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THE EFFECT OF AN ADDITIVE NOISE ON
SOME SLOW-FAST EQUATION NEAR A

TRANSCRITICAL POINT∗

Ji Li1 and Ping Li1,†

Abstract We consider the effect of small additive noise with intensity σ on
trajectories of a slow-fast system with small parameter ε which admits bifur-
cation delay at a transcritical point. We estimate the probability that the
perturbed stochastic paths stay in some tubular neighborhood of the deter-
ministic path to show that small but not exponentially small noise destroys
the bifurcation delay caused by transcritical point and obtain a noise intensity
threshold value N(ε) of order ε 3

4 . When e−
1
ε ≪ σ < N(ε), the paths are likely

to leave the neighborhood of the corresponding determinate path before some
time of order

√
ε|logσ|. When σ > N(ε), the paths are likely to leave before

some time of order σ
2
3 .

Keywords Stochastic slow-fast differential equation, additive noise, bifurca-
tion delay, transcritical point, sample path.
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1. Introduction
Consider the planar slow-fast system

dx

dt
= x′ = F (x, y, ε),

dy

dt
= y′ = εG(x, y, ε),

(1.1)

where F , G are sufficiently smooth. We assume that the system (1.1) has a nonde-
generate transcritical bifurcation point (NT-point) at the origin (0, 0). This means:

F (0, 0, 0) = 0, ∂xF (0, 0, 0) = 0, ∂yF (0.0.0) = 0,

∂xxF (0, 0, 0) ̸= 0,

∣∣∣∣∣∣∂xxF (0, 0, 0) ∂xyF (0, 0, 0)

∂xyF (0, 0, 0) ∂yyF (0, 0, 0)

∣∣∣∣∣∣ < 0, G0 = G(0, 0, 0) ̸= 0.
(1.2)
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Let Fxx = ∂xxF (0, 0, 0), Fxy = ∂xyF (0, 0, 0), Fyy = ∂yyF (0, 0, 0), Fε = ∂εF (0, 0, 0),
then there exists a coordinate change

x̂ = Fxxx− Fxyy, ŷ = sign(G0)y
√

F 2
xy − FyyFxx, ε̂ = ε|G0|

√
F 2
xy − FyyFxx,

transforming (1.1) into the normalized form [19] [23]

x′ = x2 − y2 + λε+ Õ(x3, x2y, xy2, y3, εx, εy, ε2),

y′ = ε(1 + Õ(x, y, ε)),
(1.3)

with
λ =

FεFxx +G0Fxy

|G0|
√
F 2
xy − FxxFyy

.

Obviously, (1.3) has a critical set C0 = {(x, y) ∈ R2 : x2 = y2}, which consists of
two attracting branches Ca1 = {x = y, y < 0}, Ca2 = {x = −y, y > 0}, two repelling
branches Cr1 = {x = −y, y < 0}, Cr2 = {x = y, y > 0}, and a NT-point (0, 0). Let
γ1(ε) be a trajectory of the normalized equation (1.3) corresponding to the system
(1.1) starting from some fixed point (x0, y0) with x0 < −y0 and y0 < 0. By the value
of λ, we can classify the system (1.1) with a NT-point into three cases [4,19,23,24]
(See Figure 1):

• λ < 1: Exchange-of-stability
For sufficiently small ε > 0, γ1(ε) is attracted into an ε-neighbourhood of
Ca1 exponentially fast and remains near Ca1 until crossing another attracting
critical branch Ca2 at some point (−y1,−y1) where y1 is of order

√
ε. Then it

moves towards Ca2, staying O(− ε
y ) closer;

• λ > 1: Critical transition
For sufficiently small ε > 0, γ1(ε) is attracted into an order ε neighbourhood
of Ca1 exponentially fast and remains near C1

a1 until crossing the repelling
critical branch Cr1 at some point (y2,−y2) where y2 is of order

√
ε. And then

γ1(ε) fast jumps away from the vicinity of the two repelling critical branches
Cr1 and Cr2 though the point (ρ1, ρ2) where ρ1 is a positive constant and ρ2
is of order

√
ε;

• λ = 1: Canard
For sufficiently small ε > 0, γ1(ε) is attracted into an ε neighbourhood of Ca1
exponentially fast and remains near Ca1 moving and extending to Cr2, until it
follows the repelling branch Cr2 over an distance of O(1) before being repelled.

More research conclusions on the deterministic systems with transcritical bifurcation
points were presented in [10,11,19,29,38].

The slow-fast equation (1.1) with a NT-point has very important applications
in many fields, such as chemistry [22], ecology [5,32,35], epidemiology [18,37], bio-
chemistry [9]. There are many studies about stochastic slow-fast equations (SSFEs)
with NT-points. For instance, Hurth and Kuehn proved the existence of invariant
probability measures for a particular case with a NT-point satisfying λ = 1 in [17];
Kuehn calculated the scaling laws of the variance of stochastic sample paths and
obtained stationary density near critical transitions for a particular case with a NT-
point satisfying λ = 1 in [20, 21], which provides an important basis on finding the
early warning signal; Berglund studied the dynamics of (1.3) with λ = 0 by sample
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Figure 1

paths approach [4]. As far as we know, majority of the research on the SSFEs with
a NT-point is to find early warning signals by using numerical simulation [32,34,37].

It is worth noting that, a sample path study of the dynamical behavior of the
SSFEs with NT-points satisfying λ = 1 has not been studied. We treat this problem
here.

We describe our set up next. For a planar slow fast system with a NT-point at
(0, 0) satisfying λ = 1:

dx

dt
= F (x, y) = f(x, y)x,

dy

dt
= εG(x, y),

(1.4)

restrict x ∈ I1 ≜ [−d, d], y ∈ I2 ≜ [−T, T ], where d and T are positive constants
independent of the parameter ε, and assume that G(x, y) ∈ C2(I1×I2,R), f(x, y) ∈
C2(I1 × I2,R), and 0 < ε ≪ 1. We assume that there exist positive constants d1, d2
such that G(x, y) > d1 for all x ∈ I1 and y ∈ I2, min{∂yf(0, 0), ∂xf(0, 0)} ≥ d2 and
f(0, 0) = 0. We also put the following

Assumption. Let (x, y) ∈ I1 × I2. For any fixed y < 0, the potential function
V (x, y) about x defined as ∂xV (x, y) = F (x, y), has only one local minimum
point x = 0 and one local maximum point x = φ(y). For any fixed y > 0,
V (x, y) has only one local minimum point x = φ(y) and one local maximum
point x = 0, where x = φ(y) is the only solution function of f(x, y) = 0 and
satisfies φ(y) > 0 for y < 0 and φ(y) < 0 for y > 0.

Transform (1.4) into an equivalent one-dimensional non-autonomous ordinary
differential equation (ODE):

dx

dy
=

1

ε

F (x, y)

G(x, y)
=

1

ε
H(x, y), (1.5)
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and add additive noise with intensity σ = σ(ε) to (1.5):
dx

dy
=

1

ε
H(x, y) +

σ√
ε
dWy, (1.6)

where Wy is a double-sided Brownian Motion on some fixed probability space
(Ω,F , P ).

In the study of SDEs, there are several approaches including but not limited
to: sample paths [4], random attractors [6], transition probability [25] and random
dynamical system [15,26,27]. In this paper, we extend the sample paths approach [4]
to study dynamical behavior of the SDE (1.6) near the NT-point with λ = 1. We
describe the dynamics of paths mainly by analyzing the probability of the first
passage time of paths. By comparing our result to the result of the case λ = 0 [4],
we find that the effect of additive noises on the dynamical behavior near the two
cases NT-points is quite different.

We study the dynamics of the DSFE (1.4) and the effect of additive noise varying
with slow variable on the fast variable near the NT-point, and give a critical value y∗
where the ‘critical transitions’ [21] occur before y < y∗ with very high probability.

We show that:
• The effect of a small additive noise becomes negligible on the segments of

trajectories that undergo large excursions in the fast variable.
• For λ = 1, the paths under additive noise near a NT point are likely to remain

concentrated near the deterministic solution only for e
1
ε ≪ σ < ε

3
4 and y less

than O(
√
ε), and are likely to leave the vicinity of the deterministic solution

before y reaching O(
√

εlog|σ|). Therefore small but not exponentially small
noise destroys the bifurcation delay caused by the NT-point.

• If the noise intensity σ > ε
3
4 , then critical transition is likely to occur before

a time of order σ
2
3 .

In Section 2, we state results in detail. In Section 3, we prove our theorems.
Notation. f(u) = O(u) means that there are two positive constants ξ1 and ξ2
such that ξ1u ≤ f(u) ≤ ξ2u; f(u) = Õ(u) means that there are two nonnegative
constants ξ1 and ξ2 such that ξ1u ≤ |f(u)| ≤ ξ2u; x∧ y (x∨ y) means the minimum
(maximum) between x and y; ⌈x⌉ means the smallest integer which is greater than
or equal to x for x ≥ 0; f(u) = o(u) means lim

u→0

f(u)
u = 0; P y0,x0{(xy, y) ∈ ·} is

a probability measure induced by the process {xy}y≥y0
starting from x0 at time

y0 on some probability space (Ω,F , P ); Ey0,x0 denote expectations with respect to
P y0,x0 .

2. The statement of results
First, we recall some useful properties about the equation (1.4). Under the As-
sumption, by Taylor’s expansion, we know:

H(x, y) = [ay + Õ(y2) + bx+ Õ(yx) + Õ(x2)]x, (2.1)

with a =
∂yf(0,0)
G(0,0) > 0, b = ∂xf(0,0)

G(0,0) > 0. Obviously, (1.4) is locally topologically
equivalent to the typical example with a transcritical bifurcation:

dx

dt
= x(x+ y),

dy

dt
= ε. (2.2)
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And there is a critical set

C0 = {(x, t) : f(x, t) = 0 or x = 0} = Ca1 ∪ Ca2 ∪ Cr1 ∪ Cr2 ∪ {(0, 0)},

where Ca1 = {x = 0, y < 0}, Ca1 = {x = φ(y), y > 0} are attracting, Cr1 = {x =
φ(y), y < 0}, Cr2 = {x = 0, y > 0} are repelling.

For normally hyperbolic critical manifold, one can use Fenichel’s theory [12,13]
to obtain the nearby dynamics. (1.4) has a non-hyperbolic point (0, 0), where
Fenichel’s theory fails. We find that the NT-point p = (0, 0) of (1.4) is also a loss-
of-stability turning point that the normal stability changes from stable to unstable
[16,28,30,33,36]. One has

Lemma 2.1. Let γε be a trajectory of (1.4) starting from a fixed point (x0, y0),
with −T < y0 < 0 and x0 ∈ (−d, φ(y0)). Then, for sufficiently small ε > 0, there
is a singular orbit γ0:

γ0 =γ01 ∪ γ02 ∪ γ03

={(x, y) : x ∈ [x0 ∧ 0, x0 ∨ 0], y = y0} ∪ {(x, y) : x = 0, y ∈ [y0, y1]}
∪ {(x, y) : x ∈ [x0 ∧ 0, x0 ∨ 0], y = y1},

where y1 satisfies ∫ y1

y0

F (0, y)

G(0, y)
dy = 0, (2.3)

such that γε ∩ U converges to γ0 in the Hausdorff distance as ε → 0, where U =

{(x, y) : |x| ≤ |x0|, |y| < T}. In addition to, min
(x,y)∈γε∩U

|x| = e
−c+o(1)

ε , with c =∫ 0

y0
|F (0,y)
G(0,y) |dy.

The function (2.3) of y1 is called an entry-exit [1] or way in-way out [8] function.
The lemma means that, there is a phenomenon of ‘delay of instability’ [28], which is
also called ‘bifurcation delay’ [2], or ‘Pointryagin delay’ [31] caused by the NT-point
(0, 0): After the trajectory γε is attracted into the vicinity of Ca1 and crosses the
critical branch {x = φ(y)}, instead of leaving the vicinity of Cr2 immediately, γε
stays near Cr2 until it reaches near (y1, 0).

Next, we analyze the paths near the NT-point (0, 0) of the equation (1.6) in
order to explore the effect of additive noise varying with slow variable y on the fast
variable x near the NT-point.

Let xy(x0, y0) be a solution of (1.6) and xdet
y (x0, y0) be a solution of (1.5) staring

from the fixed point (x0, y0). Our main theorem is as follows.

Theorem 2.1. There is a positive constant T̃ ∈ (0, T ) and a sufficiently small ε0.
For any ε ∈ (0, ε0], we have:

(1) Given y0 ∈ (−T, 0), x0 ∈ (−d, φ(y0)). There is a h0 = O(ε
3
4 ), and a y∗0 =

y0 +O(ε|logε|). For any h ∈ (0, h0], positive constant r and y ∈ (y∗0 ,
√
rε], we

have

P x0,y0{ sup
y∗
0≤u≤y

|xy(x0, y0)| >
h√

|u| ∨
√
rε

}

≤Q1(y, y
∗
0 , ε)e

−L1
h2

σ2 [1−Õ(
√
ε)] +Q2(y

∗
0 , y0, ε)e

−L1
h2

√
rεσ2 [1−

√
ε]
+

3

2
e−

L2
σ2 ,

(2.4)
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with Q1(y, y
∗
0) = O(

(y∗
0 )

2−(y∨0)2

ε2 + 1
ε + 1√

ε
+ 1), Q2(y

∗
0 , y0, ε) = O( |logε|ε + 1),

L1 = r
8c+0 (r+4)

∧ b1
16c+0

, L2 = k1[c
2
0 ∨ (d − |x0|)2 ∨ (2(φ(y0) − |x0|)2)], where

c0 ≤ d ∧ x0 satisfies

max
{y0≤u<y∗

0 ,|x|≤c0}
∂xH(x, u) = −O(1),

and

k1 = min
{c0≤|x|≤x0∧[φ(u)−

[φ(y0)−x0]∧φ( 1
2
y0)

2 ],y0≤u≤ y0
2 }

|H(x, u)

x
| = O(1).

(2) There is a positive constant r̄ and a function x̄(y) = āy with 0 < ā < a
b . If√

r̄ε ≤ y0 ≤ y ≤ T̃ , |x0| < x̄(y0), and σ|logσ| 32 ≤ O(ε
3
4 ), then

P y0,x0{ sup
u∈[y0,y]

|xu(x0, y0)|
|x̄(y)|

< 1} ≤ Q3(y, y0, ε)
e−k2α0(y,y0)/ε

√
1− e−2k2α0(y,y0)/ε

, (2.5)

where Q3(y, y0, ε) =
x̄(y)

√
k2a0(y)√
πσ

(1 + 1
k2

+ 2k2α0(y,y0)
ε ) and k2 is a positive

constant satisfying (a− bā)u ≥ k2∂xH(0, u) for u ∈ (0, T̃ ].
(3) If

√
r̄ε ≤ y0 ≤ y ≤ T̃ and x0 = −x̄(y0), then there is a positive constant L3

such that

P y0,x0{ sup
u∈[y0,y]

|xu(x0, y0)− xdet
u (x0, y0)| >

h√
u
}

≤Q4(y, y0, ε)e
−L3h2

σ2 [1−O(
√
ε)].

(2.6)

where Q4(y, y0, ε) =

∫ y
y0

∂xH(xdet
v (x0,y0))dv

ε2 + 2. If
√
r̄ε ≤ y0 ≤ y ≤ T̃ and

x0 = x̄(y0), then

P y0,x0{ sup
u∈[y0,y]

xu(x0, y0) ≤ d}

≤e−a0(y0)x̄(y0)
2/σ2

+
d
√
a0(y)e

−α0(y,y0)/ε

√
πσ

√
1− e−2α0(y,y0)/ε

,
(2.7)

where a0(u) = ∂xH(0, u) and α0(y, y0) =
∫ y

y0
a0(u)du.

(4) Assume that σ ≥ ε
3
4 . There are positive constants ρ, k3 and L4, and a

h0 = O(ε
3
4 ) such that

P x0,t0{ sup
y0≤u≤y

xu ≤ d}

≤L4[
|α0(y0, y)|

ε2
+ 1]e−

h2

σ2 [1−Õ(
√
ε)] +

3

2
e
−ρ

|α0(y∧(nσ
2
3 ),−nσ

2
3 )|

ε(|logσ|∨|log h
σ

|) ,

(2.8)

for fixed x0 ∈ (−d, φ(y0)), y0 ∈ (−T,−k3σ
2
3 ] and y ∈ [−k3σ

2
3 , k3σ

2
3 ], 0 < h <

h0.
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Figure 2

From the above theorem, we know that, there is a threshold value N(ε) = O(ε
3
4 )

of noise intensity which makes the estimations of the probability useful for O(e−
1
ε ) <

σ < N(ε). When σ < N(ε), similar to the dynamic behavior of the deterministic
solution xdet

y (x0, y0), the sample paths are likely to be rapidly attracted into a
O(ε

3
4 ) neighbourhood of x = 0 with exponential speed, and remain in the small

neighbourhood until y = O(
√
ε). And then, different from the deterministic solution

remaining in the O(ε) neighbourhood of x = 0 until near y = y1 = O(1) where
critical transition happens, the sample paths are likely to transit in advance near
y = O(

√
ε|logσ|). And if σ ≥ N(ε) the critical transition is likely to occur earlier

at some y ∈ [−σ
2
3 , σ

2
3 ]. And when σ ≪ N(ε) or σ ≫ N(ε), the probability that the

corresponding events as described above occur is almost one.

Remark 2.1. Note that, the threshold value N(ε) of noise intensity is different to
the threshold value O(

√
ε) in the study of the pitchfork bifurcations in [3]. And the

difference is caused by the difference in the lowest order of the higher order term of
their drift term.

3. The proof of theorem
We compare the equation

dx =
1

ε
H(x, y)dy, (3.1)

and
dx =

1

ε
H(x, y)dy +

σ√
ε
dWy. (3.2)

Let D = {(x, y) : |x| < d, |y| < T}, our discussion is confined to the region D.
Let xy(x0, y0) be a solution of (3.2) and xdet

y (x0, y0) be a solution of (3.1) staring
from the fixed point (x0, y0). The dynamical behavior of the solution xdet

y (x0, y0)
in D follows from Lemma 2.1.
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Given y0 ∈ (−T, 0) and x0 ∈ (−d, φ(y0)). And let zy = xy(x0, y0)−xdet
y (x0, y0).

We know zy obeys the SDE

dzy =
1

ε
{H(xy(x0, y0), y)−H(xdet

y (x0, y0), y)}dy +
σ√
ε
dWy, zy0

= 0. (3.3)

The linearization of (3.3) around z = 0 is

dz0y =
1

ε
a(y)z0ydy +

σ√
ε
dWy, z0y0

= 0, (3.4)

with a(y) = ∂xH(xdet
y (x0, y0), y). Obviously,

z0y = zy0
eα(y,y0)/ε +

σ√
ε

∫ y

y0

eα(y,v)/εdWv

is a Gaussian process obeying the Gaussian distribution N (Ey(x0, y0), Vy(x0, y0)),
with

Ey(x0, y0) = zy0e
α(y,y0)/ε, Vy(x0, y0) =

σ2

ε

∫ y

y0

e2α(y,v)/εdv,

with α(y, v) =
∫ y

u
a(u)du. We define a function ζ(y) that approximates the variance

function and has an advantage over the variance function of being bounded away
from zero,

ζ(y) =
1

|a(y0)|
e2α(y,y0)/ε +

1

ε

∫ y

y0

e2α(y,v)/εdv. (3.5)

Under our Assumption, it is easy to know the following lemma from the argument
about the stable case in the subsection 3 in [3].

Lemma 3.1. There exist positive constants ε0, h0, b1, b2 and c0 depending only on
H(x, y) and y0, such that for 0 < ε ≤ ε0, 0 < h ≤ h0, |x0| ≤ c0 and y ∈ [y0,

1
2y0],

P 0,y0{ sup
y0≤u≤y

|zy|√
ζ(y)

> h} ≤ C1(y, y0, ε)exp{−
h2

2σ2
[1− Õ(ε)− Õ(h)]}, (3.6)

with C1(y, y0, ε) =
|α(y,y0)|

ε2 + 2. And 1
2b1

≤ ζ(y) ≤ 1
2b2

.

Note that, the limitation |x0| < c0 is to make sure a(y) = −O(1). If c0 < d, then
we use the sample paths approach to obtain the following lemma, which relaxes the
region of the initial point.

Proposition 3.1. Given y0 ∈ (−T, 0), x0 ∈ (−d, φ(y0))/{0} and c1 ∈ (0, |x0|].
There is a sufficiently small ε0 and a positive constant c̄1, such that for any ε ∈
(0, ε0) and y ∈ (y0 + c̄1ε,

1
2y0), we have

P x0,y0{ sup
u∈[y0,y]

xy(x0, y0) < −c1} ≤ 3

2
e−

k1[c21∧(d−|x0|)2))]

σ2 , for x0 ∈ (−d, 0),

P x0,y0{ inf
u∈[y0,y]

xy(x0, y0) > c1} ≤ 3

2
e−

k1[c21∧(2(|φ(y0)|−|x0|)2)]

σ2 , for x0 ∈ (0, φ(y0)).

(3.7)
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Proof. First, we assume x0 ∈ (−d, 0) be fixed, given a constant c1 ∈ (0, |x0|].
Under the Assumption, it easy to know that there is a positive constant k1 such
that H(x,y)

x ≤ −k1 for all x ∈ [x0,−c1]. Let xdet,0
y (x0, y0) be a solution of the linear

differential equation
dx = −1

ε
k1xdy, xy0

= x0. (3.8)

Obviously,
xdet,0
y (x0, y0) = x0e

−k1(y−y0)/ε. (3.9)

Let x0
y(x0, y0) be a solution of the linear equation

dx = −1

ε
k1xdy +

σ√
ε
dWy, xy0

= x0, (3.10)

then
x0
u(x0, y0) = x0e

−k1(y−y0)/ε +
σ√
ε

∫ y

y0

e−k1(y−u)/εdWu. (3.11)

This means x0
u(x0, y0) is a Gaussian process and follows the distribution N (Eu, Vu)

with Eu = x0e
−k1(y−y0)/ε and Vu = σ2

ε

∫ y

y0
e−2k1(y−u)/εdu = σ2

2k1
(1− e−2k1(y−y0)/ε).

We define some stopping times

τ0−d = inf{u ∈ [y0, y] : x
0
u(x0, y0) ≤ −d}, τ0−c1 = inf{u ∈ [y0, y] : x

0
u(x0, y0) ≥ −c1},

τ−d = inf{u ∈ [y0, y] : xu(x0, y0) ≤ −d}, τ−c1 = inf{u ∈ [y0, y] : xu(x0, y0) ≥ −c1}.

If x0
u(x0, y0) > −d for all u ∈ [y0, y], then τ0−d = ∞. And τ0−c1 , τ−d, τ−c1 are

similarly defined.
Let zu = xu(x0, y0)− x0

u(x0, y0) with zy0
= 0. Obviously, zu satisfies

dzu =
1

ε
{−k1zu +H(xu(x0, y0), u) + k1xu(x0, y0)}du. (3.12)

If u ∈ [y0, y ∧ τ−d ∧ τ−c1 ], then

zu = zy0
+

1

ε

∫ u

y0

−k1zu + [F (xu(x0, y0), u) + k1xu(x0, y0)]du

≥ zy0 +
1

ε

∫ u

y0

−k1zudu.

(3.13)

By Gronwall’s inequality, we know that

zu ≥ zy0e
−k1(u−y0)/ε ≥ 0 as zy0 ≥ 0 =⇒ xu(x0, y0) ≥ x0

u(x0, y0). (3.14)

Thus τ−d ≥ τ0−d and τ0−c1 ≥ τ−c1 . Then

P x0,y0{ sup
y0≤u≤y

xy(x0, y0) < −c1}

≤P x0,y0{ sup
y0≤u≤y

xy(x0, y0) < −c1, τ−d ≤ y}

+ P x0,y0{ sup
y0≤u≤y

xy(x0, y0) < −c1, τ−d = ∞}

≤P x0,y0{τ0−d ≤ y}+ P x0,y0{τ0−c1 > y}.

(3.15)
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There is a positive constant c̄1, if y − y0 ≥ c̄1ε, then

P x0,y0{τ0−c1 > y} = P x0,y0{ sup
y0≤u≤y

x0
u(x0, y0) < −c1}

≤ P x0,y0{x0
y(x0, y0) ≤ −c1}

=
1√
2πVu

∫ −c1

−∞
e

(x−Eu)2

2Vu dx =
1√
2π

∫ −c1−Eu√
Vu

−∞
e

v2

2 dv

≤ 1

2
e−

(−c1−Eu)2

2Vu ≤ 1

2
e
− 2k1(−c1−x0e−k1(y−y0)/ε)2

σ2(1−e−2k1(y−y0)/ε) ≤ 1

2
e−

k1c21
σ2 .

(3.16)

Let Xu ≜ σ√
ε

∫ u

y0
e−k1(u−v)/εdWv. Xu is a Gaussian process starting from (0, y0) and

obeys the distribution N (0, Vu). The symmetry and the strong Markov property of
{Xu}u≥y0

implies that

P x0,y0{τ0−d ≤ y} = P x0,y0{∃u ∈ [y0, y] s.t. x
0
u(x0, y0) ≤ −d}

=P x0,y0{∃u ∈ [y0, y] s.t. x
0
u(x0, y0)− xdet,0

u (x0, y0) ≤ −d− xdet,0
u (x0, y0)}

=P 0,y0{∃u ∈ [y0, y] s.t. Xu ≤ −d− xdet,0
u (x0, y0)}

≤P 0,y0{∃u ∈ [y0, y] s.t. Xu ≤ −d+ |x0|}
=2P 0,y0{Xy < −d+ |x0|}

=
2√
2πVy

∫ −d+|x0|

−∞
e

−x2

2Vy dx =
2√
2π

∫ −d+|x0|√
Vy

−∞
e

−v2

2 dv

≤e
− (−d−|x0|)2

2Vy ≤ e
− 2k1(−d+|x0|)2

σ2(1−e−2k1(y−y0)/ε) ≤ e−
2k1(−d+|x0|)2

σ2 .

(3.17)

Substitute (3.16) and (3.17) into (3.15), we obtain the first inequality of (3.7). And
if x0 ∈ (0, φ(y0)) is fixed, the second inequality of (3.7) is obtained by an analysis
similar to the above. The only difference is the defined stopping time.

We know that the deterministic solution xdet
y (x0, y0) approaches and crosses the

line x = c0 at y∗0 = y0 + Õ(ε) exponentially fast. The above lemma means that the
paths of the process xy(x0, y0) cross the line x = c0 near y∗0 with probability close
to one for σ sufficiently small. Note that, the similar result holds for autonomous
equations and has been proved in chapter 2 of [14] and in chapter 5 of [7], respec-
tively, by the method of expansion in powers of a small parameter and the large
deviation theory.

Let a0(y) = ∂xH(0, y) = ay + Õ(y2). By the Assumption, we know there are
positive constants a+0 > a−0 > 0, such that a+0 y ≤ a0(y) ≤ a−0 y for −T ≤ y ≤ 0,
and a−0 y ≤ a0(y) ≤ a+0 y for 0 < y < T . We know the linearization of (3.2) around
x = 0 satisfies

dx0
y =

1

ε
a0(y)x

0
ydy +

σ√
ε
dWy, x0

y0
= x0. (3.18)

We define ζ0(y) = 1
|a0(y0)|e

2α0(y,y0)/ε+ 1
ε

∫ y

y0
e2α0(y,v)/εdv with α0(y, v) =

∫ y

v
a0(u)du.

There exist positive constants c−0 ≤ c+0 such that ζ0(y) satisfies

c−0
|y| ∨

√
rε

≤ ζ0(y) ≤
c+0

|y| ∨
√
rε

, for − T ≤ y ≤
√
rε,

c−0√
ε
e2α0(y,0)/ε ≤ ζ0(y) ≤

c+0√
ε
e2α0(y,0)/ε, for

√
rε ≤ y ≤ T.

(3.19)



1642 J. Li & P. Li

Let z1(y) = xy(x0, y0)− x0
y which satisfies

dz1(y) =
1

ε
{a0(y)z1(y) +H0(xy(x0, y0), y)}dy, for z1(y0) = 0, (3.20)

with H0(xy(x0, y0), y) = H(xy(x0, y0), y) − a0(y)xy(x0, y0). Note that, there is
a positive constant M0 such that |H0(xy(x0, y0), y)| ≤ M0xy(x0, y0)

2 as long as
(xy(x0, y0), y) ∈ D. By analyzing the linear process x0

y and the difference process
z1(y), we obtain the following

Lemma 3.2. There exists a constant L =
√
2M0c

+
0 (
√

c+0 +e
ra

+
0

2 )2

c−0
∨M0

√
c+0 (2

√
c+0 +

e
ra

+
0

2 )2. If 0 < h ≤ d(rε)
1
4

2
√

c+0 +e
ra

+
0

2

∧ ε
3
4

L , |x0| ≤ h

(rε)
1
4

, then for y ∈ [y0,
√
rε], there is

P y0,x0{ sup
u∈[y0,y]

|xu(x0, y0)− x0e
α0(u,y0)/ε|

ζ0(u)
> h} ≤ C2(y, y0, ε)e

r
2(r+4)

h2

σ2 [1− δ(ε)],

with C2(y, y0, ε) =
|α0(y,y0)|

ε2 + r
2a−

0 ε
+ 4

√
r√
ε
+ 4, δ(ε) = Õ(ε) for y0 ≤ y ≤ −

√
rε and

δ(ε) = Õ(
√
ε) for |y| ≤

√
rε.

We omit the long but straightforward proof of the lemma, which follows the same
analytical process as that for Lemma 4.2 and Theorem 2.10 in [3]. The difference
lies in the inclusion relation between these two measurable sets of (Ω,F , P ):

A0
y(h) ⊆ Ay[(1 +

L

(rε)
3
4

)h], Ay(h) ⊆ A0
y[(1 +

L

(rε)
3
4

)h], (3.21)

with

A0
y(h) = {ω : |x0

u(ω)− x0e
α0(u,y0)/ε| ≤ h

√
ζ0(y), ∀ u ∈ [y0, y]},

Ay(h) = {ω : |xu(x0, y0)(ω)− x0e
α0(u,y0)/ε| ≤ h

√
ζ0(y), ∀ u ∈ [y0, y]}.

(3.22)

The difference is due to the difference between the lowest order of the higher order
term of the drift term near the transcritical bifurcation and pitchfork bifurcation.
The remainder of the proof is similar, except that a lot of more careful calculation
is involved.

We are now ready to proceed with

Proof of (1) of Theorem 2.1. Without loss of generality, we assume −T < y0 < 0
and 0 < x0 < φ(y0) fixed. Let

y∗01 = inf{u ≥ y0 : x0e
α0(u,y0)/ε ≤ h

2
√
|u| ∨

√
rε

},

y∗02 = inf{u ≥ 1

2
y∗01 : xdet

u (c0,
1

2
y∗01) ≤

h

2
√

|u| ∨
√
rε

}.

We know that x0e
α0(u,y0)/ε and xdet

u (c0,
1
2y

∗
01) are attracted to a Õ(ε) neighborhood

of x = 0 with velocity O(e
1
ε ). So y∗01 = O(ε|logε|) and y∗02 = O(ε|logε|). Let

y∗0 = max(y∗01, y
∗
02), then y∗0 ≪ 1

2y0 for sufficiently small ε. Define τc0 = inf{u >
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y0 : xu(x0, y0) ≤ c0}, by the above lemmas and the strong Markov property of
xu(x0, y0), we have

P y0,x0{∃u ∈ [y∗0 , y] : |xu(x0, y0)| >
h√

|u| ∨
√
rε

}

≤P y0,x0{∃u ∈ [y∗0 , y] : |xu(x0, y0)− x0e
α0(u,y0)/ε| > h

2
√

|u| ∨
√
rε

}

≤P y0,x0{∃u ∈ [y∗0 , y] : |xu(x0, y0)− x0e
α0(u,y0)/ε| > h1

√
ζ0(u)}

≤P y0,x0{∃u ∈ [y∗0 , y] : |xu(x0, y0)− x0e
α0(u,y0)/ε| > h1

√
ζ0(u),

|xy∗
0
(x0, y0)| ≤

h1

(rε)
1
4

}+ P y0,x0{|xy∗
0
(x0, y0)| >

h1

(rε)
1
4

, τc0 <
1

2
y∗01}

+ P y0,x0{τc0 ≥ 1

2
y∗01}

=Ey0,x0{I{|xy∗
0
(x0,y0)<

h1

(rε)
1
4

}P
y∗
0 ,xy∗

0
(x0,y0){∃u ∈ [y∗0 , y] : |xu(x0, y0)− x0e

α0(u,y0)/ε|

> h1

√
ζ0(u)}}+ Ey0,x0{I{τc0< 1

2y
∗
01}P

τc0 ,c0{|xy∗
0
(x0, y0)| >

h1

(rε)
1
4

}}

+ P y0,x0{τc0 ≥ 1

2
y∗01}

≤Ey0,x0{I{|xy∗
0
(x0,y0)<

h1

(rε)
1
4

}P
y∗
0 ,xy∗

0
(x0,y0){∃u ∈ [y∗0 , y] : |xu(x0, y0)− x0e

α0(u,y0)/ε|

> h1

√
ζ0(u)}}+ Ey0,x0{I{τc0< 1

2y
∗
01}P

τc0 ,c0{∃u ∈ [τc0 , y
∗
0 ] : |xu(x0, y0)

− xdet
u (x0, y0)| > h2

√
ζ(u)}}+ P y0,x0{τc0 ≥ 1

2
y∗01}

≤Q1(y, y
∗
0 , ε)e

−L1
h2

σ2 [1−Õ(
√
ε)] +Q2(y

∗
0 , y0, ε)e

−L1
h2

√
rεσ2 [1−

√
ε]
+

3

2
e−

L2
σ2 ,

(3.23)

where h1 = 1

2
√

c+0
h, h2 =

√
b2√

2(rε)
1
4
h1.

Next, we look for an appropriate region D̄ ≜ {(x, y) : |x| ≤ x̄(y), T̃ ≥ y ≥√
r̄(ε)} which approximates the region D̃ ≜ {(x, y) : |x| ≤ |φ(y)|, T̃ ≥ y ≥

√
r̄(ε)}

and is contained in D̃, in order to show that the sample paths starting from the
region are likely to leave the region rapidly. Here r̄ is a positive constant to be
determined later. This will be used in proving that the sample paths starting from
some O(

√
ε) neighbourhood of x = 0 jump away from the vicinity of x = 0 with a

high probability after y >
√
r̄ε. Note that, from now on, without loss of generality,

we can assume d is a suitably small constant so that the following conditions holds.
Otherwise, we can supplement our proof with the conclusion of Proposition 3.1.

We summarize conditions according to the subsequent proof requirements:

(A1) D̄ approximates the region D̃ ≜ {(x, y) : |x| ≤ |φ(y)|,
√
r̄(ε) ≤ y ≤ T̃} where

T̃ ≤ T is a positive constant such that

min
y∈[0,T̃ ]

[−φ′(y)] = O(1), min
{|x|≤d,y∈(0,T̃ ]}

∂x
H(x, y)

x
> 0,

min
{|x|≤d,y∈[−T̃ ,T̃ ]}

∂xxH(x, y) > 0;
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(A2) The solution φ(y) ≤ xdet
y (−x̄(y0), y0) ≤ −x̄(y) for

√
r̄(ε) ≤ y0 ≤ y ≤ T̃ ;

(A3) ∂xH(−x̄(y), y) = O(∂xH(φ(y), y)) in order to maximize the range of values
of σ in which our conclusion holds.

Since −φ(y) = O(y), we naturally assume that x̄(y) = āy. By the above
conditions, it is clear that a

2b < ā < min
y∈[0,T̃ ]

[−φ′(y)] < a
b , and 1

a−bā < r̄. Let
√
r̄ε ≤ y0 ≤ u ≤ T̃ and zu = xu(−x̄(y0), y0)− xdet

u (−x̄(y0), y0). zu satisfies

dzu =
1

ε
{a2(u)zu +H2(zu, u)}du+

σ√
ε
dWu, zy0

= 0, (3.24)

with a2(u) = ∂xH(xdet
u (−x̄(y0), y0)) and

H2(zu, u) = H(xu(−x̄(y0), y0), u)−H(xdet
u (−x̄(y0), y0), u)− a2(u)zu.

It is easy to prove that there is a positive constant M2 such that |H2(zu, u)| ≤ M2z
2
u

for (zu, u) ∈ D. Let z0u be a solution of the linear equation

dz0u =
1

ε
a2(u)z

0
udu+

σ√
ε
dWu, z0y0

= 0, (3.25)

and ζ2(y) =
1

|a2(y0)|e
2α2(y,y0)/ε + 1

ε

∫ y

y0
e2α2(y,v)/εdv with α2(y, v) =

∫ y

v
a2(u)du. It

satisfies
1

2|a−(u)|
≤ ζ2(u) ≤

1

2|ā(u)|
, ζ ′(u) ≤ 1

ε
(3.26)

with a−(u) = ∂xH(φ(u), u) = −O(u) and ā(u) = ∂xH(−x̄(u), u) = −O(u). Then,
we can obtain the following

Lemma 3.3. For
√
r̄ε ≤ y0 ≤ y < T̃ , there is a h0 = O(y

3
2
0 ∧ y0). For 0 < h < h0

and sufficiently small ε, we have

P y0,−x̄(y0){ sup
y0≤u≤y

|zu|√
ζ2(u)

≥ h} ≤ Q4(y, y0, ε)e
− 1

2
h2

σ2 [1−Õ(
√
ε)], (3.27)

with Q4(y, y0, ε) =
α2(y,y0)

ε2 + 2.

We omit the proof of the lemma, which follows similar steps of that of Theorem
2.12 in [3].

Proof of (2) and (3) of Theorem 2.1. Since there is a positive constant ā0 = a−
bā such that H(x,y)

x ≥ ā0y, one can prove (2) basically following the steps of Theorem
2.11 in [3]. The only difference is the restriction on σ that σ|logσ| 32 ≤ O(ε

3
4 ). (2.6)

can be obtained directly by the above Lemma 3.3 and the fact that ζ2(u) = O( 1u )

for u ∈ [
√
r̄ε, T̃ ].

Next, we prove (2.7). Let x0
u be a solution of (3.18) with x0

y0
= x̄(y0). zu =

xu(x̄(y0), y0) − x0
u(x̄(y0), y0) satisfying (3.20). Since there is a θ ∈ [0, 1], such

that H0(xu(x̄(y0), y0), y0) = 1
2∂xxH(θxu(x̄(y0), y0), u)[xu(x̄(y0), y0)]

2 > 0 for 0 <

xu(x̄(y0), y0), u) < b, u ∈ [0, T̃ ]. Repeating the analysis of zu in Proposition 3.1, we
obtain that zu(ω) > 0 for ω ∈ {xu ∈ [0, d],∀u ∈ [y0, y]}. Define τ00 = inf{u ≥ y0 :
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x0
u = 0}, then

P y0,x̄(y0){xu(x̄(y0), y0), u) < d, ∀u ∈ [y0, y]}
=P y0,x̄(y0){xu(x̄(y0), y0), u) < d, ∀u ∈ [y0, y], τ

0
0 ≤ y}

+ P y0,x̄(y0){xu(x̄(y0), y0), u) < d, ∀u ∈ [y0, y], τ
0
0 > y}

≤P y0,x̄(y0){τ00 ≤ y}+ P y0,x̄(y0){xu(x̄(y0), y0), u) < d, ∀u ∈ [y0, y], τ
0
0 > y}

≤P y0,x̄(y0){τ00 ≤ y}+ P y0,x̄(y0){0 < x0
u < d, ∀u ∈ [y0, y]}

≤P y0,x̄(y0){τ00 ≤ y}+ P y0,x̄(y0){0 < x0
y < d}

≤e−a0(y0)x̄(y0)
2/σ2

+
d
√
a0(y)e

−α0(y,y0)/ε

√
πσ

√
1− e−2α0(y,y0)/ε

.

(3.28)

The last inequality follows from Lemma 4.9 in [3] and the fact that x0
y obeys the

distribution N (x̄(y0)e
α0(y,y0)/ε, σ2

ε

∫ y

y0
e2α0(y,v)/εdv).

We show next that when σ ≥ ε
3
4 , the bifurcation delay caused by a NT-point

is destroyed earlier than y =
√
ε|logσ| in the case e−

1
ε ≪ σ < O(ε

3
4 ). And we

get the critical value y∗ = σ
2
3 , which means that the solution xy starting from

the attracting domain of x = 0 is very likely to enter the respelling sub-domain
[O(1),+∞) of x = φ(y) before y = y∗.
Proof of (4) of Theorem 2.1. This proof is similar to the proof of Theorem 3.3.4
in [4] studied near a fold point. We outline the main steps. First

P x0,y0{ sup
y0≤u≤y

xu(x0, y0) ≤ d}

=P x0,y0{ sup
y0≤u≤y

xu(x0, y0) ≤ d, inf
y0≤u≤y

[xu(x0, y0)− xdet
u (x0, y0) + h

√
ζ0(u)] > 0}

+ P x0,y0{ sup
y0≤u≤y

xu(x0, y0)≤d, inf
y0≤u≤y

[xu(x0, y0)−xdet
u (x0, y0)+h

√
ζ0(u)]≤0},

(3.29)

where h = O(ε
1
4 ) so that max

y0≤u≤y
[xdet

u (x0, y0)− h
√

ζ0(u)] > −d. Next, we estimate
the two terms on the right hand side of the equality (3.29).

Step 1. We prove that there is a positive constant ρ such that

P y0,x0{ sup
y0≤u≤y

xu(x0, y0) ≤ d, inf
y0≤u≤y

[xu(x0, y0)− xdet
u (x0, y0)− h

√
ζ0(u)] > 0}

≤3

2
e
−ρ

|α0(y∧(nσ
2
3 ),−nσ

2
3 )|

ε(|logσ|∨|log h
σ

|) .

(3.30)

Since

P y0,x0{ sup
y0≤u≤y

xu(x0, y0) ≤ d, inf
y0≤u≤y

[xu(x0, y0)− h
√
ζ0(u)] > 0}

=Ey0,x0{I
{−h

√
ζ0(u)<xu(x0,y0)<d, ∀u∈[y0,−nσ

2
3 ]}

(ω)

× P−nσ
2
3 ,x1{−h

√
ζ0(u) < xu(x0, y0) < d, ∀u ∈ [−nσ

2
3 , y]}}
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≤ sup

−h

√
ζ0(−nσ

2
3 )<x1<d

P−nσ
2
3 ,x1{−h

√
ζ0(u) < xu(x0, y0) < d, ∀u ∈ [−nσ

2
3 , y]},

(3.31)

where n is a proper constant determined by (3.36).
Next, we need to estimate

P−nσ
2
3 ,x1{−h

√
ζ0(u) < xu(x0, y0) < d, ∀u ∈ [−nσ

2
3 , y]}.

We assume −d ≤ −h
√
ζ0(y0) < x0 < 0, and y >

√
rε. The analysis for y <

√
rε is

included in the following analysis. If x1 > 0 then we know

P−nσ
2
3 ,x1{−h

√
ζ0(u) < xu(x1, y0) < d, ∀u ∈ [−nσ

2
3 , y]}

<P−nσ
2
3 ,x0{−h

√
ζ0(u) < xu(x0, y0) < d, ∀u ∈ [−nσ

2
3 , y]},

(3.32)

by the uniqueness of the solution. We divide the interval [−nσ
2
3 , y] into K subin-

tervals: −nσ
2
3 < y1 < y2 < · · · < yK1−1 < yK1

= −
√
rε < yK1+1 =

√
rε <

· · · < yK−1 < yK = y, satisfying K1 = ⌈|α0(−
√
rε,−nσ

2
3 )|⌉

mε , K = |α0(y,
√
rε)|

mε ,
and α0(yk+1, yk) = mε for 0 ≤ k ≤ K1 − 2 and K1 + 1 ≤ k ≤ K − 2 with
m = O(|log h

σ |+ |logσ|). Let

Ak = {ω ∈ Ω : −h
√
ζ0(u) < xu(x0, y0)(ω) ≤ d,∀u ∈ [yk, yk+1]}. (3.33)

Then

P−nσ
2
3 ,x0{−h

√
ζ0(u) < xu(x0, y0) < d, ∀u ∈ [−nσ

2
3 , y]}

≤P−nσ
2
3 ,x0{∩K−1

k=0 Ak} = E−nσ
2
3 ,x0{I∩K−1

k=0 Ak
}

=E−nσ
2
3 ,x0{I∩K−1

k=0 Ak
}

=E−nσ
2
3 ,x0{E−nσ

2
3 ,x0 [I∩K−1

k=0 Ak
|(xu(x0, y0))y0≤u≤yK−1

]}

=E−nσ
2
3 ,x0 [I∩K−2

k=0 Ak
ExyK−1

,yK−1(AK−1)] ≤ qK−1E
−nσ

2
3 ,x0{I∩K−2

k=0 Ak
}

≤
K−1∏
k=0

qk ≤
K−2∏
k=0

qk,

(3.34)

where qk = sup
−h

√
ζ0(yk)≤xyk

≤d

P xyk
,yk(Ak).

Let yk−1 < y
(1)
k < y

(2)
k < yk satisfying |α0(y

(1)
k , yk−1)| = |α0(y

(2)
k , y

(1)
k )| =

|α0(yk, y
(2)
k )| = 1

3mε, and define

τ+k = inf{u ∈ [yk−1, yk] : xu(x0,−nσ
2
3 ) ≤ −h

√
ζ0(u)},

τk1 = inf{u ∈ [yk−1, yk] : xu(x0,−nσ
2
3 ) > 0},

τk2 = inf{u ∈ [τk1, yk] : xu(x0,−nσ
2
3 ) > φ(u)},

τk3 = inf{u ∈ [τk2, yk] : xu(x0,−nσ
2
3 ) > d}.

(3.35)
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Then, by following the proof of Theorem 3.3.5 in [3], we know that there are positive
constants L̃1, L̃2 ≥ 1 and L̃3 such that

qk ≤
√

2

π

e−
m
3 h

√
ζ0(yk−1)

√
2|a0(yk−1)|

σ
√
1− e−

2m
3

+

√
2

π

(|φ(yk)| ∨ |φ(yk−1)|)
√

2a−(yk−1)

σ

√
1− e

− 2m
3L̃2

+
1

2
+

1√
2π

de
− m

3L̃2

√
a−(yk−1)

σ

√
1− e

− 2m
3L̃2

≤1

2
+ L̃3[(

h

σ
+
√
n

d

σ
2
3

)e
− m

3L̃2 + n
3
2 ] ≤ 2

3
.

(3.36)

Taking (3.35) into (3.34), we obtain the estimation (3.30).
Step 2. We prove

P y0,x0{ sup
y0≤u≤y

xu(x0, y0) ≤ d, inf
y0≤u≤y

[xu(x0, y0) + h
√

ζ0(u)] ≤ 0}

≤L4[
|α0(−nσ

2
3 , y)|

ε2
+ 1]e−

h2

σ2 [1−Õ(
√
ε)].

(3.37)

Let x0
u be a solution of (3.18) with x0

−nσ
2
3
= x0. Since ∂xxH(x, y) > 0 for |x| < d

and |y| ≤ T̃ . If y0 ≤ T̃ , we can supplement our proof with the conclusion of
Lemma 3.1. Thus, we neglect the case. Let h satisfy max

u∈[y0,y]
h
√
ζ0(u) < d, that is

h < O(ε
1
4 ). Then by the same arguments as in the proof of Proposition 3.1, we

know that there is a positive constant L4 such that

P y0,x0{ sup
−nσ

2
3 ≤u≤y

xu(x0, y0) ≤ d, inf
y0≤u≤y

[xu(x0, y0) + h
√

ζ0(u)] ≤ 0}

≤P y0,x0{ inf
y0≤u≤y

xu(x0, y0)√
ζ0(u)

≤ −h}

<L4[
|α0(y0, y)|

ε2
+ 1]e−

h2

σ2 [1−Õ(
√
ε)],

(3.38)

where the last inequality is obtained by the same arguments as in the proof of
Proposition 4.3 in [3]. This finishes the proof of (2.8).
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