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Abstract In this paper, we focus on a problem of identifying the unknown
source of time-fractional diffusion equation. It is known that such problem is
ill-posed in the sense that reconstructed solution does not depend continuously
on the observation data. Based on this fact, a GFR (general filter regularized
method) is proposed. We further give the error convergence estimates under
deterministic case and random noise, respectively. Lastly, some special cases
and numerical examples are presented to illustrate the efficiency of our method.
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1. Introduction
In this work, we consider a problem of recovering the source function f(x) of the
following inhomogeneous time-fractional diffusion equation

Dα
t u(x, t) = (Lu)(x, t) + f(x), (x, t) ∈ Ω× (0, T ), 0 < α < 1

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = 0, x ∈ Ω

(1.1)

under indirect observable data g(x) = u(x, T ) at the final moment T = t, where
Ω ⊂ Rd is a bounded domain with sufficient smooth boundary ∂Ω, α is the fractional
order of the time derivative and L is a symmetric uniformly elliptic operator defined
on H2(Ω)∩H1

0 (Ω). In (1.1), Dα
t is the Caputo fractional time derivative defined by

Dα
t u(x, t) :=

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)α
,

where Γ(x) denotes the standard Gamma function. Fractional calculus in mathe-
matics is a natural extension of integer-order, and fractional diffusion equation can
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simulate real field data more accurately than classical diffusion equation [1, 7, 14].
As a special example of (1.1), the following fractional diffusion equation

Dα
t u(x, t) =

∂

∂x

(
p(x)

∂

∂x
u(x, t)

)
, x ∈ Ω, t > 0, 0 < α < 1, (1.2)

where diffusion coefficient p(x) depicts the heterogeneity of the medium, is a macro-
scopic model from the continuous-time random walk (see, e.g., [3,25] and the refer-
ences therein). Taking α ∈ (0, 1), the model (1.2) describes the slow diffusion and
the fractional order α is related to the parameter specifying the large-time behavior
of the waiting-time distribution function (see, e.g., [3] and the references therein).

Based on physical and practical importance, a backward problem of fractional
diffusion equation is of great significance, and there have been a lot of studies on
such issue [3–5,8–10,13,25]. As is well known, the problem (1.1) is ill-posed in the
sense of Hadamard, that is, minor changes in the measured data may deduce the
blow up of the solution. In addition, small noise on the measured data may give rise
to large errors. Essentially, such elements make the numerical computation much
difficult, hence, a regularization proceed is required to overcome its ill-posedness
and recover the stability of the solution.

For the case of exact the initial status from the observation data-provided along
the final data: Liu and Yamamoto [6] presented a regularizing scheme by the quasi-
reversibility for the homogeneous version of (1.1), i.e. f ≡ 0; Ren et al., [12]
proposed a regularization by projection method where truncated level plays the role
of the regularization parameter; Tuan et al. [16] investigated a general regularization
method to recover the stability under deterministic case and with the random noise
case for (1.1).

For the case of identifying the unknown source from the observation data pro-
vided along the final data for problem (1.1) with f ̸= 0, we can refer to the fol-
lowing literatures. In [21, 22], the authors employed the quasi-reversibility regular-
ization method and Fourier regularization method to identify the unknown source
for the fractional heat diffusion equation, respectively. Wang, Zhou and Wei [18]
adopted Tikhonov regularization method and a simplified Tikhonov regularization
method to solve (1.1) in one-dimensional case and proposed the convergence es-
timates. Recently, Xiong and Xue [20] investigated an inverse heat conduction
problem by a fractional Tikhonov method. Some other relative research, one can
refer to [12,15,24]. Note that the aforementioned studies are concerned with back-
ward problems under the deterministic case. However, at a microscopic level, the
diffusion is the result of the random motion of individual particles. Therefore, it is
necessary to consider the inhomogeneous problem (1.1) of identifying the unknown
source under the stochastic case.

Motivated by the L’Hospital rule and [16], we explore a general filter regulariza-
tion (GFR) to solve the inverse source problem of the fractional diffusion equation
(1.1) with variables in a general bounded domain in both cases: the deterministic
case and random noise case. Our aim of this work is to estimate (or reconstruct)
the unknown source function f(x) by use of the following observations:

The Deterministic case: The observed data g(x) is approximated by the
noisy observation data gϵ(x) such that

∥gϵ − g∥L2(Ω) ≤ ϵ,

where ϵ > 0 is the noise level.
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The Random noise case: The observed data function gϵ(x) is replaced by

g̃ϵ(x) := g(x) + ϵξ(x),

where ϵ also represents the noise level and ξ(x) is stochastic errors which is defined
in section 4.

In this paper, we mainly propose a priori and a posteriori regularization param-
eter choice rules using a general filter regularization. The advantage of this method
is that some other existing regularization methods such as fractional Tikhonov-
Regularization [11] and Landweber iterative regularization [23] can be deduced from
GFR by choosing special suitable cases. Therefore, we can improve the convergence
rate by comparing some different filters.

The remainder of this paper is organized as follows. In section 2, we state a
general filter regularization method and some useful results. In section 3, the error
estimate is obtained for the deterministic case. And the error estimates under the
random noise case is shown in section 4. In section 5, we especially present that
fractional Tikhonov regularization and Landweber iterative regularization can be
deduced from the GFR. The numerical examples complete this paper.

2. Preliminaries
In this section, we are mainly consider about some useful lemmas and give a brief
introduction of GFR (general filter regularization).

Since −L is a symmetric uniformly elliptic operator, the eigenvalues of −L satisfy

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λm ≤ · · ·

with λm → ∞ as m → ∞. Then, we have{
Lϕm(x) = −λmϕm(x), x ∈ Ω,

ϕm(x) = 0, x ∈ ∂Ω,

where ϕm ∈ H1
0 (Ω)∩H2(Ω) denotes the corresponding eigenfunctions and {ϕm}∞m=1

is an orthonormal basis of L2(Ω). Let

Hk(Ω) =

{
u ∈ L2(Ω) :

∞∑
m=1

λ2k
m |⟨u, ϕm⟩|2 < ∞

}
.

Obviously, Hk(Ω) is a Hilbert space equipped with norm

∥u∥Hk(Ω) =

( ∞∑
m=1

λ2k
m |⟨u, ϕm⟩|2

)1/2

.

From [20], we can obtain the formal solution of (1.1)

u(x, t) =

∞∑
m=1

⟨f, ϕm⟩tαEα,1+α (−λmTα)ϕm(x).
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Denote fm = ⟨f, ϕm⟩ and gm = ⟨g, ϕm⟩. Then we get

f =

∞∑
m=1

gm
TαEα,1+α (−λmTα)

ϕm. (2.1)

In other words, there holds

(Kf) (x) :=

∫
Ω

k(x, ξ)f(ξ)dξ = g(x), x ∈ Ω, (2.2)

where the kernel is k(x, ξ) =
∑∞

m=1 T
αEα,1+α (−λmTα)ϕm(x)ϕm(ξ). Obviously,

K is a self-adjoint operator and (1.1) is ill-posed. In fact, 1
Eα,1+α(−λmTα) is the

magnifying factor of the problem, so the leading idea is to replace 1
Eα,1+α(−λmTα)

by R(r,m)
Eα,1+α(−λmTα) in order to approximate f(x) by f ϵ

r (x) as follows:

f ϵ
r (x) =

∞∑
m=1

R(r,m)

TαEα,1+α (−λmTα)
gϵmϕm(x), (2.3)

fr(x) =

∞∑
m=1

R(r,m)

TαEα,1+α (−λmTα)
gmϕm(x). (2.4)

Hence, the function R(r,m) is called a regularizing filter and r plays the role of the
regularization parameter, which should be chosen respect to ϵ. For the stability, we
make the following assumptions about R(r,m).

Assumption 2.1. For any r ∈ (0,∞) and m ∈ N, the function Rm(r) = R(m, r)
satisfies

1. Rm(r) is continuous;

2. limr→∞ Rm(r) = 0, limr→0 Rm(r) = 1;

3. Rm(r) is a strictly decreasing function over (0,+∞).

Assumption 2.2. Let Rm(r) be a function such that for any r > 0, there exist a
decreasing function B1(r) and an increasing function B2(r) satisfying∣∣∣∣ Rm(r)

TαEα,1+α (−λmTα)

∣∣∣∣ ≤ B1(r), |Rm(r)− 1| |λm|−k ≤ B2(r)

for k > 0, n > 0.

Lemma 2.1 ( [19]). For any λm satisfying λm ≥ λ1 > 0, there exist positive
constants c1 and c2 such that

c1
λmTα

≤ Eα,1+α (−λmTα) ≤ c2
1 + λmTα

≤ 1

λmTα
,

i.e.
c1
λm

≤ TαEα,1+α (−λmTα) ≤ 1

λm
.
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3. Regularization with the deterministic case
In this whole section, the observed data function g(x) is approximated by gϵ(x)
such that

∥gϵ − g∥L2(Ω) ≤ ϵ (3.1)

for some known error level ϵ > 0.

3.1. A-priori regularization method and convergence analysis
To derive the convergence estimates under a-priori regularization parameter choice
rules, the following lemma is needed.

Lemma 3.1. Suppose that there exist positive constants k(> 0) and M(>)0 such
that ∥f∥Hk(Ω) ≤ M, and let Assumption 2.2 is valid. Then there hold

∥f ϵ
r − fr∥2L2(Ω) ≤ B2

1(r)ϵ
2, (3.2)

∥fr − f∥2L2(Ω) ≤ B2
2(r)M

2, (3.3)

where fr and f ϵ
r defined by (2.4) and (2.3)respectively, B1(r) and B2(r) defined in

Assumption 2.2.

Proof. Firstly, it is easy to see from (3.1) that

∥f ϵ
r − fr∥2L2(Ω)

=

∥∥∥∥∥
∞∑

m=1

Rm(r)

TαEα,1+α(−λmTα)
gϵmϕm −

∞∑
m=1

Rm(r)

TαEα,1+α(−λmTα)
gmϕm

∥∥∥∥∥
2

L2(Ω)

=

∥∥∥∥∥
∞∑

m=1

Rm(r)

TαEα,1+α(−λmTα)
(gϵm − gm)ϕm

∥∥∥∥∥
2

L2(Ω)

=

∞∑
m=1

(
Rm(r)

TαEα,1+α(−λmTα)

)2

(gϵm − gm)2

≤B2
1(r)ϵ

2.

By a simple calculation, we obtain

∥fr − f∥2L2(Ω) =

∥∥∥∥∥
∞∑

m=1

Rm(r)− 1

TαEα,α+1(−λmTα)
gm(x)ϕm(x)

∥∥∥∥∥
2

L2(Ω)

=

∞∑
m=1

(
Rm(r)− 1

TαEα,α+1(−λmTα)

)2

g2m(x)

=

∞∑
m=1

(Rm(r)− 1)
2 ⟨f(x), ϕm(x)⟩2

=

∞∑
m=1

(Rm(r)− 1)
2 · λ2k

m · λ−2k
m ⟨f(x), ϕm(x)⟩2
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≤ B2
2(r)M

2.

The proof is complete.
Combining (3.2) and (3.3) and by the triangle inequality, we obtain the main

result of this section.

Theorem 3.1. Assume that the conditions in Lemma 3.1 and (3.1) are satisfied.
Then

∥f ϵ
r (x)− f(x)∥L2(Ω) ≤

√
2 (B1(r)ϵ+B2(r)M) .

3.2. A-posteriori regularization method and convergence anal-
ysis

In this subsection, we apply a modified discrepancy principle in the following form:

∥Kf ϵ
r − gϵ∥L2(Ω) = τϵ, (3.4)

where τ > 1 is a constant.

Lemma 3.2 ( [16]). Let Rm(r) satisfy Assumption 2.1 and

T (r) = ∥Kf ϵ
r − gϵ∥L2(Ω) ,

where f ϵ
r is defined by (2.3). Then the following results hold:

1. T (r) is a continuous function.
2. limr→0 T (r) = 0, limr→∞ T (r) = ∥gϵ∥L2(Ω).

3. T (r) is a strictly increasing function over (0,+∞).

According to the above lemma, there exists a unique solution for (3.4) provided
that ∥gϵ∥L2(Ω) ≥ τϵ > 0.

Theorem 3.2. Assume that ∥f∥Hk(Ω) ≤ M(k > 0) and the equality (3.4) holds.
Let τ > 1 be such that

∥gϵ∥L2(Ω) ≥ τϵ > 0.

The regularization parameter r(ϵ) is chosen appropriately. Then we have

1. If 0 < k < 1, then

∥f ϵ
r − f∥L2(Ω) ≤

√
2B1(r)ϵ+ C1ϵ

k
k+1 , (3.5)

where C1 = C1(k, c1, τ,M) =
√
2M

1
k+1

(
τ+1
c1

) k
k+1

.

2. If k > 1, then
∥f ϵ

r − f∥L2(Ω) ≤
√
2B1(r)ϵ+ C2ϵ

1
2 , (3.6)

where C2 = C2(c1, τ,M) =
√
2
√
τ + 1M

1
2

(
a
c1

) 1
2

.

Proof. Since

∥f ϵ
r − f∥2L2(Ω)
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=

∥∥∥∥∥
∞∑

m=1

Rm(r)

TαEα,1+α(−λmTα)
gϵmϕm −

∞∑
m=1

1

TαEα,α+1(−λmTα)
gmϕm

∥∥∥∥∥
2

L2(Ω)

≤2

∞∑
m=1

(
Rm(r)

TαEα,1+α(−λmTα)
(gϵm − gm)

)2

+ 2

∞∑
m=1

(
(Rm(r)− 1)

TαEα,1+α(−λmTα)
gm

)2

≤2B2
1(r)ϵ

2 + 2

∞∑
m=1

(
(Rm(r)− 1)

TαEα,1+α(−λmTα)
gm

)2

, (3.7)

we just pay more attention to the estimate for the term ∑∞
m=1

(
(Rm(r)−1)

TαEα,1+α(−λmTα)
gm

)2

.
In the case where 0 < k < 1, we have∥∥∥∥∥

∞∑
m=1

(Rm(r)− 1) · ⟨f, ϕm⟩ · ϕm

∥∥∥∥∥
L2(Ω)

≤ I
k

k+1

1 I
1

k+1

2 , (3.8)

where

I1 =

∥∥∥∥∥
∞∑

m=1

((Rm(r)− 1)TαEα,1+α(−λmTα))
k+1 · (Rm(r)− 1)

1−k

× ⟨f, ϕm⟩
(TαEα,1+α(−λmTα))

k
· ϕm

∥∥∥∥∥
L2(Ω)

,

I2 =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
1−k · ⟨f, ϕm⟩

(TαEα,1+α(−λmTα))
k
· ϕm

∥∥∥∥∥
L2(Ω)

.

The first term I1 is estimated as follows:

I1 =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
2 · (TαEα,1+α(−λmTα)) · ⟨f, ϕm⟩ · ϕm

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
2 · ⟨g, ϕm⟩ · ϕm

∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥
∞∑

m=1

(Rm(r)−1)
2 ·⟨g−gϵ, ϕm⟩ · ϕm

∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
2 · ⟨gϵ, ϕm⟩ · ϕm

∥∥∥∥∥
L2(Ω)

≤(τ + 1)ϵ, (3.9)

where we utilize the fact that ∥g−gϵ∥L2(Ω) ≤ ϵ and the equality (3.4). On the other
hand, we estimate I2 as follows:

I2 =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
1−k · ⟨f, ϕm⟩

(TαEα,1+α(−λmTα))
k
· ϕm

∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥
∞∑

m=1

⟨f, ϕm⟩
(TαEα,1+α(−λmTα))

k
· ϕm

∥∥∥∥∥
L2(Ω)
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≤ 1

ck1

∥∥∥∥∥
∞∑

m=1

λk
m⟨f, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)

≤ 1

ck1
M. (3.10)

Combining (3.7), (3.8), (3.9) and (3.10), we have

∥f ϵ
r − f∥L2(Ω) ≤

√
2B1(r)ϵ+

√
2ϵ

k
k+1 · (τ + 1)

k
k+1 ·

(
M

ck1

) 1
k+1

,

which implies that (3.5) holds true.
In the case where k ≥ 1, we have∥∥∥∥∥

∞∑
m=1

(Rm(r)− 1) · ⟨f, ϕm⟩ · ϕm

∥∥∥∥∥
L2(Ω)

≤ L
1
2
1 L

1
2
2 , (3.11)

where

L1 =

∥∥∥∥∥
∞∑

m=1

((Rm(r)− 1) (TαEα,1+α(−λmTα)))
2 · ⟨f, ϕm⟩

TαEα,1+α(−λmTα)
· ϕm

∥∥∥∥∥
L2(Ω)

,

L2 =

∥∥∥∥∥
∞∑

m=1

⟨f, ϕm⟩
TαEα,1+α(−λmTα)

· ϕm

∥∥∥∥∥
L2(Ω)

.

In the following, we show the estimates for L1 and L2, respectively, that is,

L1 =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
2 · ⟨g, ϕm⟩ · ϕm

∥∥∥∥∥
L2(Ω)

≤ (τ + 1)ϵ, (3.12)

while

L2 =

∥∥∥∥∥
∞∑

m=1

⟨f, ϕm⟩
TαEα,α+1(−λmTα)

· ϕm

∥∥∥∥∥
L2(Ω)

≤ 1

c1

∥∥∥∥∥
∞∑

m=1

λm⟨f, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)

≤ a

c1
M, (3.13)

where we use the fact that for k ≥ 1, there exists a positive number a such that
∥f∥H1(Ω) ≤ a∥f∥Hk(Ω) ≤ aM [16]. Combining (3.7), (3.11), (3.12) and (3.13), we
obtain

∥f ϵ
r − f∥L2(Ω) ≤

√
2B1(r)ϵ+

√
2ϵ

1
2 (τ + 1)

1
2 ·
(
aM

c1

) 1
2

.

This means (3.6) holds true. We complete the proof.
Now, we consider the information about the regularization parameter r. From

(3.4), it is not difficult to see that

mϵ =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1) · ⟨gϵ, ϕm⟩ · ϕm

∥∥∥∥∥
L2(Ω)
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≤

∥∥∥∥∥
∞∑

m=1

(Rm(r)−1)·⟨gϵ−g, ϕm⟩·ϕm

∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥
∞∑

m=1

(Rm(r)−1)·⟨g, ϕm⟩·ϕm

∥∥∥∥∥
L2(Ω)

≤ ϵ+

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1) · (TαEα,α+1(−λmTα)) · ⟨f, ϕm⟩ · ϕm

∥∥∥∥∥
L2(Ω)

≤ ϵ+

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1) · (TαEα,1+α(−λmTα)) · λ−k
m · λk

m · ⟨f, ϕm⟩ · ϕm

∥∥∥∥∥
L2(Ω)

≤ ϵ+ sup
m∈N

[
|(Rm(r)−1)TαEα,1+α(−λmTα)| |λm|−k

]
·

∥∥∥∥∥
∞∑

m=1

λk
m⟨f, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)

≤ ϵ+ c2MB2(r)T
α.

Then there holds B2(r) ≥
(

ϵ(τ−1)
c2MTα

)
. Since B2(r) is an increasing function, we get

r = B−1
2 (B2(r)) ≥ B−1

2

(
ϵ(τ − 1)

c2MTα

)
.

4. Regularization with the Random noise
Let g̃ϵ(x) = g(x)+ ϵξ. Here ξi := ⟨ξ, ϕi⟩ ∼ N(0, 1) and mutually independent. Note
that

f̃ ϵ
r =

∞∑
m=1

Rm(r)

TαEα,α+1(−λmTα)
⟨g̃ϵ, ϕm⟩ϕm (4.1)

and g̃ϵm = ⟨g̃ϵ, ϕm⟩. According to [2], we show the following definition.

Definition 4.1. The MISE (Mean Integrated Squared Error) of f̃ ϵ
r is define by

E
∥∥∥f̃ ϵ

r − f
∥∥∥2
L2(Ω)

= E

( ∞∑
m=1

(
f̃ ϵ
rm − fm

)2)
.

where f̃ ϵ
rm = ⟨f̃ ϵ

r , ϕm⟩andfm = ⟨f, ϕm⟩.

Obviously, the following result holds.

Lemma 4.1. Assume that

J1,m =
Rm(r)− 1

TαEα,α+1(−λmTα)
⟨g, ϕm⟩ and J2,m =

Rm(r)

TαEα,α+1(−λmTα)
⟨ξ, ϕm⟩.

Then there hold
∞∑

m=1

J2
1,m =

∞∑
m=1

(
(Rm(r)− 1)

TαEα,1+α(−λmTα)
gm

)2

≤ B2
2(r)M

2,

E

( ∞∑
m=1

J2
2,m

)
=

∞∑
m=1

(
Rm(r)

TαEα,α+1(−λmTα)
⟨ξ, ϕm⟩

)2

≤ B2
1(r)E∥ξ∥2L2(Ω)

and E (
∑∞

m=1 J1,m · J2,m) = 0.
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On the basis of the above conclusion, we have the following statement.

Theorem 4.1. Assume that ξ satisfies

E∥ξ∥2L2(Ω) = c3 < ∞. (4.2)

Then the following inequality holds:

E
∥∥∥f̃ ϵ

r − f
∥∥∥2
L2(Ω)

≤ B2
2(r)M

2 + c3ϵ
2B2

1(r).

Proof. Note that

∥∥∥f̃ ϵ
r − f

∥∥∥2
L2(Ω)

=

∥∥∥∥∥
∞∑

m=1

(
f̃ ϵ
r,m − fm

)
ϕm

∥∥∥∥∥
2

L2(Ω)

=

∥∥∥∥∥
∞∑

m=1

(
Rm(r)⟨g + ϵξ, ϕm⟩
TαEα,1+α(−λmTα)

− ⟨g, ϕm⟩
TαEα,1+α(−λmTα)

)
ϕm

∥∥∥∥∥
2

L2(Ω)

=

∥∥∥∥∥
∞∑

m=1

(
(Rm(r)− 1)⟨g, ϕm⟩
TαEα,1+α(−λmTα)

+
ϵRm(r)⟨ξ, ϕm⟩

TαEα,1+α(−λmTα)

)
ϕm

∥∥∥∥∥
2

L2(Ω)

=

∞∑
m=1

J2
1,m + ϵ2

∞∑
m=1

J2
2,m + 2ϵ

∞∑
m=1

J1,mJ2,m.

Thus, we have

E
∥∥∥f̃ ϵ

r − f
∥∥∥2
L2(Ω)

=

∞∑
m=1

J2
1,m + ϵ2

∞∑
m=1

J2
2,m + 2ϵE

( ∞∑
m=1

J1,mJ2,m

)
≤ B2

2(r)M
2 + c3ϵ

2B2
1(r).

The proof is completed.
In what follows, we are concerned with the convergence estimate under an a-

posteriori regularization parameter choice role by using the same modified discrep-
ancy principle in the form

E∥Kf̃ ϵ
r − g̃ϵ∥L2(Ω) = τ̃ ϵ, (4.3)

where τ̃ > 1 is a positive constant.

Lemma 4.2. Assume that Rm(r) satisfies Assumption 2.1 and let

T̃ (r) = E∥Kf̃ ϵ
r − g̃ϵ∥L2(Ω),

where f̃ ϵ
r is defined by (4.1). Then the following statements hold.

(1) T̃ (r) is a continuous function.
(2) limr→0 T̃ (r) = 0, limr→∞ T̃ (r) = E∥g̃ϵ∥2L2(Ω).

(3) T̃ (r) is a strictly increasing function over (0,+∞).



1712 W. X. Shi & X. T. Xiong

Proof. By virtue of

∥Kf̃ ϵ
r − g̃ϵ∥2L2(Ω) =

∞∑
m=1

(Rm(r)− 1)
2 ⟨g̃ϵ, ϕm⟩2

and the properties of Rm(r), the above conclusion can be proven easily.
According to the above lemma, there exists a unique solution for (4.3) provided

that E∥g̃ϵ∥2L2(Ω) > τ̃ϵ > 0.

Theorem 4.2. Assume that there exist positive constants M and k such that
∥f∥Hk(Ω) ≤ M . Let f̃ ϵ

r satisfies

E∥Kf̃ ϵ
r − g̃ϵ∥2L2(Ω) = τ̃ ϵ

and
E∥g̃ϵ∥2L2(Ω) > τ̃ϵ > 0.

Then, there exists a regularization parameter r(ϵ) such that

E
∥∥∥f̃ ϵ

r − f
∥∥∥2
L2(Ω)

≤ C3ϵ
2k

k+1 + c3ϵ
2B2

1(r) for k ∈ (0, 1), (4.4)

while
E
∥∥∥f̃ ϵ

r − f
∥∥∥2
L2(Ω)

≤ C4ϵ+ c3ϵ
2B2

1(r) for k ≥ 1, (4.5)

where C3 = ( c3+τ̃
c1

)
2k

k+1 ·M
2

k+1 and C4 = M(a(c3+τ̃)
c1

).

Proof. Note that

E
∥∥∥f̃ ϵ

r − f
∥∥∥2
L2(Ω)

=

∞∑
m=1

J2
1,m + ϵ2E

∥∥∥∥∥
∞∑

m=1

J2
2,m

∥∥∥∥∥
L2(Ω)

≤
∞∑

m=1

J2
1,m + c3ϵ

2B2
1(r).

When 0 < k < 1, we have
∞∑

m=1

J2
1,m ≤ I

2k
k+1

3 I
2

k+1

4 , (4.6)

where

I3 =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
2
(TαEα,α+1(−λmTα)) ⟨f, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)

,

I4 =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
1−k ⟨f, ϕm⟩ϕm

(TαEα,α+1(−λmTα))
k

∥∥∥∥∥
L2(Ω)

.

Let us first show the estimate for I3,

I3 =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
2
(TαEα,α+1(−λmTα)) ⟨f, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥
∞∑

m=1

(Rm(r)−1)
2 ⟨g−g̃ϵ, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥
∞∑

m=1

(Rm(r)−1)
2 ⟨g̃ϵ, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)
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≤ ∥g − g̃ϵ∥L2(Ω) +

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
2 ⟨g̃ϵ, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)

≤ (c3 + τ̃)ϵ. (4.7)

In addition, we have

I4 =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
1−k ⟨f, ϕm⟩ϕm

(TαEα,α+1(−λmTα))
k

∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥
∞∑

m=1

⟨f, ϕm⟩ϕm

(TαEα,α+1(−λmTα))
k

∥∥∥∥∥
L2(Ω)

≤ M

ck1
. (4.8)

Combining (4.6), (4.7) and (4.8), we have

∞∑
m=1

J2
1,m ≤ [(c3 + τ̃)ϵ]

2k
k+1

[
M

ck1

] 2
k+1

=

(
c3 + τ̃

c1

) 2k
k+1

· ϵ
2k

k+1 ·M
2

k+1 .

Thus, (4.4) holds true.
When k ≥ 1, it follows from Hölder inequality that∥∥∥∥∥

∞∑
m=1

(Rm(r)− 1) ⟨f, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)

≤ L
1
2
3 L

1
2
4 , (4.9)

where

L3 =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
2
(TαEα,α+1(−λmTα))

2 ⟨f, ϕm⟩ϕm

TαEα,α+1(−λmTα)

∥∥∥∥∥
L2(Ω)

,

L4 =

∥∥∥∥∥
∞∑

m=1

⟨f, ϕm⟩ϕm

TαEα,α+1(−λmTα)

∥∥∥∥∥
L2(Ω)

.

In the following, we show the estimates for L3 and L4, respectively, that is,

L3 =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
2
(TαEα,α+1(−λmTα)) ⟨f, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)
2 ⟨g, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)

≤ (c3 + τ̃)ϵ (4.10)

and

L4=

∥∥∥∥∥
∞∑

m=1

⟨f, ϕm⟩ϕm

TαEα,α+1(−λmTα)

∥∥∥∥∥
L2(Ω)

≤ 1

c1

∥∥∥∥∥
∞∑

m=1

λm⟨f, ϕm⟩ϕm

∥∥∥∥∥
L2(Ω)

≤ aM

c1
, (4.11)
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where a is a constant such that

∥f∥H1(Ω) ≤ a∥f∥Hk(Ω) ≤ aM.

It then follows from (4.9), (4.10) and (4.11) that
∞∑

m=1

J2
1,m =

∥∥∥∥∥
∞∑

m=1

(Rm(r)− 1)⟨f, ϕm⟩ϕm

∥∥∥∥∥
2

L2(Ω)

≤ aϵM

c1
· (c3 + τ̃).

This implies that (4.5) holds true. The proof is complete.

5. Two specific filters with their regularization so-
lutions

Lemma 5.1. Let F (z) := rz2β−k

rz2β+c
(z > 0). Then

F (z) ≤

G1(k)r := r
czk−2β , k > 2β,

G2(k)r
k
2β :=

(
k

c(2β−k)

) k
2β · r

k
2β , k < 2β.

Proof. For k > 2β, we have
rz2β−k

rz2β + c
=

r

rzk + czk−2β
≤ r

czk−2β
.

Note that
lim
z→0

F (z) = lim
z→∞

F (z) = 0

for k ∈ (0, 2β). Then there exists a point z0 such that F ′(z0) = 0. Simple calculation

yields z0 =
(

c(2β−k)
kr

) 1
2β . Hence, for all z > 0, there holds

F (z) ≤ F (z0) = F

((
c(2β − k)

kr

) 1
2β

)
=

kr
(

c(2β−k)
kr

) 2β−k
2β

c(2β − k) + ck

≤ (kr)
k
2β (2β − k)

1− k
2β c1−

k
2β

c(2β − k)

=

(
k

c(2β − k)

) k
2β

· r
k
2β .

The proof is complete.

Corollary 5.1. Let

Rm(r) =
(TαEα,α+1(−λmTα))

2β

(TαEα,α+1(−λmTα))
2β

+ r

1

2
≤ β < 1, r > 0.

Then Rm(r) satisfies Assumption 2.2 with admissible regularization r = r(ϵ). Here
B1(r) =

1
r and

B2(r) =

{
maxG1(k), G2(k)r, k > 2β,

maxG1(k), G2(k)r
k
2β , k < 2β,

where G1(k) and G2(k) defined in Lemma 5.1.
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Proof. Note that

Rm(r) =
(TαEα,α+1(−λmTα))

2β

(TαEα,α+1(−λmTα))
2β

+ r
≤ 1

r
(TαEα,α+1(−λmTα)) .

Then B1(r) =
1
r . On the other hand, it easy to see that

|Rm(r)− 1| |λm| = rλ−k
m

(TαEα,α+1(−λmTα))
2β

+ r
≤ rλ2β−k

m

rλ2β
m + c2β1

.

Then the desired result can be obtained by Lemma 5.1.
Based on the above results, it follows that Rm(r) satisfies Assumptions 2.1

and 2.2. Hence, the corresponding regularized solution implies fractional Tikhonov
regularization method, which is given in [20].

The remainder of this section will show that GFR can also be adopted to recover
the ill-posedness of the time-fractional diffusion equation with unknown source type
F (x, t) = f(x)q(t).

Lemma 5.2 ( [17]). Denote Mittag-Leffler function by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C.

Then
0 <

∫ T

0

(T − S)α−1Eα,α (−λm(T − S)α) ds ≤ 1

λm
.

Lemma 5.3. Let f(x) = 1− (1− x2)m. Then for all 0 < x < 1, there holds

f(x) ≤ max

{
x

m
,

(
2 +

1

2m2

)
x

}
.

Proof. We divided the proof into two parts.
If 2m2x(1− x2)m−1 < 1, then (1− x2)m > 1− x

m , i.e., f(x) < x
m .

If 2m2x(1− x2)m−1 ≥ 1, then

f(x) = 1− (1− x2)m = 1− (1− x2)m−1 + x2(1− x2)m−1

≤ 2− x2(1− x2)m−1 ≤
(
2 +

1

2m2

)
x.

The proof is complete.
By the above results, it is easy to obtain the following corollary.

Corollary 5.2. Let Rm(r) = 1−
(
1− aH2

m(T )
)r

, where

Hm(T ) :=

∫ T

0

q(s)(T − s)α−1Eα,α (−λm(T − s)α) ds

and a = 1
∥K∥2 . Then Rm(r) satisfies Assumption 2.2 with admissible regularization

parameter r = r(ϵ). Here B1(r) = max{
√
a
r ,

√
a(2 + 1

2r2 )} and B2(r) =
1

aλ2+k
1

(1 +

ra2∥q∥).
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Proof. Let x =
√
aHm(T ). It then follows from Lemma 5.3 that∣∣∣∣ Rm(r)

Hm(T )

∣∣∣∣ ≤ max

{√
a

r
,
√
a

(
2 +

1

2r2

)}
,

that is, B1(r) = max{
√
a
r ,

√
a(2 + 1

2r2 )}. Next, we consider the estimates for B2(r).
Note that

|1−Rm(r)||λm|−k =
(
1− aH2

m(T )
)r

λ−k
m ≤

(
1 + raH2

m(T )
)r

λ−k
m .

In view of Lemma 5.2, we have

|1−Rm(r)||λm|−k ≤ λ2
m + ra|q|
λ2+k
m

≤ 1 + ra2|q|
aλ2+k

1

.

The proof is complete.
As a consequence, Rm(r) satisfies Assumptions 2.1 and 2.2, and the correspond-

ing regularized solution implies the Landweber iterative regularization solution of
the following problem [23]:

∂α
t u(x, t) = Lu(x, t) + f(x)q(t), (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = 0, x ∈ Ω,

u(x, T ) = g(x), x ∈ Ω.

6. Numerical example
In this section, we provide some examples to show the effectiveness of our method
with random noise. For the deterministic case, we can refer to [23] and so on.
Consider the following problem:

Dα
t u(x, t) = uxx(x, t) + f(x), (x, t) ∈ Ω× (0, T ), 0 < α < 1,

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = 0, x ∈ Ω.

(6.1)

It is easy to see that u(x, t) = π
2 t

αEα,1+α(−Tα) sinx is the exact solution of (6.1)
with f(x) = − sinx and u(x, T ) = g(x) = π

2T
αEα,1+α(−Tα) sin 3x. Denote the

observed data defined in section 4 by g̃ϵ(x) and let f̃ ϵ
r (x) be the regularized solution

of f(x) defined by (4.1). By using the same procedure of Theorem 4.1, we have

E
∥∥∥f̃ ϵ

r − f
∥∥∥2
L2(Ω)

=

∞∑
m=1

(
Rm(r)− 1

TαEα,α+1 (−λmTα)
⟨g, ϕm⟩

)2

+ ϵ2
∞∑

m=1

(
Rm(r)

TαEα,α+1 (−λmTα)

)2

=

∞∑
m=1

(
Rm(r)− 1

TαEα,α+1 (−m2Tα)

)2

g2m + ϵ2
∞∑

m=1

(
Rm(r)

TαEα,α+1 (−m2Tα)

)2

.
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If we choose Rm(r) =
TαEα,α+1(−m2Tα)

r+TαEα,α+1(−m2Tα) , then

E
∥∥∥f̃ ϵ

r − f
∥∥∥2
L2(Ω)

=

∞∑
m=1

(
r

TαEα,α+1 (−m2Tα) (r + TαEα,α+1 (−m2Tα))

)2

g2m

+ϵ2
∞∑

m=1

(
1

r + TαEα,α+1 (−m2Tα)

)2

.

Obviously, gm = π
2Eα,α+1(−1) if T = 1. In view of r = ϵ

1
3 , we have

E
∥∥∥f̃ ϵ

r − f
∥∥∥2
L2(Ω)

=

 ϵ
1
3

Eα,α+1(−1)
(
ϵ

1
3 + Eα,α+1(−1)

)
2 (π

2
(Eα,α+1(−1))

)2

+

(
ϵ

ϵ
1
3 + Eα,α+1(−1)

)2

.

In the following, we represent the MISE for Example (6.1) of different parameters
where the observation data is obtained at T = 1, see Table 1.

Table 1. Parameters values in simulation

E∥f ϵ
r − f∥2L2(Ω) ϵ = 10−2 ϵ = 10−4 ϵ = 10−6 ϵ = 10−9

α = 0.2 0.2069 0.0161 8.4962e-004 8.7873e-006
α = 0.4 0.1916 0.0146 7.6496e-004 7.8980e-006
α = 0.8 0.1670 0.0122 6.3561e-004 6.5438e-006
α = 0.9 0.1627 0.0118 6.1398e-004 6.3179e-006

The above computations yield the following important facts: The regularization
methods given in this paper work well for even acceptable error levels. The reg-
ularized solution converges to the exact solution with different values of α. The
interest significance is that the numerical accuracy becomes better as the order of
the fractional derivative increases.

7. Conclusion
An inverse source problem of the time-fractional diffusion equation is considered in
this paper. Based on the conditional stability, we propose a general filter regular-
ization method to deal with it and prove the error estimate under the a-priori and
a-posterior regularization parameters choice rules. The numerical examples also
illustrate the effectiveness of this method.
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