)
α(y)

)
,

which is called quasi-arithmetic means with weight function.
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The research on the equality of Bajraktarević means has experienced a long
history. As early as 1958, Bajraktarević [2] solved the equality of n-variable quasi-
arithmetic means with weight function for a fixed n ≥ 3, and presented the necessary
and sufficient conditions under twice differentiable assumption. Aczél etc [1] ob-
tained the same result without differentiability conditions when the equality holds
for all n ≥ 2, n ∈ N. The case of fixed n = 2 is much more difficult and allows
considerably more solutions. Losonczi [8] found 32 new families of solutions un-
der six-times differentiable supposition. More new characterizations of the equality
of two-variable Bajraktarević means were obtained by Losonczi etc [11] under the
same regularity assumptions. Recently, Páles etc [18] obtained the same conclusion
under only first-order differentiability. Meanwhile, Grünwald etc [4] considered the
equality problem of generalized Bajraktarević means.

The invariance equation of Bajraktarević means has been investigated exten-
sively. Domsta etc [3] first considered the invariance of arithmetic mean with re-
spect to a special Bajraktarević mean. Further, Jarczyk considered a general class of
Bajraktarević means [6] and the invariance of arithmetic mean with weight function
was also given [7]. Later, some special invariance problems of Bajraktarević means
were considered by Matkowski [13,14]. Páles etc [17] solved the invariance equation
for weighted nonsymmetric Bajraktarević means, while Grünwald etc [5] discussed
the invariance of the arithmetic mean with respect to generalized Bajraktarević
means.

Recall that f, g : I → R are two continuous functions on the interval I with
g ∈ CP(I), f/g ∈ CM(I), and µ is a probability measure on the Borel subsets of
[0, 1]. The two-variable generalized quasiarithmetic means [9, 19] Mf,g;µ : I2 → I is
defined by

Mf,g;µ(x, y) :=

(
f

g

)−1
(∫ 1

0
f(tx+ (1− t)y)dµ(t)∫ 1

0
g(tx+ (1− t)y)dµ(t)

)
, x, y ∈ I.

Clearly, this mean is a common generalization of Bajraktarević and Cauchy means.
Equalities and inequalities of two-variable functional means generated by the same
and different measures have been investigated by Losonczi etc [9–11, 19]. More-
over, Páles etc [16] studied the local and global comparison problem of generalized
Bajraktarević means.

We say that two pairs of functions (f, g) : I → R2 and (h, k) : I → R2 are
equivalent if there exist constants a, b, c, d with ad 6= cd such that

h = af + bg, k = cf + dg,

and it can be written by (f, g) ∼ (h, k).
In this paper, we will consider the invariance of the arithmetic mean with respect

to generalized quasiarithmetic means. Our aim is solving the following functional
equation(

f

g

)−1
( ∫ 1

0
f(tx+(1−t)y)dµ(t)∫ 1

0
g(tx+(1− t)y)dµ(t)

)
+

(
h

k

)−1
( ∫ 1

0
h(tx+(1−t)y)dµ(t)∫ 1

0
k(tx+(1− t)y)dµ(t)

)
=x+ y,

(1.1)
where x, y ∈ I, f, g, h, k : I → R are four continuous functions with g, k ∈ CP(I),
f/g, h/k ∈ CM(I), and µ is a probability measure over the Borel sets of [0, 1].
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2. Auxiliary results
Given a Borel probability measure µ on the interval [0, 1], we define the kth moment
and kth centralized moment of µ by

µ̂k :=

∫ 1

0

tkdµ(t) and µk :=

∫ 1

0

(t− µ̂1)
kdµ(t), k ∈ N ∪ {0},

respectively. Clearly, µ̂0 = µ0 = 1, µ1 = 0 and µ2k ≥ 0 for k ∈ N. Moreover,
µ2k = 0 holds if and only if µ is the Dirac measure δµ̂1

.
In order to describe the regularity conditions related to the two unknown func-

tions f, g generating the mean Mf,g;µ, we introduce some notations. The class
C0(I) consists of all those pairs (f, g) of continuous functions f, g : I → R such that
g ∈ CP(I) and f/g ∈ CM(I). For n ∈ N, we say that the pair (f, g) is in the class
Cn(I) if f, g are n−times continuously differentiable functions such that g ∈ CP(I)
and the function f ′g − fg′ does not vanish anywhere on I. Obviously, this latter
condition implies that f/g is strictly monotone, i.e., f/g ∈ CM(I).

For (f, g) ∈ C2(I), we also introduce the notation

Φf,g :=
W 2,0

f,g

W 1,0
f,g

, Ψf,g := −
W 2,1

f,g

W 1,0
f,g

,

where the (i, j)−order Wronskian operator W i,j is defined in terms of ith and jth
derivatives by

W i,j
f,g :=

∣∣∣∣∣∣ f
(i) f (j)

g(i) g(j)

∣∣∣∣∣∣ .
Lemma 2.1 (Lemma 5, [17]). Let (f, g) ∈ C2(I). Then f, g are solutions of the
second-order differential equation

y′′ = Φf,gy
′ +Ψf,gy.

In what follows, we need some auxiliary results from [11] about explicit formulae
for the high-order directional derivatives of Mf,g;µ at the diagonal points of the
Cartesian product I × I. Given a pair (f, g) ∈ C0(I) and a fixed element x ∈ I,
define the function mx := mx;f,g;µ in a neighborhood of origin by

mx(u) = mx;f,g;µ(u) := Mf,g;µ(x+ (1− µ̂1)u, x− µ̂1u), (2.1)

where µ̂1 denotes the first moment of the measure µ.

Lemma 2.2 (Proposition 6, [11]). Let n ∈ N, (f, g) ∈ Cn(I), and µ be a Borel
probability measure on [0, 1]. Then, for fixed x ∈ I, the function mx defined by
(2.1) is n−times continuously differentiable at the origin and

n∑
i=0

n

i

µi

∣∣∣∣∣∣ f
(i)(x) (f ◦mx)

(n−i)(0)

g(i)(x) (g ◦mx)
(n−i)(0)

∣∣∣∣∣∣ = 0.

Furthermore, mx(0) = x and in the cases n = 1, 2, 3, 4, 5, we have

m′
x(0) = 0,
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m′′
x(0) = µ2Φf,g(x),

m′′′
x (0) = µ3(Φ

′
f,g +Φ2

f,g +Ψf,g)(x),

m(4)(0) = −3µ2
2(Φ

3
f,g + 2Φf,gΨf,g)(x) + µ4(Φ

′′
f,g + 3Φ′

f,gΦf,g +Φ3
f,g

+ 2Φf,gΨf,g + 2Ψ′
f,g)(x),

m(5)(0) = −10µ2µ3(Φ
2
f,gΦ

′
f,g +Φ4

f,g + (Φ′
f,g + 3Φ2

f,g)Ψf,g +Φf,gΨ
′
f,g +Ψ2

f,g)(x)

+ µ5(Φ
′′′
f,g + 4Φ′′

f,gΦf,g + 3Φ′2
f,g + 6Φ′

f,gΦ
2
f,g +Φ4

f,g

+ (4Φ′
f,g + 3Φ2

f,g)Ψf,g + 5Φf,gΨ
′
f,g +Ψ2

f,g + 3Ψ′′
f,g)(x).

According to Lemma 2.2, we get the following results.

Lemma 2.3. Let µ be a Borel probability measure on [0, 1], (f, g), (h, k) ∈ C1(I).
If equation (1.1) holds, then

µ̂1 =
1

2
.

Proof. Let ∆(I) := {(x, x)|x ∈ I} be the diagonal of I2, and U ⊆ I2 be an open
set containing a dense subset D of ∆(I) such that equation (1.1) holds at every
point of U . Let x ∈ I be fixed satisfying (x, x) ∈ D. Define

Ux := {u ∈ R|(x+ (1− µ̂1)u, x− µ̂1u) ∈ U}.

Then Ux is a neighbourhood of 0, and equation (1.1) holds on U implies that, for
any u ∈ Ux,

mx;f,g;µ(u) +mx;h,k;µ(u) = 2x+ (1− 2µ̂1)u. (2.2)
Differentiating equation (2.2) with respect to u, then substituting u = 0, we get

m′
x;f,g;µ(0) +m′

x;h,k;µ(0) = 1− 2µ̂1.

Applying the first-order formula of Lemma 2.2, the above equation implies that
µ̂1 = 1

2 .

Lemma 2.4. Let µ be a Borel probability measure on [0, 1], (f, g), (h, k) ∈ C2(I).
If equation (1.1) holds, then

µ2(Φf,g +Φh,k) = 0. (2.3)

Proof. Differentiating equation (2.2) twice with respect to u, then substituting
u = 0, we get

m′′
x;f,g;µ(0) +m′′

x;h,k;µ(0) = 0.

By the second-order formula of Lemma 2.2, we obtain (2.3).
Firstly, we consider the case µ2 = 0.

Theorem 2.1. Let µ be a Borel probability measure on [0, 1] with µ2 = 0. Then
the invariance equation (1.1) holds for every (f, g), (h, k) ∈ C0(I).

Proof. If µ2 = 0, then µ = δµ̂1
= δ1/2, and

Mf,g;µ(x, y) =

(
f

g

)−1
(
f
(
x+y
2

)
g
(
x+y
2

)) =
x+ y

2
.

So the invariance equation (1.1) holds for arbitrary functions f, g, h, k.
Next, for the case µ2 6= 0, equation (2.3) leads to

Φf,g = −Φh,k =: Φ. (2.4)
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Lemma 2.5. Let µ be a Borel probability measure on [0, 1] with µ2 6= 0, and
(f, g), (h, k) ∈ C3(I). If equation (1.1) holds, then

µ3(Ψf,g +Ψh,k + 2Φ2) = 0. (2.5)

Proof. Differentiating equation (2.2) three times with respect to u, then substi-
tuting u = 0, we get

m′′′
x;f,g;µ(0) +m′′′

x;h,k;µ(0) = 0.

According to the third-order formula of Lemma 2.2, we obtain

µ3(Φ
′
f,g +Φ2

f,g +Ψf,g) + µ3(Φ
′
h,k +Φ2

h,k +Ψh,k) = 0,

which implies (2.5) by (2.4).

Lemma 2.6. Let µ be a Borel probability measure on [0, 1] with µ2 6= 0, and
(f, g), (h, k) ∈ C4(I). If equation (1.1) holds, then

3µ4ΦΦ
′ + (µ4 − 3µ2

2)Φ(Ψf,g −Ψh,k) + µ4(Ψ
′
f,g +Ψ′

h,k) = 0. (2.6)

Proof. Differentiating equation (2.2) four times with respect to u, then substi-
tuting u = 0, we get

m
(4)
x;f,g;µ(0) +m

(4)
x;h,k;µ(0) = 0.

The fourth-order formula of Lemma 2.2 implies that

− 3µ2
2(Φ

3
f,g + 2Φf,gΨf,g) + µ4(Φ

′′
f,g + 3Φ′

f,gΦf,g +Φ3
f,g + 2Φf,gΨf,g + 2Ψ′

f,g)

− 3µ2
2(Φ

3
h,k+2Φh,kΨh,k)+µ4(Φ

′′
h,k + 3Φ′

h,kΦh,k+Φ3
h,k+2Φh,kΨh,k+2Ψ′

h,k)=0.

(2.7)

Combining (2.3) and (2.7), we get (2.6).
Furthermore, if we assume µ3 6= 0, combining Lemmas 2.5-2.6, we get the fol-

lowing result.

Lemma 2.7. Let µ be a Borel probability measure on [0, 1] with µ3 6= 0, and
(f, g), (h, k) ∈ C4(I). If equation (1.1) holds, then

µ4ΦΦ
′ − (µ4 − 3µ2

2)Φ(Ψf,g −Ψh,k) = 0. (2.8)

Proof. The condition µ3 6= 0 implies that µ2 6= 0 is also valid. Using Lemma 2.5,
we have

Ψf,g +Ψh,k = −2Φ2. (2.9)

Then, substituting the above equation into (2.6), we obtain (2.8).

3. Results for some special denominator functions
Usually, it is very difficult to solve equation (1.1) by applying Lemma 2.6 directly.
Fortunately, inspired by the idea of Jarczyk [6], it can be done under additional
conditions imposed on the generators g and k. Actually, assuming k = g satisfies
the equation of the harmonic oscillator

y′′ = py, (3.1)



1586 Q. Zhang & L. Li

for some p ∈ R. Then, we introduce the sine and cosine type functions Sp, Cp : R →
R by

Sp(x) :=


sin(

√
−px), p < 0,

x, p = 0,

sinh(
√
px), p > 0.

Cp(x) :=


cos(

√
−px), p < 0,

1, p = 0,

cosh(
√
px), p > 0.

Due to basic results on the second-order linear differential equations, the func-
tions Sp and Cp given above form a fundamental system of solutions for the differ-
ential equation (3.1).

Theorem 3.1. Let µ be a Borel probability measure on [0, 1] with µ2 6= 0, and
(f, g), (h, k) ∈ C4(I). Assume k = g satisfying equation (3.1). If equation (1.1)
holds, then there exists r ∈ R such that

f = g

∫
1

g2
exp(

∫
rgβ), h = g

∫
1

g2
exp(

∫
−rgβ), (3.2)

where β :=
2(µ4−3µ2

2)
3µ4

.

Proof. Since equation (3.1) holds, by the definitions of Φf,g and Ψf,g we get

Ψf,g = −

∣∣∣∣∣∣ f
′′ f ′

g′′ g′

∣∣∣∣∣∣∣∣∣∣∣∣ f
′ f

g′ g

∣∣∣∣∣∣
= −

∣∣∣∣∣∣ f
′′ f ′

pg g′

∣∣∣∣∣∣∣∣∣∣∣∣ f
′ f

g′ g

∣∣∣∣∣∣
= −g′

g
Φf,g + p.

Similarly, we have
Ψh,k = −g′

g
Φh,k + p,

by the fact k = g and (3.1).
Using (2.4) and the above two equalities, we have

Ψf,g +Ψh,k = 2p, Ψf,g −Ψh,k = −2 · g
′

g
Φ,

and thus Ψ′
f,g +Ψ′

h,k = 0. Consequently, (2.6) becomes

3µ4ΦΦ
′ − 2(µ4 − 3µ2

2)
g′

g
Φ2 = 0,

which implies that there exists some r ∈ R such that

Φ = rg
2(µ4−3µ2

2)

3µ4 .

Hence, we obtain

Φf,g =
(W 1,0

f,g )
′

W 1,0
f,g

= rgβ , Φh,k =
(W 1,0

h,k)
′

W 1,0
h,k

= −rgβ ,
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where β =
2(µ4−3µ2

2)
3µ4

.

Since W 1,0
f,g =

(
f
g

)′
· g2 and W 1,0

h,k =
(
h
k

)′ · k2, integrating the above equations,
we get (3.2).

In what follows, we will restrict to the basic solutions to the equation of harmonic
oscillator, i.e. consider the functions

(H1) g(x) = x for x ∈ I ⊂ (0,∞);
(H2) g(x) = ex for x ∈ I;
(H3) g(x) = cosx for x ∈ I ⊂ (0, π/2).

Remark 3.1. Let a ∈ R\{0}, b ∈ R, f, g, h, k : I → R be four continuous functions
with g, k ∈ CP(I), f/g, h/k ∈ CM(I), and µ be a probability measure over the Borel
sets of [0, 1]. Then the pairs (f, g), (h, k) satisfy equation (1.1) if and only if the pairs
(fa,b, ga,b), (ha,b, ka,b), where Ia,b := {a ∈ R : ax + b ∈ I} and fa,b, ga,b, ha,b, ka,b :
Ia,b → R are defined by

fa,b(x) = f(ax+ b), ga,b(x) = g(ax+ b),

and
ha,b(x) = h(ax+ b), ka,b(x) = k(ax+ b),

satisfy the equation(
fa,b
ga,b

)−1
(∫ 1

0
fa,b(tx+ (1− t)y)dµ(t)∫ 1

0
ga,b(tx+ (1− t)y)dµ(t)

)

+

(
ha,b

ka,b

)−1
(∫ 1

0
ha,b(tx+ (1− t)y)dµ(t)∫ 1

0
ka,b(tx+ (1− t)y)dµ(t)

)
= x+ y.

According to Remark 3.1, for the differential equation (3.1) we only need to
consider the fundamental system Sp and Cp. We may omit the number p in the
functions Sp, Cp and the proof of functions x 7→ e−x, x 7→ sinx = cos(π/2 − x).
Substituting k = g = x, ex or cosx into (3.2), after a simple calculation, we get the
following result directly.

Theorem 3.2. Let µ be a Borel probability measure on [0, 1] with µ2 6= 0, and
(f, g), (h, k) ∈ C4(I). Assuming that k = g satisfies one of conditions (H1)-(H3). If
equation (1.1) holds, letting β =

2(µ4−3µ2
2)

3µ4
, then

(i) for case (H1), if β 6= −1, there exist b1, b2 ∈ R+, r ∈ R such that

f(x) = x

∫
b1x

−2exp(
r

β + 1
xβ+1), h(x) = x

∫
b2x

−2exp(− r

β + 1
xβ+1),

where x ∈ I and if β = −1, there exist b1, b2 ∈ R+, c1, c2, r ∈ R such that

f(x) =

 b1x
r + c1x, r 6= 1,

b1x lnx+ c1x, r = 1,
h(x) =

 b2x
−r + c2x, r 6= −1,

b2x lnx+ c2x, r = −1,

where x ∈ I.
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(ii) for case (H2), if β 6= 0, there exist b1, b2 ∈ R+, r ∈ R such that

f(x) = ex
∫

b1e
−2xexp(

r

β
eβx), h(x) = ex

∫
b2e

−2xexp(− r

β
eβx), x ∈ I,

and if β = 0, there exist b1, b2 ∈ R+, c1, c2, r ∈ R such that

f(x) =

(
b1

r − 2
e(r−2)x + c1)e

x, r 6= 2,

(b1x+ c1)e
x, r = 2,

x ∈ I,

h(x) =

(
b2

−r − 2
e(−r−2)x + c2)e

x, r 6= −2,

(b2x+ c2)e
x, r = −2,

x ∈ I.

(iii) for case (H3), there exists r ∈ R such that

f(x) = cosx

∫
1

cos2 x
exp(

∫
r cosβ x), x ∈ I,

h(x) = cosx

∫
1

cos2 x
exp(

∫
−r cosβ x), x ∈ I.

4. Results for the case µ3 6= 0

In this section, for the case µ3 6= 0, we will get some results of equation (1.1) under
the assumption that µ5 6= 10µ3µ2 as follows.

Theorem 4.1. Let µ be a Borel probability measure on [0, 1] with µ3 6= 0, µ4 = 3µ2
2,

and µ5 6= 10µ2µ3, (f, g), (h, k) ∈ C5(I). If equation (1.1) holds, then one of the
following alternatives holds:

(i) When µ5 = 2µ2µ3, there exist p, q ∈ R such that

(f, g) ∼ (e
p
2x · S p2

4

, e
p
2x · C p2

4

), (h, k) ∼ (e−
p
2x · S− 7p2

4

, e−
p
2x · C− 7p2

4

).

(ii) When µ5 6= 2µ2µ3, there exist p, q ∈ R such that f, g and h, k are solutions of
the following differential equations

y′′ = py′ +
2p2qepκx

1− qepκx
y and y′′ = −py′ +

−2p2

1− qepκx
y, (4.1)

respectively, where
κ = −2(µ5 − 10µ3µ2)

µ5 − 2µ3µ2
.

Proof. Differentiating equation (2.2) five times with respect to u, then substitut-
ing u = 0, we get

m
(5)
x;f,g;µ(0) +m

(5)
x;h,k;µ(0) = 0.

The fifth-order formula of Lemma 2.2 implies that

− 10µ3µ2(2Φ
4 +Φ′(Ψf,g −Ψh,k) + 3Φ2(Ψf,g +Ψh,k) + Φ(Ψ′

f,g −Ψ′
h,k)

+ (Ψ2
f,g +Ψ2

h,k)) + µ5(8Φ
′′Φ+ 6Φ′2 + 2Φ4 + 4Φ′(Ψf,g −Ψh,k) + 3Φ2(Ψf,g
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+Ψh,k) + 5Φ(Ψ′
f,g −Ψ′

h,k) + (Ψ2
f,g +Ψ2

h,k) + 3(Ψ′′
f,g +Ψ′′

h,k)) = 0. (4.2)

Since µ4 = 3µ2
2, using Lemma 2.7 and µ4 6= 0, we get ΦΦ′ = 0. It follows that

there exists p ∈ R such that

Φ(x) = p, Ψf,g(x) + Ψh,k(x) = −2p2, x ∈ I,

and thus the equation (4.2) becomes

5(µ5 − 2µ3µ2)pΨ
′
f,g + (µ5 − 10µ3µ2)(Ψ

2
f,g + 2p2Ψf,g) = 0. (4.3)

Since µ5 6= 10µ2µ3, in order to solve the above differential equation, we will discuss
two cases.

(i) For the case µ5 = 2µ2µ3, since Ψf,g +Ψh,k = −2p2 we get

Ψf,g = 0, Ψh,k = −2p2,

or
Ψf,g = −2p2, Ψh,k = 0.

Due to the symmetry of (f, g) and (h, k) in (1.1) and the arbitrarily chosen
of p, it suffices to consider one of the above two cases, that is, f, g and h, k are
respectively solutions of the following differential equations

y′′ = py′ and y′′ = −py′ − 2p2y, (4.4)

by Lemma 2.1 and the fact that Φf,g = −Φh,k = p.
Let y = ỹe

p
2x, then y′ = ỹ′e

p
2x + p

2 ỹe
p
2x, y′′ = ỹ′′e

p
2x + pỹ′e

p
2x + p2

4 ỹe
p
2x. Substi-

tuting them into the first equation of (4.4), we get that

ỹ′′ =
p2

4
ỹ.

Hence, (f · e−
p
2x, g · e−

p
2x) ∼ (S p2

4

, C p2

4

), which implies (f, g) ∼ (e
p
2x · S p2

4

, e
p
2x ·

C p2

4

). A completely analogous argument shows that (h, k) ∼ (e−
p
2x · S− 7p2

4

, e−
p
2x ·

C− 7p2

4

).
(ii) For the case µ5 6= 2µ2µ3, it follows from (4.3) that there exists q ∈ R such

that
Ψf,g(x) =

2p2qepκx

1− qepκx
, Ψh,k(x) =

−2p2

1− qepκx
,

where p ∈ R and κ := − 2(µ5−10µ3µ2)
5(µ5−2µ3µ2)

. Using Lemma 2.1, we obtain (4.1).

Theorem 4.2. Let µ be a Borel probability measure on [0, 1] with µ3 6= 0, µ4 6= 3µ2
2

and µ5 6= 10µ2µ3, (f, g), (h, k) ∈ C5(I). If equation (1.1) holds, then one of the
following alternatives holds:

(i) The pairs (f, g), (h, k) satisfy

(f, g) ∼ (1, x), (h, k) ∼ (1, x). (4.5)
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(ii) There exists c ∈ R such that f, g and h, k are solutions of the following
differential equations

y′′ = Φ(x)y′ + (αΦ′(x)− Φ2(x))y and y′′ = −Φ(x)y′ + (−αΦ′(x)− Φ2(x))y,

respectively, where α is defined by (4.8) and the function Φ satisfies either

Φ(x) = ± 1√
r
qx+ c

, x ∈ I

for case
µ5 =

10µ2µ3µ4

µ4 + 12µ2
2

,

or
Φ′ =

√
cΦ− 2q

p +
r

2p+ q
Φ4

for case
µ5 6= 10µ2µ3µ4

µ4 + 12µ2
2

,

where p, q, r defined by (4.11) are determined by µ.

Proof. Since µ4 6= 3µ2
2, making use of Lemma 2.7 and equation (2.8), one of the

following alternatives holds:
Case A Φ(x) ≡ 0, x ∈ I,
Case B Ψf,g(x)−Ψh,k(x) =

µ4

µ4−3µ2
2
Φ′(x), x ∈ I,

Case C There exist two subintervals I1, I2 ⊂ I such that

Φ(x) = 0, Ψf,g(x)−Ψh,k(x) 6=
µ4

µ4 − 3µ2
2

Φ′(x), x ∈ I1,

and
Φ(x) 6= 0, Ψf,g(x)−Ψh,k(x) =

µ4

µ4 − 3µ2
2

Φ′(x), x ∈ I2.

Firstly, we will show that Case C is invalid. In fact, substituting Φ(x) = 0, x ∈
I1 into (4.2), we get

(µ5 − 10µ2µ3)Ψ
2
f,g(x) = 0, x ∈ I1,

which leads to Ψf,g(x) = Ψh,k(x) = 0, x ∈ I1, a contradiction to the first inequality
of Case C. Hence, we only need to consider Case A and Case B.

(i) If
Φ(x) ≡ 0

holds for all x ∈ I, then Ψf,g +Ψh,k = 0 and (4.2) becomes

(µ5 − 10µ2µ3)Ψ
2
f,g = 0,

which implies Ψf,g = 0 since µ5 6= 10µ2µ3. Therefore, (f, g), (h, k) are the solutions
of equation y′′ = 0.

(ii) If
Ψf,g(x)−Ψh,k(x) =

µ4

µ4 − 3µ2
2

Φ′(x), x ∈ I, (4.6)
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combining (2.9) we get

Ψf,g = αΦ′ − Φ2, Ψh,k = −αΦ′ − Φ2, (4.7)

where
α :=

µ4

2(µ4 − 3µ2
2)
. (4.8)

We further obtain

Ψ2
f,g +Ψ2

h,k = 2Φ4 +
1

2

(
µ4

µ4 − 3µ2
2

)2

Φ′2, Ψ′′
f,g +Ψ′′

h,k = −4Φ′2 − 4ΦΦ′′. (4.9)

Substituting (2.9), (4.6) and (4.9) into (4.2), we get

pΦΦ′′ + qΦ′2 − rΦ4 = 0, (4.10)

where

p :=
µ4

µ4 − 3µ2
2

(5µ5 − 10µ2µ3)− 4µ5,

q :=
µ4

µ4 − 3µ2
2

(4µ5 − 10µ2µ3) +
1

2

(
µ4

µ4 − 3µ2
2

)2

(µ5 − 10µ2µ3)− 6µ5, (4.11)

r := 2(µ5 − 10µ2µ3).

Next, we will discuss two cases for µ5 as in (ii) of Theorem 4.2.
When

µ5 =
10µ2µ3µ4

µ4 + 12µ2
2

, (4.12)

we first claim that p = 0, qr 6= 0, that is,
µ4

µ4 − 3µ2
2

(5µ5 − 10µ2µ3)− 4µ5 = 0, µ5 − 10µ2µ3 6= 0 (4.13)

and

µ4

µ4 − 3µ2
2

(4µ5 − 10µ2µ3) +

(
µ4

µ4 − 3µ2
2

)2

(µ5 − 10µ2µ3)− 6µ5 6= 0 (4.14)

hold simultaneously.
In fact, (4.13) is obtained by (4.12) directly. In order to prove (4.14), assume

that
µ5(µ

2
4 − 24µ2

2µ4 + 54µ4
2) + 10µ2µ3µ4(2µ4 − 3µ2

2) = 0.

By substituting condition (4.12) into the above equation, we get

µ2
4 − µ2

2µ4 + 6µ4
2 = 0,

which is impossible since the real numbers µ2, µ4 > 0. Consequently, (4.13)-(4.14)
are proved.

What’s more, we claim that qr > 0 when (4.12) is valid. In fact, substituting
condition (4.12) into equation (4.11) about the expressions of q and r, we get

qr =
7200µ4

2µ
2
3µ4(6(µ

2
2 − 1/4µ4)

2 + 5/8µ2
4)

(µ4 + 12µ2
2)(µ4 − 3µ2

2)
2

> 0.
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Therefore, equation (4.10) becomes

Φ′2 − r

q
Φ4 = 0, (4.15)

which can be rewritten by

(Φ′ −
√

r

q
Φ2) · (Φ′ +

√
r

q
Φ2) = 0.

Then, we conclude that Φ(x) = 0 for all x ∈ I or there exits c ∈ R such that

Φ(x) = − 1

±
√

r
qx+ c

, x ∈ I. (4.16)

If Φ(x) = 0, x ∈ I, then (4.5) is obviously true. Otherwise, by Lemma 2.1, (4.7)
and (4.16), we also get the result.

When
µ5 6= 10µ2µ3µ4

µ4 + 12µ2
2

holds, that is, p = µ4

µ4−3µ2
2
(5µ5 − 10µ2µ3) − 4µ5 6= 0. Then, equation (4.10) can be

rewritten as
ΦΦ′′ +

q

p
Φ′2 − r

p
Φ4 = 0. (4.17)

Now we can reduce the above second-order nonlinear equation to the first-order
Bernoulli equation. In fact, let

Φ′ = u, (4.18)
we have Φ′′ = u du

dΦ , and (4.17) becomes

du

dΦ
+

q

pΦ
u =

r

p
Φ3u−1. (4.19)

Then, put
z = u2, (4.20)

we have dz
dΦ = 2u du

dΦ and (4.19) becomes

dz

dΦ
+

2q

pΦ
z =

2r

p
Φ3,

which is a first-order linear non-homogeneous differential equation. Hence, there
exists c ∈ R such that

z = cΦ− 2q
p +

r

2p+ q
Φ4.

By (4.18) and (4.20), we obtain that

Φ′ =

√
cΦ− 2q

p +
r

2p+ q
Φ4.

Remark 4.1. Note that the case µ5 = 10µ2µ3 is not considered in this section.
Actually, under this assumption, the left side of equation (4.2) is vanished when
Φ ≡ 0 and thus the further discussion is unavailable. Therefore, it remains an open
problem in the case that µ5 = 10µ2µ3.
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5. Examples
In this section, we obtain the relevant conclusions of some special cases of the equa-
tion (1.1) from the specialization of measures and derived functions respectively.

First, let k = g = 1, the invariance equation (1.1) becomes the invariance of
arithmetic mean with respect to Makó-Páles means [12]. By Theorems 2.1 and 3.1,
we get

Example 5.1. Let µ be a Borel probability measure on [0, 1], f, h ∈ C4(I). The
invariance equation

f−1

(∫ 1

0

f(tx+(1−t)y)dµ(t)

)
+h−1

(∫ 1

0

h(tx+(1−t)y)dµ(t)

)
=x+y, x, y ∈ I

holds if and only if µ̂1 = 1
2 and one of the following alternatives is true:

(i) When µ2 = 0, then µ = δ1/2 and f, h are arbitrary.
(ii) When µ2 6= 0, then there exist a, b, c, d ∈ R such that

f(x) =

ax+ b, r = 0,

aerx + b, r 6= 0,
h(x) =

 cx+ d, r = 0,

cerx + d, r 6= 0.

Proof. (i) is obtained by Theorem 2.1 directly. Since k = g = 1 which satisfies
(3.1), using Theorem 3.1 we get our result (ii).

Remark 5.1. The same conclusion was obtained in Corollary 13 of [12] under the
assumption that µ is a symmetric measure with respect to the point 1/2.

Example 5.2. Consider the functional equation(
f

g

)−1(
f (x) + f(y)

g (x) + g(y)

)
+

(
h

k

)−1(
h (x) + h(y)

k (h) + k(y)

)
= x+ y, (5.1)

where f, g, h, k ∈ C4(I). Assume that k = g satisfies y′′ = py for some p ∈ R. If
equation (5.1) holds, then there exists r ∈ R such that

f = g

∫
1

g2
exp(

∫
rg−

4
3 ), h = k

∫
1

k2
exp(

∫
−rk−

4
3 ). (5.2)

Furthermore, assume k = g satisfies one of conditions (H1)-(H3), equation (5.1)
implies

(i) for case (H1), there exist b1, b2 ∈ R+, r ∈ R such that

f(x) = x

∫
b1x

−2exp(−3rx− 1
3 ), h(x) = x

∫
b2x

−2exp(3rx− 1
3 ), (5.3)

where x ∈ I,

(ii) for case (H2), there exist b1, b2 ∈ R+, r ∈ R such that

f(x) = ex
∫

b1e
−2xexp(−3r

4
e−

4
3x), h(x) = ex

∫
b2e

−2xexp(
3r

4
e−

4
3x),

(5.4)
where x ∈ I.
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(iii) for case (H3), there exists r ∈ R such that

f(x) = cosx

∫
1

cos2 x
exp(

∫
r cos−

4
3 x),

h(x) = cosx

∫
1

cos2 x
exp(

∫
−r cos−

4
3 x), (5.5)

where x ∈ I.

Proof. Actually, the measure µ is given by

µ =
δ0 + δ1

2
.

Then, we get µ̂1 = 1
2 , µ2 = 1

4 , µ3 = 0, µ4 = 1
16 , µ5 = 0, and β =

2(µ4−3µ2
2)

3µ4
= − 4

3 .
Using Theorems 3.1-3.2 we get (5.2)-(5.5).

Remark 5.2. Our result (5.2) is the same as Theorem 1 in [6]. Jarczyk proved
that (5.1) holds under the assumption of (H1), (H2) or (H3) if and only if r = 0 in
equations (5.3)-(5.5), that is, equation (5.1) holds if and only if

f(x) = x
(a
x
+ b
)
, h(x) = x

( c
x
+ d
)
, x ∈ I

in case (H1) and

f(x) = ex(ae−2x + b), h(x) = ex(e−2x + d), x ∈ I

in case (H2) and

f(x) = cosx(a tanx+ b), h(x) = cosx(c tanx+ d), x ∈ I

in case (H3).

Example 5.3. Consider the functional equation(
f

g

)−1
(
2f
(
x+3y

4

)
+ f(x)

2g
(
x+3y

4

)
+ g(x)

)
+

(
h

k

)−1
(
2h
(
x+3y

4

)
+ h(x)

2k
(
x+3y

4

)
+ k(x)

)
= x+ y, (5.6)

where f, g, h, k ∈ C4(I). If equation (5.6) holds, then we have either

(f, g) ∼ (1, x), (h, k) ∼ (1, x),

or f, g and h, k are solutions of the following differential equations

y′′ = Φ(x)y′ + (−1

2
Φ′(x)− Φ2(x))y and y′′ = −Φ(x)y′ + (

1

2
Φ′(x)− Φ2(x))y,

respectively, where there exists c ∈ R such that the function Φ satisfies

Φ′ =

√
12

35
Φ4 + cΦ−3.
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Proof. In fact, the measure µ is given by

µ =
2δ1/4 + δ1

3
.

Then, we have µ̂1 = 1
2 , µ2 = 1

8 , µ3 = 1
32 , µ4 = 3

128 , µ5 = 5
512 and α = µ4

2(µ4−3µ2
3)

=

− 1
2 .

Since µ4 − 3µ2
2 6= 0 and µ5 − 10µ2µ3 6= 0, after a simple calculation, equation

(4.10) becomes
10ΦΦ′′ + 15Φ′2 − 12Φ4 = 0.

Making using of Theorem 4.2, we obtain that there exists c ∈ R such that Φ satisfies

Φ′ =

√
12

35
Φ4 + cΦ−3.

This finishes the proof.
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