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ALTERNATING PROJECTION METHOD FOR
SOLVING DOUBLY STOCHASTIC INVERSE

SINGULAR VALUE PROBLEMS WITH
PRESCRIBED ENTRIES

Meixiang Chen1,†

Abstract Doubly stochastic inverse singular value problem with prescribed
entries aims to construct a doubly stochastic matrix from the prescribed sin-
gular value and prescribed entries. In this paper, the doubly stochastic inverse
singular value problem is considered as the problem of finding a point in the
intersection of a compact set and a closed convex set. We present a numerical
procedure which is based on an alternating projection process, for solving the
problem. The method is iterative in nature. And each subproblem in the
alternating projection method can be solved easily. Convergence properties of
the algorithm are investigated and numerical results are presented to illustrate
the effectiveness of our method.
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1. Introduction
An inverse singular value problem(ISVP) concerns the construction of a struc-
tured matrix with prescribed singular value. There have been extensive studies
and practical applications of ISVP, such as in some quadratic groups, structural
health monitoring, code division multiple access system, transient circuit simula-
tion (see [5,17,23,26,28]). In fact, ISVP is a natural extension of inverse eigenvalue
problem (IEP) [11]. As noted in [11], if T is a matrix given by

T =

 0 A

AT 0

 , (1.1)

then the ISVP for A is solvable if and only if the IEP for T is solvable. However,
the IEP for T might be difficult due to the extra block diagonal zeros. Therefore,
methods for solving the ISVP directly have attracted considerable attention in re-
cent years, see [3, 4, 8, 10, 30] and references therein. There are different structured
ISVPs such as the affine ISVP, the ISVP for Toeplitz-related matrices, the ISVP
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for nonnegative matrices and so on. In this paper, we consider the doubly stochas-
tic inverse singular value problem (DISVP). Let e be the n × 1 vector of all ones,
i.e., e = (1, 1, . . . , 1)T . A matrix A ∈ Rn×n with nonnegative entries is called row
stochastic if Ae = e. Especially the nonnegative matrix is called doubly stochastic if
Ae = e and eTA = eT (A has row and column sums equal to one). Doubly stochastic
matrices are very important in many applications including probability and statis-
tics, large linear semiconductor circuit networks, economics and operation research,
graph theory and graph-based clustering, etc., see [1,2,7,13,15,19,20,29,32,33] and
the references therein. The DISVP aims to construct a doubly stochastic matrix
from the given singular values. A related problem is the doubly stochastic inverse
singular value problem with prescribed diagonal entries(DISVP-PE). The problem
can be delineated as follows:

DISVP−PE: Given a list of n nonnegative scalars σ1, σ2, . . . , σn and the
prescribed positive numbers g1, g2, . . . , gn, find an n × n doubly stochastic matrix
H = (hij) such that it has the singular {σ1, σ2, . . . , σn} and

hii = gi, ∀i = 1, . . . , n. (1.2)

The prescribed entries are used to characterize the underlying structure. Finding
necessary and sufficient conditions of the DISVP-PE is a challenging area. Here, we
are interested in generally applicable numerical methods for solving DISVP-PE. We
consider the DISVP-PE as the problem of finding a point in the intersection of two
closed sets. Alternating projection method [6,9] is applied to solve the problem. In
this paper, we will show that alternating projection method is also very effective
for DISVP-PE.

Throughout this paper, we use the following notations. For an n× n matrix A,
AT stands for the transpose of a matrix A. We write A ≥ 0 iff A is a nonnegative
matrix (i.e., all the entries are nonnegative) and A > 0 iff A is a positive matrix
(i.e, all the entries are positive). Let Rn×n be the set of all real matrices of order n.
Denote ∥ · ∥F to be the Frobenius matrix norm and In to be the identity matrix of
n dimension. Let X and Y be two finite-dimensional vector spaces equipped with
a scalar inner product ⟨·⟩ and its induced norm ∥ · ∥. Let A : X → Y be a linear
operator such that A(x) ∈ Y for all x ∈ X and the adjoint of A is denoted by A∗.

The rest of this paper is organized as follows. In Section 2, we reformulate the
DISVP-PE as the problem of finding a point in the intersection of two closed sets.
Meanwhile, the alternating projection method is proposed to solve the DISVP-PE.
Section 3 is devoted to analyzing the convergence of the algorithm. Numerical tests
for the alternating projection method are presented in Section 4.

2. Reformulation
For the given singular values σ1, σ2, . . . , σn, without loss of generality, we assume
that

σ1 ≥ σ2 ≥ · · · ≥ σn. (2.1)
Let

Σ = diag(σ), σ := (σ1, σ2, . . . , σn). (2.2)
The set of all n × n real matrices with the singular values σ1, σ2, . . . , σn can be
defined by

M = {UΣV |U, V ∈ O(n)}, (2.3)
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where O(n) = {Q ∈ Rn×n|QTQ = In}.
Given the prescribed positive diagonal values g = {g1, g2, . . . , gn}, the set

K = {A ∈ Rn×n|Ae = e, eTA = eT , A ≥ 0, Aii = gi} (2.4)

contains the doubly stochastic matrices with the prescribed entries at the desired
locations.

The DISVP-PE can be reformulated as the following problem:

Find H ∈ M∩K. (2.5)

Alternating projection method for the DISVP-PE is to project iteratively onto each
of the closed sets M and K.

Consider a Euclidean space E with Frobenius norm ∥H∥ = trace(HTH). Given
a nonempty closed set C ∈ E, for any M ∈ C

∥M −H∥ ≤ ∥T −H∥ for all T ∈ C, (2.6)

then M is called a projection of H onto C, written as M = PC(H).
Alternating projection method applied to the DISVP-PE can be described as

follows.

Algorithm 1 Alternating projection method
Initialization: Given initial matrix H0 ∈ Rn×n and k := 0. Iterate the following
steps.
Step 1. Mk+1 = PM(Hk).
Step 2. Hk+1 = PK(Mk+1)
Step 3. Replace k by k + 1 and go to Step 1.

The key fact of the algorithm is that it is often easier to project onto the indi-
vidual set M or K than it is to project onto the intersection M ∩ K. Moreover,
the following distance reduction property always holds for alternating projection
between two closed sets.

Theorem 2.1 (Orsi [22]). Let M and K be closed (nonempty) sets in a finite
dimensional Hilbert space H. For any initial value y0 ∈ K, if x1 = PM(y0),
y1 = PK(x1), x2 = PM(y1), then

∥x2 − y1∥ ≤ ∥x1 − y1∥ ≤ ∥x1 − y0∥. (2.7)

Projections play an important part in the algorithm. We next show that it is
indeed possible to calculate projections onto these sets.

2.1. Solving the first projection
In this subsection, we will show how to calculate the first projection Mk+1 =
PM(Hk), where M = {UΣV |U, V ∈ O(n)}. For this purpose, we state the fol-
lowing important result of Hoffman Wielandt.

Theorem 2.2 (Horn and Johnson [17]). Let A,B ∈ Cn×n and suppose that τ1 ≥
τ2 ≥ · · · ≥ τn and σ1 ≥ σ2 ≥ · · · ≥ σn are the nonincreasingly ordered singular
values of A and B, respectively. Then

∥A−B∥ ≥
n∑

i=1

(τi − σi)
2. (2.8)
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Based on Theorem 2.2, Wu and Lin have obtained the following result.

Theorem 2.3 (Wu and Lin [31]). Let A be a nonnegative n × n matrix. Suppose
that the singular value decomposition of A is

A = UΣAV
T , (2.9)

where U, V ∈ Rn×n are two unitary matrices, and ΣA = diag(τ1, τ2, . . . , τn) with
entries in the order τ1 ≥ τ2 ≥ · · · ≥ τn. Then UΣV T is a best approximation in M
to A in the Frobenius norm, where M = {UΣV |U, V ∈ O(n)}.

The projection of A ∈ Rn×n onto M is given by Theorem 2.3. Suppose that the
singular value decomposition of Hk is Hk = UkΣHk

V T
k , then Mk+1 = PM(Hk) =

UkΣV
T
k . The reason for this is that the set M is nonconvex, and hence projections

onto this set are not guaranteed to be unique.

2.2. Solving the second projection
As for the second projection Hk+1 = PK(Mk+1), we might reasonably consider the
case of exact projections on the closed convex set K. However, projecting onto the
set K may be much harder, so a more realistic analysis allows relaxed projections.
The projection H = PK(M) can be solved by the following quadratic optimization
problem

min
1

2
∥H −M∥2

s.t. He = e, eTH = eT ,

H ≥ 0,

Hi,i = gi, i = 1, 2, . . . , n.

(2.10)

Let

F(H) =



He[
In−1 0

]
HT e

eT1 He1
...

eTnHen


, b =



e[
In−1 0

]
e

g1
...

gn


, (2.11)

where ei denotes the ith column of the n-by-n identity matrix. Then Problem (2.10)
is equivalent to

min
1

2
∥H −M∥2

s.t. F(H) = b,

H ∈ N ,

(2.12)

where N := {H : H ∈ Rn×n,H ≥ 0}. Motivated by [24], we adopt a Newton-type
method for computing the solution of Problem (2.12). Denote the dual cone of N
by N ∗, i.e., N ∗ = {U : U ∈ Rn×n, ⟨U,H⟩ ≥ 0,∀H ∈ N}. The Lagrangian function
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for Problem (2.12) is given by

L(H, y, S) =
1

2
∥H −M∥2 + ⟨y, b−F(H)⟩ − ⟨S,H⟩, (2.13)

where the dual variable (y, S) ∈ R3n−1 × N ∗. Furthermore, the Lagrangian dual
problem (see [18]) of (2.12) is given as follows

min{θ(y, S) := −min
H

L(H, y, S) = 1
2 ∥F

∗(y) +M + S∥2 − ⟨y, b⟩ − 1
2 ∥M∥2}

s.t. y = (y1, y2, . . . , y3n−1) ∈ R3n−1, S ∈ N ∗,

(2.14)
where F∗ is the adjoint of F , defined by

F∗(y) =



y1 + yn+1 + y2n y1 + yn+2 · · · y1 + y2n−1 y1

y2 + yn+1 y2 + yn+2 + y2n+1 · · · y2 + y2n−1 y2
...

... · · ·
...

...

yn + yn+1 yn + yn+2 · · · yn + y2n−1 yn + y3n−1


.

(2.15)
From (2.14), we can find that if the optimal solution (ȳ, S̄) ∈ argmin θ(y, S), it

should satisfy

S̄ = PN∗(−F∗(ȳ)−M) and ȳ ∈ argmin θ(y, S̄).

The Moreau decomposition theorem [21] states that x = PC(x) − PC∗(−x) for any
nonempty closed convex cone C. So the optimal solution ȳ should satisfy the fol-
lowing unconstrained minimization problem

min
y

ξ(y) :=
1

2
∥PN (F∗(y) +M)∥2 − ⟨y, b⟩ − 1

2
∥M∥2 . (2.16)

On the other hand, we observe that if H ∈ argminL(H, y, S), then H = F∗(y) +
M+S = PN (F∗(y)+M). Once we can compute an optimal solution ȳ , then we can
obtain the optimal solution H = PN (F∗(ȳ) +M) of Problem (2.10). Next, we will
discuss how to solve the optimal problem (2.16). Notice that ξ(y) is a continuously
differentiable function and then at solution ȳ of (2.16)

G(ȳ) := ∇ξ(ȳ) = F [PN (F∗(ȳ) +M)]− b = 0. (2.17)

Furthermore, ∀A ∈ Rn×n, we have

PN (A) =


(a11)+ · · · (a1n)+

... · · ·
...

(an1)+ · · · (ann)+

 , (2.18)

where (aij)+ = max(aij , 0). Combining (2.11), (2.15) and (2.18), we have, for any
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y ∈ R3n−1,

G(y) =



(m11 + y1 + yn+1 + y2n)+ +
∑n−1

j=2 (m1,j + y1 + yn+j)+ + (m1,n + y1)+
...∑n−1

j=1 (mn,j + yn + yn+j)+ + (mn,n + yn + y3n−1)+

(m11 + y1 + yn+1 + y2n)+ +
∑n

i=2(mi,1 + yi + yn+1)+
...∑n−1

i=1 (mi,n−1 + yi + y2n−1)+ + (mn,n−1 + yn + y2n−1)+

(m11 + y1 + yn+1 + y2n)+
...

(mn,n + yn + y3n−1)+



−



1

...

1

1

...

1

g1
...

gn



.

(2.19)
According to Redemacher’s theorem [25, Chapter 9.J], the Lipschitz continuous
function G is Fréchet differentiable almost everywhere. Let O be the set of differ-
ential points of G and G′(y) be the Jacobian of G(y) where it exists. Denote

∂BG(y) := {T |T = lim
j→∞

G′(yj), yj → y, yj ∈ O}. (2.20)

Then Clarke’s generalized Jacobian [12] is

∂G(y) := conv{∂BG(y)}, (2.21)

where “conv” represents the convex hull.
Based on ∂G(y), Qi and Sun [24] proposed the following nonsmooth Newton

method for solving Problem G(y) = 0:

yj+1 = yj −D−1
j G(yj), (2.22)

where Dj ∈ ∂G(yj).
By (2.20) and (2.21), for any D ∈ ∂G(y), D has the form

D =



∑n
i=1 d1,i · · · 0 d1,1 · · · d1,n−1 d1,1 · · · 0

...
...

...
...

...
...

...
...

...

0 · · ·
∑n

i=1 dn,i dn,1 · · · dn,n−1 0 · · · dn,n

d1,1 · · · dn,1
∑n

i=1 di,1 · · · 0 d1,1 · · · 0

...
...

...
...

...
...

...
...

...

d1,n−1 · · · dn,n−1 0 · · ·
∑n

i=1 di,n−1 0 · · · 0

d1,1 · · · 0 d1,1 · · · 0 d1,1 · · · 0

...
...

...
...

...
...

...
...

...

0 · · · dn−1,n−1

0 · · · dn,n 0 · · · 0 0 · · · dn,n



, (2.23)
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where for i = 1, . . . , n, j = 1, . . . , n− 1 and i ̸= j,
di,j = 1, if mi,j + yi + yn+j > 0,

di,j ∈ [0, 1], if mi,j + yi + yn+j = 0,

di,j = 0, if mi,j + yi + yn+j < 0,

for i = 1, . . . , n− 1, j = n,
di,n = 1, if mi,n + yi > 0,

di,n ∈ [0, 1], if mi,n + yi = 0,

di,n = 0, if mi,n + yi < 0,

for i = 1, . . . , n− 1,
di,i = 1, if mi,i + yi + yn+i + y2n+i−1 > 0,

di,i ∈ [0, 1], if mi,i + yi + yn+i + y2n+i−1 = 0,

di,i = 0, if mi,i + yi + yn+i + y2n+i−1 < 0,

and 
dn,n = 1, if mn,n + yn + y3n+1 > 0,

dn,n ∈ [0, 1], if mn,n + yn + y3n+1 = 0,

dn,n = 0, if mn,n + yn + y3n+1 < 0.

In this paper, we only consider these cases:
• di,j = 0, if mi,j + yi + yn+j = 0,
• di,n = 0, if mi,n + yi = 0.

The details of this method for solving the optimal solution ȳ are given in Algorithm
2.

In the following proposition, we present that the matrix D ∈ R(3n−1)×(3n−1) is
positive semi-definite.

Proposition 2.1. D ∈ R(3n−1)×(3n−1) is positive semi-definite.

Proof. For any h = (h1, h2, . . . , h3n−1)
T ∈ R3n−1, a tedious calculation yields

hTDh =

n−1∑
i=1

dii(hi + hn+i + h2n−1+i)
2 +

n−1∑
j=2

d1j(h1 + hn+j)
2

+

n∑
i=2

n−1∑
j=1,j ̸=i

dij(hi + hn+j)
2 +

n−1∑
i=1

dinh
2
i + dnn(hn + h3n−1)

2.

(2.25)

Since dij ≥ 0, we have
hTDh ≥ 0. (2.26)

We thus complete the proof.
The following theorem contains two important sufficient conditions ensuring the

convergency of nonsmooth Newton method [24] for solving Problem (2.16).
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Algorithm 2 A semismooth Newton-CG method for solving G(y)

Initialization: Given M = (mij)n×n, the prescribed positive values g =
{g1, g2, . . . , gn}, y0 ∈ R3n−1, η ∈ (0, 1), ρ, δ ∈ (0, 1/2). l := 0, iterate the fol-
lowing steps for l ≥ 0.
Step 1. Let Dl ∈ ∂G(yl), which is defined by (2.23), and solve the following linear
system to find ∆yl ∈ R3n−1 by the conjugate gradient (CG) method:

G(yl) +Dl∆yl = 0,

such that
∥G(yl) +Dl∆yl∥ ≤ min{η, ∥G(yl)∥}∥G(yl)∥, (2.24)

if Dl is nonsingular. If (2.24) is not achieved, or if the condition

⟨∆yl, G(yl)⟩ ≤ −min{η, ∥G(yl)∥}∥∆yl∥.

is not satisfied, or Dl is singular, let

∆yl = −G(yl).

Step 2. (Line search) Set αl = ρml , where ml is the first nonnegative integer m
for which

ξ(yl + ρm∆yl) ≤ ξ(yl) + δρm⟨∆yl, G(yl)⟩.

Step 3. Set yl+1 = yl + αl∆yl.

Theorem 2.4. Let H̄ = PN (F∗(ȳ)+M) be the unique solution of Problem (2.12),
where ȳ ∈ R3n−1 satisfies G(ȳ) = 0. If eTi H̄ > 0 and 0 < g + H̄ei < 1 for some
1 ≤ i ≤ n or H̄ej > 0 and 0 < gT + eTj H̄ < 1 for some 1 ≤ j ≤ n, the sequence yl

generated by nonsmooth Newton method (2.22) converges to ȳ quadratically provided
that the starting point y0 is sufficiently close to ȳ. Here g = {g1, g2, . . . , gn} is the
prescribed positive diagonal values, and ei and ej are the ith and jth columns of In,
respectively.

Proof. An easy calculation gives

H̄ =



g1 (m12 + ȳ1 + ȳn+2)+ · · · (m1n−1 + ȳ1 + ȳ2n−1)+ (m1n + ȳ1)+

(m21 + ȳ2 + ȳn+1)+ g2 · · · (m2n−1 + ȳ2 + ȳ2n−1)+ (m2n + ȳ2)+
...

... · · ·
...

...

(mn1 + ȳn + ȳn+1)+ (mn2 + ȳn + ȳn+2)+ · · · (mnn−1 + ȳn + ȳ2n−1)+ gn


,

(2.27)
where ȳ = [ȳ1, ȳ2, . . . , ȳ3n−1]

T ∈ R3n−1 satisfies G(ȳ) = 0 and g = {g1, g2, . . . , gn} >
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0 is the given diagonal entries. For any D̃ ∈ ∂G(ȳ),

D̃ =



∑n
i=1 d1,i · · · 0 d1,1 · · · d1,n−1 d1,1 · · · 0

...
...

...
...

...
...

...
...

...

0 · · ·
∑n

i=1 dn,i dn,1 · · · dn,n−1 0 · · · dn,n

d1,1 · · · dn,1
∑n

i=1 di,1 · · · 0 d1,1 · · · 0

...
...

...
...

...
...

...
...

...

d1,n−1 · · · dn,n−1 0 · · ·
∑n

i=1 di,n−1 0 · · · 0

d1,1 · · · 0 d1,1 · · · 0 d1,1 · · · 0

...
...

...
...

...
...

...
...

...

0 · · · dn−1,n−1

0 · · · dn,n 0 · · · 0 0 · · · dn,n



, (2.28)

where for i = 1, . . . , n, j = 1, . . . , n− 1 and i ̸= j
di,j = 1, if mi,j + ȳi + ȳn+j > 0,

di,j ∈ [0, 1], if mi,j + ȳi + ȳn+j = 0,

di,j = 0. if mi,j + ȳi + ȳn+j < 0,

(2.29)

for i = 1, . . . , n− 1, j = n
di,n = 1, if mi,n + ȳi > 0,

di,n ∈ [0, 1], if mi,n + ȳi = 0,

di,n = 0, if mi,n + ȳi < 0,

(2.30)

Besides, since g = (g1, g2, . . . , gn) > 0, we can obtain

di,i = 1, i = 1, . . . , n. (2.31)

Assume that eTi H̄ > 0 for some i = l. According to (2.29), (2.30) and (2.31), we
get that eTl H̄ > 0 if and only if dl1 = dl2 = · · · = dln = 1.

For any h = (h1, h2, . . . , h3n−1)
T ∈ R3n−1, if hT D̃h = 0, that is,

hT D̃h =

n−1∑
i=1

dii(hi + hn+i + h2n−1+i)
2 +

n−1∑
j=2

d1j(h1 + hn+j)
2

+

n∑
i=2

n−1∑
j=1,j ̸=i

dij(hi + hn+j)
2 +

n−1∑
i=1

dinh
2
i + dnn(hn + h3n−1)

2 = 0.

(2.32)

Then,
n−1∑
j=2

d1j(h1 + hn+j)
2 + d1nh

2
1 = 0,
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n−1∑
j=1,j ̸=i

dij(hi + hn+j)
2 + dinh

2
i = 0, i = 2, . . . , n− 1, (2.33)

n−1∑
j=1

dnj(hn + hn+j)
2 + dnn(hn + h3n−1)

2 = 0.

In what follows, we divide our proof in two cases.
Case 1: dl1 = dl2 = · · · = dln = 1, for some l ̸= n. It follows that

hn+1 = hn+2 = · · · = hn+l−1 = hn+l+1 = · · · = h2n−1 = −hl = 0. (2.34)

Hence, (2.33) can be rewritten as

n∑
j=2,j ̸=l

d1jh
2
1 = 0,

n−1∑
j=1,j ̸=i,j ̸=l

dijh
2
i = 0, i = 2, . . . , n− 1,

n−1∑
j=1,j ̸=l

dnjh
2
n = 0.

(2.35)

Since H̄e = e and 0 < g + H̄el < 1, we have

n−1∑
j=2,j ̸=l

(mij + ȳi + ȳn+j)+ + (min + ȳi)+ ̸= 0,

n−1∑
j=1,j ̸=i,j ̸=l

(mij + ȳi + ȳn+j)+ + (min + ȳi)+ ̸= 0, i = 2, . . . , n− 1,

n−1∑
j=1,j ̸=l

(mnj + ȳn + ȳn+j)+ ̸= 0,

(2.36)

and then,

n∑
j=2,j ̸=l

d1j ̸= 0,

n−1∑
j=1,j ̸=i,j ̸=l

dij ̸= 0, i = 2, . . . , n− 1,

n−1∑
j=1,j ̸=l

dnj ̸= 0.

(2.37)

Hence,
hi = 0, i = 1, 2, . . . , n. (2.38)

Again eT H̄ = eT and 0 < gl < 1, we further obtain
n∑

i=1,i̸=l

(mil + ȳi + ȳn+l)+ ̸= 0. (2.39)

Then
n∑

i=1,i̸=l

dil ̸= 0. (2.40)
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Recall that
n∑

i=1,i̸=l

dil(hi + hn+l)
2 = 0, and hi = 0, i = 1, 2, . . . , n, (2.41)

we have,
hn+l = 0. (2.42)

According to (2.31) and (2.32), we can see that

dii(hi + hn+i + h2n−1+i)
2 = 0, and dii = 1 ∀i = 1, 2, . . . , n− 1,

dnn(hn + h3n+1)
2 = 0, and dnn = 1.

(2.43)

Then
h2n = h2n+1 = · · · = h3n−2 = h3n−1 = 0. (2.44)

In view of (2.34), (2.38), (2.42) and (2.44), we finally have

h1 = h2 = · · · = h3n−1 = 0. (2.45)

Case 2: dn1 = dn2 = · · · = dnn = 1. It follows that

hn+1 = hn+2 = · · · = h2n−1 = h3n−1 = −hn. (2.46)

Since H̄e = e and 0 < g + H̄en < 1, we have

n−1∑
j=2

(m1j + ȳ1 + ȳn+j)+ ̸= 0,

n−1∑
j=1,j ̸=i,

(mij + ȳi + ȳn+j)+ + (min + ȳi)+ ̸= 0, i = 2, . . . , n− 1,

(2.47)

and then
n−1∑
j=2

d1j ̸= 0,

n−1∑
j=1,j ̸=l

dij ̸= 0, i = 2, . . . , n− 1. (2.48)

By (2.33) and (2.46), we have

h1 = h2 = · · · = hn−1 = −hn. (2.49)

Due to (2.32),
n−1∑
i=1

dinh
2
i = 0, (2.50)

we can obtain that,

h1 = h2 = · · · = h2n−1 = h3n−1 = 0. (2.51)

Moreover,

dii(hi + hn+i + h2n−1+i)
2 = 0, and dii = 1 ∀i = 1, 2, . . . , n− 1. (2.52)
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Finally, we have
h1 = h2 = · · · = h3n−1 = 0. (2.53)

Now, we have shown that hT D̃h = 0 only if h = 0 under the assumption that
eTi H̄ > 0 and 0 < g+ H̄ei < 1 for some 1 ≤ i ≤ n. Therefore, D̃ is positive definite.

In addition, it can be verified by (2.19) and (2.23) that

G(y + δy)−G(y)−Dδy = 0, ∀D ∈ ∂BG(y + δy), δy → 0. (2.54)

Since any D ∈ ∂G(y+ δy) is just a convex combination of elements in ∂BG(y+ δy),
so,

G(y + δy)−G(y)−Dδy = 0, ∀D ∈ ∂G(y + δy), δy → 0. (2.55)

Hence, G is strongly semismooth at any y ∈ R3n−1.
By Theorem 3.2 in [24], the sequence yl generated by nonsmooth Newton method

(2.22) converges to ȳ quadratically provided that the starting point y0 is sufficiently
close to ȳ. We have completed the proof.

Briefly speaking, the second projection of Mk+1 onto K is given by Hk+1 =
PN (F∗(ȳ) +Mk+1), where ȳ is the solution of G(y) = 0 (2.17) which is solved by
nonsmooth Newton method (2.22).

3. Convergency analysis
In this section, we will study the convergence of alternating projection method for
the DISVP-PE.

From [14], we have the following important property of projection operator on
convex set.

Proposition 3.1 (Escalante and Raydan [14]). If C is a closed and convex set in
a Hilbert space U , then for all z ∈ C and y ∈ U

⟨z − y, PC(y)− y⟩ ≥ ∥PC(y)− y∥2.

Since the set K = {A ∈ Rn×n|Ae = e, eTA = eT , A ≥ 0, Aii = gi, i = 1, 2, · · · , n}
is convex, the following distance reduction property always holds for projections on
K.

Lemma 3.1. Let Hk = PK(Mk), Mk+1 = PM(Hk) and Hk+1 = PK(Mk+1). If
Hk+1 ̸= Hk, then

∥Hk+1 −Mk+1∥ < ∥Hk −Mk+1∥. (3.1)

Proof. By Proposition 3.1, we obtain

∥Hk+1 −Hk∥2

=∥Hk+1 −Mk+1 +Mk+1 −Hk∥2

=∥Hk+1 −Mk+1∥2 + ∥Mk+1 −Hk∥2 + 2⟨Hk+1 −Mk+1,Mk+1 −Hk⟩
=∥Hk+1 −Mk+1∥2 + ∥Mk+1 −Hk∥2

+ 2⟨PK(Mk+1)−Mk+1,Mk+1 −Hk⟩
≤∥Hk+1 −Mk+1∥2 + ∥Mk+1 −Hk∥2 − 2∥PK(Mk+1)−Mk+1∥2

≤∥Mk+1 −Hk∥2 − ∥Hk+1 −Mk+1∥2.

(3.2)
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This implies that

∥Hk+1 −Mk+1∥2 ≤ ∥Mk+1 −Hk∥2 − ∥Hk+1 −Hk∥2. (3.3)

If Hk+1 ̸= Hk, then

∥Hk+1 −Mk+1∥2 < ∥Hk −Mk+1∥2.

We have completed the proof.
Here, we would like to present an important fact. If Hk+1 = Hk and Hk is not

in the solution set M∩K, the algorithm will not make any progress. But it does
not necessarily mean that the alternating method can not obtain a solution in the
set M∩K. Since the projection of Hk onto M are not unique, it may be possible
to escape from Hk+1 by a different projection point Mk+1 = PM(Hk).

By Theorem 2.1 and Lemma 3.1, the following distance reduction property al-
ways holds for alternating projection method for the DISVP-PE.

Corollary 3.1. Let Mk = PM(Hk−1), Hk = PK(Mk), Mk+1 = PM(Hk) and
Hk+1 = PK(Mk+1). If Hk+1 ̸= Hk, then

∥Mk+1 −Hk+1∥ < ∥Mk −Hk∥. (3.4)

Proof. By theorem 2.1, we have

∥Hk+1 −Mk+1∥ ≤ ∥Mk+1 −Hk∥ ≤ ∥Mk −Hk∥. (3.5)

If Hk+1 ̸= Hk, it follows from Lemma 3.1 that

∥Mk+1 −Hk+1∥ < ∥Mk+1 −Hk∥. (3.6)

Combining (3.5) and (3.6), we have

∥Mk+1 −Hk+1∥ < ∥Mk −Hk∥.

As presented in Section 2.2, the projection PK(Mk+1) is solved by nonsmooth
Newton method. Hk+1 = PK(Mk+1) is an approximate solution. Since the sequence
yl generated by nonsmooth Newton method converges to ȳ, i.e., ∥yl− ȳ∥ → 0 as l →
∞, then for any εk > 0, there exists an l, such that ∥Hk+1 − PK(Mk+1)∥ ≤ εk. To
ensure that the distance ∥Mk −Hk∥ is decreasing with k, the approximate solution
Hk+1 should satisfy ∥Hk+1 − PK(Mk+1)∥ ≤ εk and ∥Mk+1 −Hk+1∥ < ∥Mk −Hk∥.

Corollary 3.1 ensures that the distance ∥Mk −Hk∥ is decreasing with k, which
implies that ∥Mk −Hk∥ converges. In such a case, there is no guarantee that the
iteration in algorithm 1 will terminate. Moreover, M is compact [16] and K is a
closed convex set. The next theorem gives a convergence result for Algorithm 1.

Theorem 3.1. If M = {UΣV |U, V ∈ O(n)} and K = {H ∈ Rn×n|He = e, eTH =
eT ,H ≥ 0,Hii = gi, i = 1, 2, . . . , n}, then the sequence generated by Algorithm 1
converges in norm to some point in M∩K under the assumption that lim

k→∞
∥Mk −

Hk∥ = 0.
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Proof. In Algorithm 1, the first projection is Mk+1 = PM(Hk), where M =
{UΣV |U, V ∈ O(n)}. Since M is compact and Mk ∈ M, {Mk} has a convergent
subsequence, say {Mki}. Define

lim
i→∞

Mki
= M, (3.7)

for some M ∈ M.
As for the second projection Hk = PK(Mk), the projection operator PK is non-

expansive, i.e., for

∥PK(Mki
)− PK(M)∥ ≤ ∥Mki

−M∥. (3.8)

This implies that lim
i→∞

Hki = lim
i→∞

PK(Mki) = PK(M) and PK(M) ∈ K. Moreover,

∥M − PK(M)∥ ≤ ∥M −Mki
∥+ ∥Hki

− PK(M)∥+ ∥Mki
−Hki

∥. (3.9)

If lim
k→∞

∥Mk −Hk∥ = 0, then lim
i→∞

∥Mki −Hki∥ = 0. So we have

M = PK(M). (3.10)

It follows that

M ∈ M∩K. (3.11)

4. Numerical tests

This section contains some numerical results for solving the doubly stochastic inverse
singular value problem with prescribed entries by Algorithm 1. All computational
results are obtained using MATLAB 2015b running on a Intel(R) Core(TM) PC
of i7-8550U CPU. In our numerical experiments, the initial starting H0 is always
randomly generated by the built-in functions rand. In order to reflect the results of
numerical experiments intuitively, we use the following stopping criterion:

(∥σ(Hk)−σ∥2+∥Hke−e∥2+∥eTHk−eT ∥2+∥min(Hk, 0)∥2+∥diag(Hk)−g∥2) 1
2 ≤ ϵ,
(4.1)

where ϵ > 0 is a given tolerance, and σ(Hk) denotes the vector consisting of the
singular values, arranged in descending order, of the matrix Hk.

First, we report a numerical test of small-scale DISVP-PE. We set ϵ = 1.0 ×
10−12.

Example 4.1. To ensure the feasibility of test data, we start with doubly stochastic
matrix generated by the Sinkhorn-Knopp algorithm and use its singular values as the
objective singular value. Considering the DISVP-PE with n = 8, we first generate
a positive doubly stochastic matrix H by the Sinkhorn-Knopp algorithm [27] as
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follows:

H =



0.1542 0.0509 0.1688 0.1149 0.1620 0.2025 0.1321 0.0146

0.1670 0.1952 0.1060 0.0727 0.2125 0.0459 0.1033 0.0973

0.2189 0.0732 0.0556 0.0569 0.0043 0.2300 0.0891 0.2721

0.0255 0.1450 0.1573 0.1565 0.2629 0.1875 0.0154 0.0498

0.0927 0.0097 0.2699 0.1426 0.1687 0.0079 0.1547 0.1538

0.1797 0.1113 0.2199 0.0428 0.1659 0.1095 0.1170 0.0539

0.1103 0.0966 0.0000 0.2134 0.0004 0.0822 0.3390 0.1582

0.0517 0.3180 0.0225 0.2002 0.0235 0.1344 0.0495 0.2002


(4.2)

The singular value of H is {1.0000, 0.4138, 0.3252, 0.2656, 0.1928, 0.1731, 0.0907, 0.0243}.
We use the singular value of H as the given singular value and the diagonal elements
of H as the given diagonal elements. By using the alternating direction method, we
obtain the following solution:

H =



0.1542 0.0109 0.3220 0.0944 0.0463 0.1407 0.1713 0.0602

0.0900 0.1952 0.2099 0.2138 0.0414 0.0590 0.1085 0.0821

0.1543 0.0824 0.0556 0.0593 0.2895 0.3217 0.0256 0.0115

0.0651 0.1014 0.1560 0.1565 0.1503 0.0568 0.1306 0.1834

0.1075 0.0990 0.0115 0.1048 0.1687 0.1597 0.0501 0.2987

0.2636 0.1054 0.0450 0.0333 0.1964 0.1095 0.1342 0.1126

0.0389 0.1543 0.0610 0.1742 0.0760 0.1055 0.3390 0.0512

0.1262 0.2514 0.1389 0.1639 0.0315 0.0472 0.0407 0.2002


(4.3)

H is a nonnegative matrix with ∥He − e∥ = 1.6338 × 10−27, ∥eTH − eT ∥ =

1.0839 × 10−26, ∥diag(H) − g∥ = 6.2800 × 10−14 and (
∑n

i=1(σi(Hk) − σi)
2)

1
2 =

8.0689× 10−14.

Example 4.2. Results for various problem sizes n are given in this example to
illustrate the feasibility of our approach for relatively large problems. Let H̃ be
an n× n positive matrix with random entries uniformly distributed on the interval
[0, 1]. To ensure that the problem is solvable, we first generate a doubly stochastic
matrix H by

H := (diag(H̃H̃T ))−
1
2 H̃.

We use the singular value of H as the given singular value and the diagonal elements
of H as the given diagonal elements. Alternating projection method is applied to
solve the DISVP-PE. We find that all the numerical solution H is nonnegative. De-
tailed numerical experimental results are presented in Table 1, where “CT.” stands
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for the total computing time. And σ(H) = (σ1(H), σ2(H), . . . , σn(H)), where σi(H)
denotes the ith largest singular value of H.

Table 1. Numerical results for Example 4.2

n CT. ∥He− e∥ ∥eTH − eT ∥ ∥diag(H)− g∥ ∥σ − σ(H)∥
100 0.6549s 2.56× 10−25 8.68× 10−24 2.42× 10−13 5.06× 10−14

200 2.1534s 3.47× 10−25 1.90× 10−23 2.92× 10−13 4.17× 10−14

400 14.2068s 2.64× 10−25 1.50× 10−23 4.04× 10−13 2.17× 10−14

600 37.9099s 2.64× 10−25 1.92× 10−23 2.99× 10−13 1.84× 10−14

800 1min24s 2.04× 10−25 9.45× 10−23 3.94× 10−13 1.33× 10−14

1000 2min13s 2.52× 10−25 1.84× 10−22 3.67× 10−13 1.35× 10−14

2000 12min2s 3.05× 10−25 1.25× 10−22 2.65× 10−13 1.22× 10−14

3000 37min20s 3.05× 10−25 4.34× 10−22 4.24× 10−13 6.54× 10−15

4000 2h45min41s 7.70× 10−26 1.90× 10−22 3.80× 10−14 4.79× 10−15

From Table 1, one can see that the alternating projection method can solve the
doubly stochastic inverse singular value problem with prescribed diagonal entries
efficiently. Moreover, from the numerical tests, we observe the fact that alternating
projection method converges to different solutions for different starting points.

Example 4.3. For the convenience of description, we only consider the doubly
stochastic inverse singular value problem with prescribed diagonal entries. This
is an assumption without loss of generality, since the framework we establish in
this paper can be easily applied to the problem with any kind of index subset
L. In this case, the DISVP-PE can be reformulated as the problem of finding
a point in the intersection of two convex sets M = {UΣV |U, V ∈ O(n)} and
K = {H ∈ Rn×n|He = e, eTH = eT ,H ≥ 0,Hivjv = gv} where (iv, jv) ∈ L.
The first projection Mk+1 = PM(Hk) does not change. The second projection
Hk+1 = PK(Mk+1) can be reformulated as the following problem:

min
1

2
∥H −M∥2

s.t. He = e, eTH = eT ,

H ≥ 0,

Hivjv = gv, ∀(iv, jv) ∈ L

(4.4)

where L={(iv, jv)}lv=1 is the given an index subset of locations and g={g1, g2, . . . , gl}
is the prescribed nonnegative values. Let

F(H) =



He[
In−1 0

]
HT e

eTi1Hei1
...

eTilHeil


, b =



e[
In−1 0

]
e

g1
...

gl


. (4.5)
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Hence, we can extend all results that we derived for the problem (2.12) to the
problem (4.5), and apply nonsmooth Newton method to solve the dual problem of
(4.5) and then obtain the desired solution of the problem.

In this example, we apply our approach to construct the doubly stochastic in-
verse singular value problem with any kind of index subset L. We first generate
a positive doubly stochastic matrix H by the Sinkhorn-Knopp algorithm [27] as
follows:

H=



0.1859 0.3110 0.1866 0.0093 0.0501 0.0402 0.0423 0.1745

0.2784 0.1346 0.1125 0.1096 0.0741 0.0923 0.0305 0.1680

0.0548 0.0478 0.1518 0.1589 0.1118 0.1773 0.0904 0.2063

0.1048 0.0335 0.0575 0.0172 0.2070 0.2547 0.1343 0.1911

0.1796 0.0023 0.1932 0.0824 0.1214 0.1418 0.1899 0.0896

0.1256 0.0570 0.2019 0.3381 0.0489 0.0708 0.1377 0.0200

0.0575 0.3138 0.0898 0.0464 0.1649 0.0685 0.2118 0.0474

0.0133 0.1000 0.0068 0.2373 0.2218 0.1544 0.1632 0.1032



(4.6)

The singular value of H is {1.0000, 0.3976, 0.3313, 0.3069, 0.1864, 0.1368, 0.0298, 0.0116}.
We use the singular values of H as the given singular values and index subset L =
{(1, 1), (2, 5), (3, 4), (4, 6), (5, 7), (6, 2), (7, 8), (8, 3)}. Moreover, the prescribed non-
negative values g = {0.1859, 0.0741, 0.1589, 0.2547, 0.1899, 0.0570, 0.0474, 0.0068}.
By using the alternating direction method, we obtain the following solution:

H=



0.1859 0.2396 0.2043 0.0733 0.0137 0.0200 0.0351 0.2281

0.2048 0.0613 0.1339 0.0808 0.0741 0.1024 0.1560 0.1868

0.0669 0.2151 0.1290 0.1598 0.1616 0.0734 0.1064 0.0879

0.0612 0.1026 0.2560 0.0090 0.1961 0.2547 0.0506 0.0699

0.2392 0.0642 0.0799 0.0335 0.1183 0.1275 0.1899 0.1474

0.1066 0.0570 0.0923 0.3821 0.1318 0.0462 0.0604 0.1236

0.0424 0.2175 0.0979 0.1761 0.2409 0.0733 0.1045 0.0474

0.0930 0.0428 0.0068 0.0853 0.0636 0.3025 0.2971 0.1089



(4.7)

H is a nonnegative matrix with ∥He−e∥ = 2.1716×10−25, ∥eTH−eT ∥ = 2.5597×
10−25, and (

∑n
i=1(σi(H)− σi)

2)
1
2 = 1.3485× 10−13.

5. Conclusion
In this paper, we have considered the doubly stochastic inverse singular value prob-
lem with prescribed entries(DISVP-PE). The inverse problem is reformulated as the
problem of finding a point in the intersection of the compact set M = {UΣV |U, V ∈
O(n)} and the closed convex set K = {H ∈ Rn×n|He = e, eTH = eT ,H ≥
0,Hivjv = gv}. Alternating projection method is applied to solve the problem.
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Numerical experiments show that the proposed algorithm is effective for solving
the DISVP-PE. If the sets M and K are both closed convex sets, the alternat-
ing projection method can be accelerated by H̃k+1 = tkHk+1 + (1 − tk)Hk where
tk = ⟨Hk,Hk−Hk+1⟩

∥Hk−Hk+1∥2 . But the set M is nonconvex in the DISVP-PE. And how to ac-
celerated the alternating projection method for the DISVP-PE is still an interesting
problem. We will leave this for future research.
Acknowledgments. We are very grateful to the anonymous referees for their
valuable comments and suggestions, which led to an improvement of our original
manuscript.
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