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MULTIPLE SOLUTIONS FOR
NONHOMOGENEOUS QUASILINEAR
SCHRÖDINGER–POISSON SYSTEM∗

Lanxin Huang1 and Jiabao Su1,†

Abstract We consider the nonhomogeneous quasilinear Schrödinger–Poisson
system {

−∆pu+ |u|p−2u+ λϕ|u|p−2u = |u|q−2u+ h(x) in R3,

−∆ϕ = |u|p in R3,

where 1 < p < 3, p < q < p∗ = 3p
3−p

, ∆pu = div(|∇u|p−2∇u), λ > 0 and
h ̸= 0. Under suitable assumptions on h, the Ekeland’s variational principle
and the mountain pass theorem are applied to establish the existence of mul-
tiple solutions for this system. To the best of our knowledge, this paper is
one of the first contributions to the study of the nonhomogeneous quasilinear
Schrödinger–Poisson system.
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1. Introduction and main results
This article is concerned with the nonhomogeneous quasilinear Schrödinger–Poisson
system {

−∆pu+ |u|p−2u+ λφ|u|p−2u = |u|q−2u+ h(x) in R3,

−∆φ = |u|p in R3,
(1.1)

where 1 < p < 3, p < q < p∗ = 3p
3−p , ∆pu = div(|∇u|p−2∇u) and λ > 0 is a

parameter. The function h satisfies the following assumption. From here on we use
τ ′ = τ

τ−1 to denote the Hölder conjugate of τ > 1.

(h) h is a nonzero radial function and for (p∗)′ ⩽ s ⩽ p′,
(i) h ∈ Ls(R3) with the Ls–norm denoted by |h|s;
(ii) (x,∇h) ∈ Ls(R3) where the gradient ∇h is in the weak sense.
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When p = 2 and h = 0, the system (1.1) reduces to the classical Schrödinger–
Poisson system {

−∆u+ u+ λφu = |u|q−2u in R3,

−∆φ = u2 in R3,
(1.2)

where λ > 0 and q ∈ (2, 6). The system (1.2), also known as the nonlinear
Schrödinger–Maxwell equation, can be used to describe the interaction of a charged
particle with an electromagnetic field in quantum mechanics. For more details
about the mathematical and physical backgrounds we refer the reader to [5, 6] and
the references therein. In the last decades, many scholars have studied the exis-
tence of nontrivial solutions for the system (1.2) with different ranges of q and the
similar system involving a general nonlinear term, see [2–4,9, 10, 22, 26, 30] and the
references therein. More recently, Du etc [12] discussed the following quasilinear
Schrödinger–Poisson system{

−∆pu+ |u|p−2u+ λφ|u|p−2u = |u|q−2u in R3,

−∆φ = |u|p in R3,
(1.3)

where 1 < p < 3, p < q < p∗ = 3p
3−p , ∆pu = div(|∇u|p−2∇u) and λ > 0. Applying

the mountain pass theorem, it was proved in [12] that the system (1.3) has a non-
trivial solution for p < q < p∗. In another paper, Du etc [11] considered the system
which is different from (1.3) in the sense that it required that 4

3 < p < 12
5 and

there is no p involved in the poisson term. Observing from the literature mentioned
above, Du etc [11,12] are the first to build the variational framework and establish
the existence of nontrivial solutions to the system (1.3) for p ̸= 2.

When p = 2 and h ∈ L2(R3) is a nonzero function, the system (1.1) becomes
the following nonhomogeneous Schrödinger–Poisson system{

−∆u+ u+ λφu = |u|q−2u+ h(x) in R3,

−∆φ = u2 in R3,
(1.4)

where λ > 0 and q ∈ (2, 6). Salvatore [23] obtained multiple radial solutions to the
system (1.4) for q ∈ (4, 6) and h being radial with small L2–norm. Subsequently,
Jiang etc [17] studied the system (1.4) with q ∈ (2, 6) and h ∈ C1(R3) ∩ L2(R3) is
a nonnegative radial function satisfying (x,∇h) ∈ L2(R3). By using the Ekeland’s
variational principle and the mountain pass theorem, the authors in [17] proved
that system (1.4) has at least two radial solutions for q ∈ (2, 6) with the small
L2–norm |h|2 of h. However, for the case that q ∈ (2, 3], it was required in [17]
that λ > 0 to be small enough. For related works of the system (1.4) containing
the general nonlinearity and similar systems including certain potentials, we refer
to [8, 14,18,27,29,31,32] and the references therein.

After an accurate bibliographic review, we realised that it is still open whether
the system (1.1) has multiple solutions for 1 < p < 3 and h ̸= 0. Strongly inspired
by this fact, the aim of this paper is to establish the existence of multiple solutions
to the system (1.1).

Now, we state our main results of this paper.

Theorem 1.1. Suppose that (h) and 2p(p+1)
p+2 < q < p∗ hold. Then there exists

Λ > 0 such that the system (1.1) admits two solutions for any λ > 0 provided
|h|s < Λ.
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Theorem 1.2. Suppose that (h)(i) and p < q < p∗ hold. Then there exist Λ > 0
and λ∗ > 0 such that the system (1.1) admits two solutions for any λ ∈ (0, λ∗)
provided |h|s < Λ.

Remark 1.1. As far as we know, our results are up to date. With the help of the
result of [12], we generalize the case of p = 2 in [17, 23] to the quasilinear case of
1 < p < 3 for system (1.1). Furthermore, the solvability of the system (1.1) can
be considered for a large class of radial functions h satisfying (h). In this sense the
existence results in [17] may be extended to the case that h and (x,∇h) belonging
to Ls(R3) with 6

5 ⩽ s ⩽ 2.

The paper is organized as follows. In Section 2, we introduce the variational
framework of (1.1) following [12] and establish some preliminary results. In Section
3, we obtain the existence of the negative energy solution for system (1.1). In
Section 4, we study the existence of the positive energy solutions and complete the
proof of Theorems 1.1 and 1.2.

2. Preliminaries
Before giving the variational framework of (1.1), we introduce the following nota-
tions.

For 1 ⩽ s < ∞, Ls(R3) denotes the Lebesgue space with the usual norm

|u|s =
(∫

R3

|u|sdx
) 1

s

.

Let D1,2(R3) be the completion of C∞
0 (R3) with respect to the norm

∥u∥D =

(∫
R3

|∇u|2dx
) 1

2

.

It is well known that the embedding D1,2(R3) ↪→ L6(R3) is continuous. Let S > 0
be the embedding constant, i.e,

|u|26 ⩽ S−1∥u∥2D, ∀ u ∈ D1,2(R3). (2.1)

Let W 1,p(R3) denote the Sobolev space endowed with the norm

∥u∥ =

(∫
R3

|∇u|p + |u|pdx
) 1

p

.

It follows from the classical Sobolev embedding theorems that W 1,p(R3) ↪→ Lℓ(R3)
are continuous for all ` ∈ [p, p∗]. Thus for each ` ∈ [p, p∗] there exists Sℓ > 0 such
that

|u|ℓ ⩽ Sℓ∥u∥, ∀ u ∈ W 1,p(R3). (2.2)
We will work on the space of radial functions

W 1,p
r (R3) :=

{
u ∈ W 1,p(R3) : u(x) = u(|x|)

}
.

It holds that the embedding W 1,p
r (R3) ↪→ Lℓ(R3) is compact for any p < ` < p∗

(see [20, Theorem II.1] or [24, Theorem 1]). We use C to denote various positive
constants.
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For every u ∈ W 1,p(R3), the linear functional Tu : D1,2(R3) → R is defined as

Tu(v) =
∫
R3

|u|pvdx.

By the Hölder inequality and (2.1)–(2.2), one concludes

|Tu(v)| ⩽
(∫

R3

|u|
6p
5 dx

) 5
6
(∫

R3

|v|6dx
) 1

6

⩽ C∥u∥p∥v∥D.

Then, it follows that Tu is continuous on D1,2(R3). By the Lax–Milgram theorem,
we know that there exists a unique φu ∈ D1,2(R3) such that

−∆φu = |u|p in R3.

According to [19, Theorem 6.21], φu has the following explicit expression

φu(x) =
1

4π

∫
R3

|u(y)|p

|x− y|
dy ⩾ 0.

Moreover, φu has the following properties.

Lemma 2.1 (Proposition 2.1, [12]). Let u ∈ W 1,p(R3).
(i) For all t > 0, φtu = tpφu, and φut

(x) = tkp−2φu(tx) with ut(x) = tku(tx).
(ii) ∥φu∥D ⩽ A∥u∥p with A > 0 is a constant.
(iii) If un ⇀ u in W 1,p(R3), then φun ⇀ φu in D1,2(R3) and∫

R3

φun
|un|p−2unϕdx →

∫
R3

φu|u|p−2uϕdx, ∀ ϕ ∈ W 1,p(R3).

(iv) If u ∈ W 1,p
r (R3), then φu ∈ D1,2

r (R3) := {φ ∈ D1,2(R3) : φ(x) = φ(|x|)}.

Notice that, the forth conclusion comes from a fact that the convolution of two
radial functions is still radial.

Now, we establish the variational framework of (1.1). For h ∈ Ls(R3) with
(p∗)′ ⩽ s ⩽ p′, arguing as in [5,6], by Lemma 2.1 and the implicit function theorem,
the functional

Iλ(u) =
1

p

∫
R3

(|∇u|p + |u|p)dx+
λ

2p

∫
R3

φu|u|pdx− 1

q

∫
R3

|u|qdx−
∫
R3

h(x)udx

is a well–defined C1 functional on W 1,p(R3) with derivative

⟨I ′λ(u), v⟩ =
∫
R3

(|∇u|p−2∇u · ∇v + |u|p−2uv)dx+ λ

∫
R3

φu|u|p−2uvdx

−
∫
R3

|u|q−2uvdx−
∫
R3

h(x)vdx, ∀ u, v ∈ W 1,p(R3).

Note that (u, φu) ∈ W 1,p(R3) × D1,2(R3) is a solution of (1.1) if and only if u ∈
W 1,p(R3) is a critical point of Iλ, see [12] for details. Furthermore, by the principle
of symmetric criticality, the critical points of Iλ on W 1,p

r (R3) are the critical points
of Iλ on W 1,p(R3). Therefore, find a weak solution to the system (1.1) is equivalent
to finding a critical point of the functional Iλ on W 1,p

r (R3). In order to prove our
results, we give the following lemmas.
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Lemma 2.2. Assume that (h)(i) holds and p < q < p∗. For λ > 0, there exist
Λ > 0, ρ > 0 and α > 0 such that if |h|s < Λ, then Iλ(u) ⩾ α for u ∈ W 1,p

r (R3)
with ∥u∥ = ρ.

Proof. For u ∈ W 1,p
r (R3), it follows from the Hölder inequality and (2.2) that∫

R3

hudx ⩽ |h|s|u|s′ ⩽ Ss′ |h|s∥u∥, (2.3)

where p ⩽ s′ ⩽ p∗. Since λ > 0 and φu ⩾ 0, we have

Iλ(u) ⩾
1

p
∥u∥p − 1

q
|u|qq − |h|s|u|s′ ⩾ ∥u∥

(
1

p
∥u∥p−1 −

Sq
q

q
∥u∥q−1 − Ss′ |h|s

)
.

The function

f(t) =
1

p
tp−1 −

Sq
q

q
tq−1

is strictly increasing in a right neighborhood of 0 since p < q, is continuous and
satisfies f(0) = 0. Therefore, there exists ε1 ⩽ ε such that for all t ∈ (0, ε1) there
results f(t) > 0. Now, fixing any ρ ∈ (0, ε1), we obtain Iλ(u) ⩾ ρ (f(ρ)− Ss′ |h|s) if
∥u∥ = ρ. Taking

Λ =
f(ρ)

2Ss′
and α =

ρf(ρ)

2
,

we deduce that if |h|s < Λ, then Iλ(u) ⩾ α > 0 for ∥u∥ = ρ.

Lemma 2.3. Assume that (h)(i) holds. Then any bounded sequence {un} ⊂
W 1,p

r (R3) satisfying I ′λ(un) → 0 has a strongly convergent subsequence.

Proof. Since {un} ⊂ W 1,p
r (R3) is bounded, we can deduce that there exists u ∈

W 1,p
r (R3) such that, up to a subsequence,

un ⇀ u in W 1,p
r (R3),

un → u in Lq(R3), p < q < p∗,

un(x) → u(x) a.e. in R3.

(2.4)

We will claim that un → u strongly in W 1,p
r (R3), namely,

∥un − u∥ → 0, n → ∞. (2.5)

Indeed, by the Hölder inequality, (2.2) and (2.4), as n → ∞,∣∣∣∣∫
R3

(|un|q−2un − |u|q−2u)(un − u)dx

∣∣∣∣
⩽

(
|un|q−1

q + |u|q−1
q

)
|un − u|q

⩽ Sq−1
q

(
∥un∥q−1 + ∥u∥q−1

)
|un − u|q

→ 0. (2.6)
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Combining Lemma 2.1(ii), the Hölder inequality, (2.1) and (2.4), we conclude that,
as n → ∞,∣∣∣∣∫

R3

(φun
|un|p−2un − φu|u|p−2u)(un − u)dx

∣∣∣∣
⩽ |φun |6

(∫
R3

∣∣|un|p−2un(un − u)
∣∣ 6
5 dx

) 5
6

+ |φu|6
(∫

R3

∣∣|u|p−2u(un − u)
∣∣ 6
5 dx

) 5
6

⩽ |φun |6
(∫

R3

|un|
6(p−1)

5 |un − u| 65 dx
) 5

6

+ |φu|6
(∫

R3

|u|
6(p−1)

5 |un − u| 65 dx
) 5

6

⩽ S− 1
2 ∥φun

∥D|un|p−1
p |un − u| 6p

6−p
+ S− 1

2 ∥φu∥D|u|p−1
p |un − u| 6p

6−p

⩽ C
(
∥un∥p|un|p−1

p + ∥u∥p|u|p−1
p

)
|un − u| 6p

6−p
→ 0.

(2.7)

By I ′λ(un) → 0 and (2.4) we have

⟨I ′λ(un)− I ′λ(u), un − u⟩ → 0, n → ∞. (2.8)

It follows from (2.6)–(2.8) that∫
R3

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un −∇u)

+ (|un|p−2un − |u|p−2u)(un − u)dx = o(1). (2.9)

Now, let us recall the following elementary inequality (see [25, p240]). There exists
cp > 0 such that for all ξ, η ∈ RN ,

(
|ξ|p−2ξ − |η|p−2η, ξ − η

)
⩾ cp|ξ − η|p for p ⩾ 2,(

|ξ|+ |η|)2−p(|ξ|p−2ξ − |η|p−2η, ξ − η
)
⩾ cp|ξ − η|2 for 1 < p < 2.

(2.10)

For 2 ⩽ p < 3, by (2.10) we get∫
R3

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un −∇u)dx ⩾ C

∫
R3

|∇un −∇u|pdx,∫
R3

(|un|p−2un − |u|p−2u)(un − u)dx ⩾ C

∫
R3

|un − u|pdx.
(2.11)

For 1 < p < 2, from the boundedness of {un}, the Hölder inequality and (2.10), we
get ∫

R3

|∇(un − u)|pdx

⩽C
∫
R3

[(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇ (un − u)

] p
2 (|∇un|+ |∇u|)

p(2−p)
2 dx

⩽C
(∫

R3

(|∇un|p−2∇un−|∇u|p−2∇u)∇(un−u)dx

) p
2
(∫

R3

(|∇un|p+|∇u|p) dx
) 2−p

2

⩽C
(∫

R3

(|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)dx

) p
2

.

(2.12)
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In the same way we obtain∫
R3

|un − u|pdx ⩽ C

(∫
R3

(|un|p−2un − |u|p−2u)(un − u)dx

) p
2

. (2.13)

Therefore, it follows from (2.9), (2.11)–(2.13) that (2.5) holds.

3. A solution with negative energy
In this section we will find a solution of (1.1) with negative energy for p < q < p∗ and
h satisfying (h)(i) and small |h|s. With the aid of Ekeland’s variational principle [21]
(see also [13]), this solution is obtained by searching for the local minimum of the
energy functional Iλ. Now, we give the following Ekeland’s variational principle so
that it is convenience for readers to understand the proof of our result.

Theorem 3.1 (Theorem 4.1, [21]). Let M be a complete metric space with metric
d and let Φ : M → (−∞,+∞] be a lower semicontinuous function, bounded from
below and not identical to +∞. Let ε > 0 be given and u ∈ M be such that

Φ(u) ⩽ inf
M

Φ+ ε.

Then there exists v ∈ M such that

Φ(v) ⩽ Φ(u), d(u, v) ⩽ 1

and, for each w ̸= v in M ,

Φ(w) > Φ(v)− εd(v, w).

Lemma 3.1. Assume that (h)(i) holds and p < q < p∗. Then for λ > 0,

c∗ = inf
u∈B̄ρ

Iλ(u) < 0,

where B̄ρ = {u ∈ W 1,p
r (R3) : ∥u∥ ⩽ ρ} and ρ was given by Lemma 2.2.

Proof. By (h)(i), we can choose a function φ∈W 1,p
r (R3) such that

∫
R3 h(x)φ(x)dx >

0. It follows from h ∈ Ls(R3) that |h|s−2h ∈ Ls′(R3). Then there exists a radial
sequence {hn} ⊂ C∞

0 (R3) such that hn → |h|s−2h strongly in Ls′(R3) since C∞
0 (R3)

is dense in Ls′(R3) and h is radial. Hence, there exists n0 ∈ N such that∣∣hn0 − |h|s−2h
∣∣
s′
⩽ 1

2
|h|s−1

s .

Using the Hölder inequality, we get∫
R3

h(x)hn0
(x)dx ⩾ −|h|s

(∣∣hn0
− |h|s−2h

∣∣
s′

)
+ |h|ss > 0.

Evidently, hn0
∈ W 1,p

r (R3). Then
∫
R3 h(x)ϕ(x)dx > 0 holds by taking ϕ(x) =

hn0
(x). For t > 0 small enough, we deduce that

Iλ(tϕ) =
tp

p
∥ϕ∥p + t2p

2p
λ

∫
R3

φφ|ϕ|pdx− tq

q

∫
R3

|ϕ|qdx− t

∫
R3

hϕdx < 0.
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This shows that
c∗ = inf

u∈B̄ρ

Iλ(u) < 0,

where B̄ρ = {u ∈ W 1,p
r (R3) : ∥u∥ ⩽ ρ} and ρ was given by Lemma 2.2.

Theorem 3.2. Assume that (h)(i) holds and p < q < p∗. Then Iλ has a critical
point u∗ ∈ W 1,p

r (R3) with Iλ(u∗) < 0 for λ > 0 provided |h|s < Λ, where Λ was
given in Lemma 2.2.

Proof. By Lemma 3.1, Iλ satisfies all assumptions in Theorem 3.1 (Ekeland’s
variational principle), then we know that there is a sequence {un} ⊂ B̄ρ satisfying

c∗ ⩽ Iλ(un) ⩽ c∗ +
1

n
, (3.1)

Iλ(w) ⩾ Iλ(un)−
1

n
∥w − un∥ for all w ∈ B̄ρ. (3.2)

Now, we will prove that {un} is a bounded (PS)c∗ sequence of Iλ.
Firstly, we claim that ∥un∥ < ρ for all n ∈ N large. Otherwise, we may assume

that ∥un∥ = ρ, up to a subsequence. Hence, by Lemma 2.2, there exist Λ > 0, ρ > 0
and α > 0 such that if |h|s < Λ, then Iλ(un) ⩾ α for ∥un∥ = ρ. Taking the limit as
n → ∞ and by using (3.1), we get 0 > c∗ ⩾ α > 0, which is a contradiction. Then,
we may assume that ∥un∥ < ρ for all n ∈ N.

Next, we show that I ′λ(un) → 0 in [W 1,p
r (R3)]∗. Indeed, for any z ∈ W 1,p

r (R3)
with ∥z∥ = 1, we choose sufficiently small δ > 0 such that ∥un + tz∥ < ρ for all
|t| < δ. By using (3.2), we deduce that

Iλ(un + tz)− Iλ(un)

t
⩾ − 1

n
.

Taking the limit as t → 0, we get ⟨I ′λ(un), z⟩ ⩾ − 1
n . Similarly, replacing z with −z

in the above arguments, we get ⟨I ′λ(un), z⟩ ⩽ 1
n . Then, for any z ∈ W 1,p

r (R3) with
∥z∥ = 1, we conclude that ⟨I ′λ(un), z⟩ → 0 as n → ∞. This shows at once that
{un} is a bounded (PS)c∗ sequence of Iλ. Therefore, by Lemma 2.3, there exists
u∗ ∈ W 1,p

r (R3) such that Iλ(u∗) = c∗ < 0 and I ′λ(u∗) = 0. We finish the proof.

4. A solution with positive energy
In this section we will find a solution of (1.1) with positive energy for p < q < p∗.
The section is divided into two subsections. In Subsection 4.1, we consider the case
2p(p+1)

p+2 < q < p∗ for any λ > 0. In Subsection 4.2, we consider the case p < q < p∗

for λ > 0 small. Now, we give the following well–known mountain pass theorem [7]
(see also [1]), which will be used in the proof of the rest paper.

Theorem 4.1 (Theorem 2.2, [7]). Let Φ be a C1 function on a Banach space E.
Suppose

(M1) there exist a neighborhood U of 0 in E and a constant α such that Φ(u) ⩾ α
for every u in the boundary of U ,

(M2) Φ(0) < α and Φ(υ) < α for some υ ̸∈ U .
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Set
c = inf

P∈Γ
max
w∈P

Φ(w) ⩾ α,

where Γ denotes the class of continuous paths joining 0 to υ. Then, there is a
sequence {un} in E such that Φ(un) → c and Φ′(un) → 0 in E∗.

4.1. The case 2p(p+1)
p+2

< q < p∗

In this subsection, we will prove that system (1.1) has a positive energy solution for
2p(p+1)

p+2 < q < p∗ and h satisfying (h) and small |h|s. Then we give some lemmas
and theorems.

Lemma 4.1. Assume that (h)(i) holds and 2p(p+1)
p+2 < q < p∗. For λ > 0, there

exists Λ > 0 such that if |h|s < Λ, then Iλ satisfies the assumptions (M1)–(M2) in
Theorem 4.1.

Proof. By Lemma 2.2, there exist Bρ = {u ∈ W 1,p
r (R3) : ∥u∥ < ρ} and constants

Λ > 0, α > 0 such that if |h|s < Λ, then Iλ(u) ⩾ α with ∥u∥ = ρ. It is clear that
(M1) in Theorem 4.1 is true. Now, we need to verify (M2) in Theorem 4.1. For
any fixed u ∈ W 1,p

r (R3)\{0}, we define ut(x) = t
p+2
p u(tx). By Lemma 2.1(i), we

estimate that

Iλ(ut) =
tβ1

p

∫
R3

|∇u|pdx+
tβ2

p

∫
R3

|u|pdx+
λtβ1

2p

∫
R3

φu|u|pdx

− tβ3

q

∫
R3

|u|qdx− tβ4

∫
R3

h
(x
t

)
udx,

where

β1 = 2p− 1, β2 = p− 1, β3 =
(p+ 2)q − 3p

p
, β4 =

2− 2p

p
. (4.1)

In view of 2p(p+1)
p+2 < q and 1 < p < 3, we have

β3 > β1 > β2 > 0 > β4.

Therefore, there exists t0 > 0 such that ∥ut0∥ > ρ and Iλ(ut0) < 0 < α. From this
and Iλ(0) = 0 < α we immediately prove that (M2) is true.

By Theorem 4.1 and Lemma 4.1, we define the mountain pass level

cλ = inf
γ∈Γλ

max
t∈[0,1]

Iλ(γ(t)) > 0,

where Γλ = {γ ∈ C([0, 1],W 1,p
r (R3)) : γ(0) = 0 and Iλ(γ(1)) < 0}, then there is a

sequence {un} in W 1,p
r (R3) such that Iλ(un) → cλ and I ′λ(un) → 0 in [W 1,p

r (R3)]∗.
Combining with this and employing a scaling technique introduced by Jeanjean [15]
(see also [12]), we will construct a special bounded (PS)cλ sequence of Iλ in the next
lemma.

Lemma 4.2. Assume that (h) holds and 2p(p+1)
p+2 < q < p∗. There exists a bounded

sequence {un} ⊂ W 1,p
r (R3) satisfying Iλ(un) → cλ, I ′λ(un) → 0, Jλ(un) → 0, where

the functional Jλ : W 1,p
r (R3) → R defined with the numbers βi given in (4.1) by

Jλ(u) =
β1

p

∫
R3

|∇u|pdx+
β2

p

∫
R3

|u|pdx+
λβ1

2p

∫
R3

φu|u|pdx− β3

q

∫
R3

|u|qdx
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− β4

∫
R3

hudx+

∫
R3

(x,∇h(x))udx.

Proof. Define the map Ψ : R ×W 1,p
r (R3) → W 1,p

r (R3) for σ ∈ R, v ∈ W 1,p
r (R3)

and x ∈ R3 by
Ψ(σ, v)(x) = e

p+2
p σv(eσx).

By Lemma 2.1(i), the functional Iλ ◦Ψ is computed as

Iλ(Ψ(σ, v)) =
eβ1σ

p

∫
R3

|∇v|pdx+
eβ2σ

p

∫
R3

|v|pdx+
λeβ1σ

2p

∫
R3

φv|v|pdx

− eβ3σ

q

∫
R3

|v|qdx− eβ4σ

∫
R3

h
( x

eσ

)
vdx.

It is standard to verify that Iλ ◦ Ψ is continuously Fréchet–differentiable on R ×
W 1,p

r (R3). Together with Iλ(Ψ(0, 0)) = 0, we set the family of paths

Γ̄λ = {γ̄ ∈ C([0, 1],R×W 1,p
r (R3)) : γ̄(0) = (0, 0) and (Iλ ◦Ψ)(γ̄(1)) < 0}.

As Γλ = {Ψ ◦ γ̄ : γ̄ ∈ Γ̄λ}, the mountain pass levels of Iλ and Iλ ◦Ψ coincide:

cλ = inf
γ̄∈Γ̄λ

sup
t∈[0,1]

(Iλ ◦Ψ)(γ̄(t)).

Let γ̄ = (0, γ). For every ε ∈ (0, cλ
2 ), there exists γ ∈ Γλ such that

sup(Iλ ◦Ψ)(0, γ) ⩽ cλ + ε.

Then, by [28, Theorem 2.8], there exists (σ, v) ∈ R×W 1,p
r (R3) such that

cλ − 2ε ⩽ (Iλ ◦Ψ)(σ, v) ⩽ cλ + 2ε,

dist{(σ, v), (0, γ)} ⩽ 2
√
ε, where dist{(σ, v), (ς, w)} = (|σ − ς|2 + ∥v − w∥2) 1

2 ,

(Iλ ◦Ψ)′(σ, v) → 0 in [R×W 1,p
r (R3)]∗.

Therefore, there exists a sequence {(σn, vn)} ⊂ R×W 1,p
r (R3) such that as n → ∞,

σn → 0, (Iλ ◦Ψ)(σn, vn) → cλ, (Iλ ◦Ψ)′(σn, vn) → 0.

For every (ζ, w) ∈ R×W 1,p
r (R3), there results

⟨(Iλ ◦Ψ)′(σn, vn), (ζ, w)⟩ = ⟨I ′λ(Ψ(σn, vn)),Ψ(σn, w)⟩+ Jλ(Ψ(σn, vn))ζ.

Take un = Ψ(σn, vn). Then we conclude that

Iλ(un) → cλ, I ′λ(un) → 0, Jλ(un) → 0. (4.2)

Now, our claim is to prove that {un} is bounded in W 1,p
r (R3). By (4.1) and (4.2),

for n large enough, we deduce that

cλ + 1 ⩾ Iλ(un)−
1

β3
Jλ(un)
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=
1

p

(
1− β1

β3

)∫
R3

|∇un|pdx+
1

p

(
1− β2

β3

)∫
R3

|un|pdx

+
λ

2p

(
1− β1

β3

)∫
R3

φun
|un|pdx

−
(
1− β4

β3

)∫
R3

hundx− 1

β3

∫
R3

(x,∇h)undx

⩾ 1

p

(
1− β1

β3

)
∥un∥p −

(
1− β4

β3

)∫
R3

hundx− 1

β3

∫
R3

(x,∇h)undx, (4.3)

where

1 >
β1

β3
>

β2

β3
> 0 >

β4

β3
. (4.4)

It follows from (4.3) that

cλ + 1 +

(
1− β4

β3

)∫
R3

hundx+
1

β3

∫
R3

(x,∇h)undx ⩾ 1

p

(
1− β1

β3

)
∥un∥p. (4.5)

We deduce from (h)(ii), (2.2) and the Hölder inequality that∣∣∣∣∫
R3

(x,∇h)undx

∣∣∣∣ ⩽ (∫
R3

|(x,∇h)|s dx
) 1

s
(∫

R3

|un|s
′
dx

) 1
s′

⩽ C∥un∥, (4.6)

where p ⩽ s′ ⩽ p∗. Therefore by (2.3) and (4.4)–(4.6) that {un} is bounded in
W 1,p

r (R3).

Theorem 4.2. Assume that (h) holds and 2p(p+1)
p+2 < q < p∗. Then Iλ has a critical

point u∗ ∈ W 1,p
r (R3) with Iλ(u

∗) > 0 for λ > 0 provided |h|s < Λ, where Λ was
given in Lemma 2.2.

Proof. For λ > 0, by Theorem 4.1 and Lemmas 4.1–4.2, there exists Λ > 0 such
that if |h|s < Λ, then we obtain a bounded (PS)cλ sequence {un} of Iλ. In view
of Lemma 2.3, we know that there exists a critical point u∗ ∈ W 1,p

r (R3) of Iλ.
Moreover, Iλ(u∗) = cλ > 0.

The result of Theorem 1.1 follows from Theorems 3.2, 4.2.

4.2. The case p < q < p∗

In this subsection, we will prove that if λ > 0 small, then system (1.1) has a positive
energy solution for p < q < p∗ and h satisfying (h)(i) and small |h|s. In what follows,
we shall use a truncated technique which is due to Jeanjean and Le Coz [16]. Then,
we define the cut–off function χ ∈ C∞(R+, [0, 1]) satisfying |χ′|∞ ⩽ 2,

χ(t) =

{
1, t ∈ [0, 1

2 ],

0, t ∈ [1,∞),

and χ(t) ∈ [0, 1] for t ∈ ( 12 , 1). Define a penalized functional Iλ,K : W 1,p
r (R3) → R

as

Iλ,K(u)=
1

p

∫
R3

(|∇u|p+|u|p)dx+ λ

2p
LK(u)

∫
R3

φu|u|pdx−
1

q

∫
R3

|u|qdx−
∫
R3

hudx,

(4.7)
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where K > 0 and LK(u) = χ
(

∥u∥p

Kp

)
. It is easy to check that Iλ,K is of class C1

and

⟨I ′λ,K(u), v⟩ =(1 + aλ,K(u))

∫
R3

(|∇u|p−2∇u · ∇v + |u|p−2uv)dx

+ λLK(u)

∫
R3

φu|u|p−2uvdx

−
∫
R3

|u|q−2uvdx−
∫
R3

hvdx, ∀ u, v ∈ W 1,p
r (R3), (4.8)

where

aλ,K(u) =
λ

2Kp
χ′

(
∥u∥p

Kp

)∫
R3

φu|u|pdx. (4.9)

Notice that if ∥u∥ ⩽ K
2 , then there hold LK(u) = 1 and Iλ,K(u) = Iλ(u). Now, we

first verify that the functional Iλ,K possesses a mountain pass geometry for each
K > 0.

Lemma 4.3. Assume that (h)(i) holds and p < q < p∗. For λ > 0 and K > 0, there
exists Λ > 0 such that if |h|s < Λ, then Iλ,K satisfies the assumptions (M1)–(M2)
in Theorem 4.1.

Proof. First of all, by Lemma 2.2, it is easy to see that there exists Λ > 0 such
that if |h|s < Λ, then (M1) in Theorem 4.1 is true. Next, we claim that Iλ,K
satisfies (M2). Arguing as in the proof of Lemma 3.1, we can choose a function
ϕ1 ∈ W 1,p

r (R3) such that ∥ϕ1∥ = 1 and
∫
R3 h(x)ϕ1(x)dx > 0. For each K > 0 and

t ⩾ K, LK(tϕ1) = 0. From this it is clear that

Iλ,K(tϕ1) =
1

p
tp − 1

q
tq
∫
R3

|ϕ1|qdx− t

∫
R3

h(x)ϕ1dx. (4.10)

Indeed, if we choose tK > K large, then ∥tKϕ1∥ > ρ and Iλ,K(tKϕ1) < 0. There-
fore, it is enough to take υ = tKϕ1 to complete the proof.

By Lemma 4.3, Iλ,K satisfies all assumptions in Theorem 4.1. Now, we define
the mountain pass level of Iλ,K for each K > 0 as follows:

cλ,K = inf
γ∈Γλ,K

max
t∈[0,1]

Iλ,K(γ(t)) > 0, (4.11)

where Γλ,K :=
{
γ ∈ C([0, 1],W 1,p

r (R3)) : γ(0) = 0 and Iλ,K(γ(1)) < 0
}

. Then
there exists a sequence {un} ⊂ W 1,p

r (R3) such that as n → ∞

Iλ,K(un) → cλ,K , I ′λ,K(un) → 0 in [W 1,p
r (R3)]∗. (4.12)

Next, we will prove that {un} is bounded in W 1,p
r (R3) for large K and small λ.

Lemma 4.4. There exist K > 0 and λ∗ > 0 such that for all λ ∈ (0, λ∗) the
sequence {un} given by (4.12) satisfies

∥un∥ ⩽ K

2
. (4.13)
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Proof. We first claim that {un} must be bounded. From (4.7) and (4.8), it is
easy to see that

cλ,K + 1 + ∥un∥ ⩾Iλ,K(un)−
1

q
⟨I ′λ,K(un), un⟩

=

(
1

p
− 1

q

)
∥un∥p +

(
λ

2p
− λ

q

)
LK(un)

∫
R3

φun
|un|pdx

− aλ,K(un)

q
∥un∥p −

q − 1

q

∫
R3

h(x)undx.

This shows that(
1

p
− 1

q

)
∥un∥p ⩽ cλ,K + 1 + ∥un∥+

(
λ

q
− λ

2p

)
LK(un)

∫
R3

φun |un|pdx

+
aλ,K(un)

q
∥un∥p +

q − 1

q

∫
R3

h(x)undx. (4.14)

From the definition one sees that if ∥un∥ ⩾ K, then there result LK(un) = 0 and
aλ,K(un) = 0, which and (4.14) yield(

1

p
− 1

q

)
∥un∥p ⩽ cλ,K + 1 + ∥un∥+

q − 1

q

∫
R3

h(x)undx.

From this and from (2.3) we obtain that {un} is bounded. By Lemma 2.1(ii), for
all n ∈ N we have,∫

R3

φun
|un|pdx = −

∫
R3

φun
∆φun

dx = ∥φun
∥2D ⩽ A2∥un∥2p. (4.15)

Notice that if ∥un∥ ⩾ K then χ′
(

∥un∥p

Kp

)
= 0. It follows from (4.9) and (4.15) that

|aλ,K(un)| ⩽
λ

2Kp

∣∣∣∣χ′
(
∥un∥p

Kp

)∣∣∣∣ ∣∣∣∣∫
R3

φun
|un|pdx

∣∣∣∣ ⩽ λA2Kp. (4.16)

Then by using (2.3), (4.15)–(4.16) and the Hölder inequality, an easy computation
shows that 

(
λ

q
− λ

2p

)
LK(un)

∫
R3

φun
|un|pdx ⩽ λA2K2p,

aλ,K(un)

q
∥un∥p ⩽ λA2K2p,

q − 1

q

∫
R3

h(x)undx ⩽ CΛ∥un∥.

(4.17)

Let ϕ1 be the function taken in the proof of Lemma 4.3. By (4.10),

Iλ,K(Kϕ1) ⩽
Kp

p
− Kq

q
|ϕ1|qq.
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So there exists K1 > 0 such that Iλ,K(Kϕ1) < 0 for all K ⩾ K1. Thus by (4.7) and
(4.11),

cλ,K ⩽ max
t∈[0,1]

Iλ,K(tKϕ1) ⩽ max
t∈[0,1]

{
1

p
(tK)p − 1

q
(tK)q|ϕ1|qq

}

+ max
t∈[0,1]

λ

2p
(tK)2pLK(tKϕ1)

∫
R3

φφ1
|ϕ1|pdx

⩽ C + λA2K2p. (4.18)

Now, it follows from (4.14)–(4.18) that, for all K ⩾ K1,(
1

p
− 1

q

)
∥un∥p ⩽ C + 1 + 3λA2K2p + (1 + CΛ)∥un∥. (4.19)

Summing up, if we choose λ∗ = (A2K2p)−1, then inequality (4.19) implies (4.13)
for any K ⩾ K1 and λ ∈ (0, λ∗). The proof is complete.

Theorem 4.3. Assume that (h)(i) holds and p < q < p∗. Then there exists λ∗ > 0
such that Iλ has a critical point u∗ ∈ W 1,p

r (R3) with Iλ(u
∗) > 0 for any λ ∈ (0, λ∗)

provided |h|s < Λ, where Λ was given in Lemma 2.2.

Proof. Combining Theorem 4.1 (the mountain pass theorem) and Lemmas 4.3–
4.4, for K > 0 large enough and λ > 0 small, we obtain a bounded (PS)cλ,K

sequence {un} of Iλ,K with ∥un∥ ⩽ K
2 . By the definition of χ and (4.7), we derive

that {un} ⊂ W 1,p
r (R3) is a bounded (PS)cλ,K

sequence for Iλ with cλ,K > 0. By
Lemma 2.3, we can find a critical point u∗ of Iλ with Iλ(u

∗) = cλ,K > 0.
The result of Theorem 1.2 follows from Theorems 3.2, 4.3.
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