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FINITE-TIME STABILITY OF
NONAUTONOMOUS AND AUTONOMOUS

LINEAR SYSTEMS∗

Minghui Jiang1,2,†, Xue Fang1 and Junhao Hu3

Abstract In this research, in view of Lyapunov theory, the finite time stabil-
ity (FTS) conditions of linear time-delay systems are investigated. Firstly, by
using matrix inequality and algebraic inequality methods, the conditions for
FTS of nonautonomous and autonomous systems are given respectively. Com-
pared with the existing literature, the judging conditions are easier to verify
and have a better conservative type. In addition, by employing the provided
FTS theoretical results, several novel criteria for ensuring the stabilization
of autonomous delay systems and the stability of impulsive switched nonau-
tonomous time-varying systems are obtained. Eventually, several concrete
examples are put forward to validate the theoretical findings.
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1. Introduction
As we all know, the stability of system is always the first problem to be considered
in control system theory. In 1953, Kamenkov first advanced a new theory of finite
time stability (FTS) [22], before this concept was put forwarded, asymptotic sta-
bility was the object of widespread research. However, the transient performance
of asymptotic stability was very poor, and the transient performance of the system
could not be fed back within the specified time interval. It has a bad influence
on engineering, and even can not be applied at all in practical engineering, such
as communication network system, robot control system, etc. After the concept
of FTS is proposed, these have been improved. In the past few decades, this has
aroused considerable amount of researchers’ interest in the FTS of the system, and
obtained relevant conclusions [1–9,15–18,25,28,32–34,36–38].

In many practical systems, the delay of system state is unavoidable which has
a huge impact on the FTS of the system. Therefore, it is meaningful to take the
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FTS of time-delay systems into consideration [10–13, 19, 20, 24, 26, 27, 35]. In [19],
several new explicit conditions for FTS of nonautonomous linear time-varying de-
lay system have been gleaned from using M-matrix theory. Based on M-matrix
method, Hien et al. [20] resulted new FTS conditions for a type of nonautonomous
neural networks with non-uniform proportional delay. In [35], a sufficient criterion
of FTS for nonautonomous linear time-delay systems has been gleaned from con-
structing an appropriate function and combining with M-matrix theory. In view of
the Lyapunov-Razumikhin method, Li et al. [26] investigated the FTS problem of
time-delay systems and obtained a few sufficient criteria. Nevertheless, it is often
difficult to verify M-matrix and Lyapunov-Razumikhin condition.

In recent years, these basic work on FTS have been further extended to systems
involving time delay [12,24,27], impulsive [7–9,32,36] and switching [15,33]. From a
control point of view, the problem of FTS, that is, finite time stabilization, has done
a lot of interesting work in the past decades, see [21,30,39]. In practice, it is easier
for the switching system to jump at each switching moment. Therefore, in this case,
we introduce impulsive into the switching system, which is called impulsive switched
system [14, 23, 29, 31, 40]. In [14], an indefinite Lyapunov function is employed to
verify the FTS of linear time-varying system. After that, the findings are enlarged
to the FTS issue of impulsive switched nonautonomous linear time-varying system.

Inspired by the above discussion, on the one hand, in this paper, without using
M-matrix theory and Lyapunov-Razumikhin condition, several algebraic criteria on
the FTS of the time-delay system, which are easier to examine than those in [26,
27,35], are obtained by Lyapunov method and inequality techniques. On the other
hand, the novel FTS criterion is applied to the stabilization of constant delay system,
and the stability of nonautonomous systems with impulsive switching. Among them,
the impulsive phenomenon considered in this article not only occurs at the switching
time, but also occurs at any time within the subsystem.

This research is structured as follows. The necessary definition as well as model
description are presented in Section 2. The main results on FTS of the time-delay
system have been put forwarded in Section 3. In Section 4, two applications are put
forwarded. In Section 5, numerical simulation examples are put forwarded. Lastly,
Section 6 concludes the research.

Notations. Throughout this research, N , R, and R+ represent the set of nat-
ural numbers, real numbers, and non-negative numbers, respectively. Rn the n-
dimensional Euclidean vector space, and C([−ϑ, 0],Rn) is the Banach space of all
continuous functions, where ϑ is a positive number. For real symmetric matrices Y
and Z, Y < Z(Y ≤ Z) means that Z−Y is positive definite (positive semi-definite).
Y T denotes the transpose of Y , I denotes identity matrix, and “∗” represents sym-
metric terms in a symmetric matrix. µ(t) =

(
µ1(t), µ2(t), · · · , µn(t)

)T ∈ Rn with
the ∥µ(t)∥W = µT (t)Wµ(t) , where W > 0, and µ̇(t) means dµ

dt . φ ∈ C([−ϑ, 0],Rn)

denote the initial function and writes ∥φ∥ϑW = supν∈[−ϑ,0]|φT (ν)Wφ(ν)|,(ℵ(t) ∨ 0)
denotes max {ℵ(t), 0}.
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2. Preliminaries
Take the linear system with time delay into consideration, as follows: µ̇(t) = f(t, µt), t ∈ [0, T ],

µ0(t) = φ(t), t ∈ [−ϑ, 0],
(2.1)

where T > 0, µ(t) ∈ Rn, µt ∈ C([−ϑ, T ],Rn) is represented by µt(ϵ) = µ(t+ ϵ) for
−ϑ ≤ ϵ ≤ 0, furthermore, f(t, µt) is continuous with t.

We always assume that the solution of the systems discussed in the paper exists.
There are several definitions used in the subsequent parts of this research.

Definition 2.1. Three scalars 0 < T , 0 < β1 < β2 and a matrix W > 0 are given.
The system (2.1) is described as FTS subject to (β1, β2,W, T ), if ∥φ∥ϑW < β1 ⇒
∥µ(t)∥W < β2, ∀ t ∈ [0, T ].

Definition 2.2. ω : R+ → R+ is called a κ-function if it is strictly increasing and
continuous with ω(0) = 0, and denotes ω ∈ κ.

3. Main results
Theorem 3.1. Suppose functions ω1, ω2 ∈ κ, and give scalars 0 < T , 0 < β1 < β2.
The system (2.1) is FTS subject to (β1, β2,W, T ), if there exist an integrable function
ℵ(t) : R+ → R and a function G(t, µ(t)) : [−ϑ, T ] × Rn → R+ is differentiable,
satisfying
(a) ω2(∥µ(t)∥W ) ≤ G(t, µ(t)), and ω1(∥φ∥ϑW ) ≥ G(0, µ(0)), for ∀(t, φ) ∈ [−ϑ, T ] ×
Rn;
(b) Ġ(t, µ(t)) ≤ ℵ(t)G(t, µ(t)), for t ∈ [0, T ];
(c) ln ω2(β2)

ω1(β1)
≥

∫ t
0
ℵ(ν)dν, for t ∈ [0, T ].

Proof. Based on the condition (b), one has

Ġ(x, µ(x))− ℵ(x)G(x, µ(x)) ≤ 0, for x ∈ [0, T ]. (3.1)

Multiplying (3.1) by e−
∫ x
0

ℵ(ν)dν , it yields

e−
∫ x
0

ℵ(ν)dν Ġ(x, µ(x))− e−
∫ x
0

ℵ(ν)dνℵ(x)G(x, µ(x)) ≤ 0. (3.2)

Integrating from 0 to t on both sides of (3.2), one has

G(t, µ(t)) ≤ e
∫ t
0
ℵ(ν)dνG(0, φ(0)). (3.3)

Applying the conditions (a) and (c) to (3.3) yields

ω2(∥µ(t)∥W ) ≤ G(t, µ(t)) ≤ G(0, φ(0))e
∫ t
0
ℵ(ν)dν

≤ ω1(∥φ∥ϑW )e
ln

ω2(β2)

ω1(β1) , for t ∈ [0, T ]. (3.4)

If ∥φ∥ϑW ≤ β1, for ω1 ∈ κ, then

ω2(∥µ(t)∥W ) ≤ ω1(β1)
ω2(β2)

ω1(β1)
= ω2(β2), for t ∈ [0, T ]. (3.5)
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Due to ω2 ∈ κ, we get

∥µ(t)∥W ≤ β2, for t ∈ [0, T ]. (3.6)

By the definition 2.1, we know that system (2.1) is FTS subject to (β1, β2,W, T ).
This concludes the proof.

Remark 3.1. The function ℵ(t) : R+ → R in condition (b) of Theorem 3.1 may
be a sign-changing function. That is to say, to ensure FTS, there is no requirement
for Ġ(t, µ(t)) to be negative definite or semi-negative definite. The FTS result of
system (2.1) with time delay in Theorem 3.1 is simpler than Theorem 1 in [26], and
it does not require the restriction of Razumikhin type condition which is difficult
to verify. Therefore, the result in the article improve these shortcomings and offer
new methods to handle time-delay systems.

Take the linear system with time-varying delay into consideration, as follows: µ̇(t) = A(t)µ(t) + Z(t)µ(t− ρ(t)), 0 ≤ t,

µ0(t) = φ(t), t ∈ [−ϑ, 0],
(3.7)

where µ(t) ∈ Rn is the state vector, φ ∈ C([−ϑ, 0],Rn) is the initial condition and
A(t), Z(t) ∈ Rn×n are matrix-valued functions.

Applying Theorem 3.1 to the system (3.7) with constant delay ρ(t) = ϑ, we have

Corollary 3.1. Given three scalars 0 < T , 0 < β1 < β2 and a matrix W > 0. If
there exist scalar function ℵ(t) and matrices H > 0, Q > 0, such that

(a)

AT (t)H +HA(t) + 1
ϑQ− ℵ(t)H ZT (t)H

∗ − 1
ϑQ

 ≤ 0, t ∈ [0, T ],

(b)
∫ t
0
(ℵ(ν) ∨ 0)dν ≤ ln λ2β2

λ1β1
, t ∈ [0, T ]

where λ1=λmax(H̃)+λmax(Q̃), λ2=λmin(H̃), H̃=W− 1
2HW− 1

2 , Q̃=W− 1
2QW− 1

2 .
Then system (3.7) with constant ϑ > 0 is FTS subject to (β1, β2,W, T ).

Proof. The Lyapunov functional candidates are constructed as

G(t, µ(t)) = µT (t)Hµ(t) +
1

ϑ

∫ t

t−ϑ
µT (ν)Qµ(ν)dν. (3.8)

Then, we have

G(0, µ(0)) = µT (0)Hµ(0) +
1

ϑ

∫ 0

−ϑ
µT (ν)Qµ(ν)dν

= µT (0)W
1
2 (W− 1

2HW− 1
2 )W

1
2µ(0) +

1

ϑ

∫ 0

−ϑ
µT (ν)W

1
2 (W− 1

2QW− 1
2 )W

1
2µ(ν)dν

≤ λmax(H̃)µT (0)Wµ(0) +
λmax(Q̃)

ϑ

∫ 0

−ϑ
µT (ν)Wµ(ν)dν

≤ (λmax(H̃) + λmax(Q̃))∥φ∥ϑW . (3.9)
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Moreover, one can get

G(t, µ(t)) ≥ µT (t)W
1
2 (W− 1

2HW− 1
2 )W

1
2µ(t) ≥ λmin(H̃)∥µ(t)∥W . (3.10)

Let ω1(ν) = λ1ν, ω2(ν) = λ2ν, the condition (a) of Theorem 3.1 holds. Taking the
derivative of G(t, µ(t)) in equation (3.8) along system (3.7) and calculate as

Ġ(t, µ(t)) = µT (t)Hµ̇(t) + µ̇T (t)Hµ(t) +
1

ϑ
µT (t)Qµ(t)− 1

ϑ
µT (t− ϑ)Qµ(t− ϑ)

= µT (t)(AT (t)H +HA(t) +
1

ϑ
Q)µ(t) + µT (t)(ZT (t)H +HZ(t))µ(t− ϑ)

− 1

ϑ
µT (t− ϑ)Qµ(t− ϑ). (3.11)

Then, according to condition (a), it can be concluded that

Ġ(t, µ(t))− ℵ(t)G(t, µ(t))

= µT (t)(AT (t)H +HA(t) +
1

ϑ
Q− ℵ(t)H)µ(t) + µT (t)(ZT (t)H +HZ(t))µ(t− ϑ)

− 1

ϑ
µT (t− ϑ)Qµ(t− ϑ) +

−ℵ(t)
ϑ

∫ t

t−ϑ
µT (ν)Qµ(ν)dν

≤ ξT (t)

AT (t)H +HA(t) + 1
ϑQ− ℵ(t)H ZT (t)H

∗ − 1
ϑQ

 ξ(t)

+
(
(−ℵ(t)) ∨ 0

)
G(t, µ(t))

≤
(
(−ℵ(t)) ∨ 0

)
G(t, µ(t)), (3.12)

where ξ(t) =
(
µ(t) µ(t− ϑ)

)T
. Therefore,

Ġ(t, µ(t)) ≤
(
ℵ(t) ∨ 0

)
G(t, µ(t)). (3.13)

So, the condition (b) of Theorem 3.1 is also true. Moreover, the condition (b) of
Corollary 3.1 is in common with the condition (c) of Theorem 3.1. For this reason,
system (3.7) with constant delay is FTS. The proof is accomplished.

Remark 3.2. The algebraic criteria of FTS for time-delay systems are proposed
based on M-matrix theory in [19,20], but they are difficult to verify. In this paper,
that one are given by LMI (linear matrix inequality) matrix theory, which are easy
to be implemented by algorithm.

Similarly, for system (3.7) with time-varying delay satisfying ϑ ≥ ρ(t) > 0, 1 >
δ ≥ ρ̇(t), we have

Corollary 3.2. Three scalars 0 < T , 0 < β1 < β2 and a matrix W > 0 are given.
The system (3.7) with varying-time delay ρ(t) is FTS subject to (β1, β2,W, T ), if
there exist scalar function ℵ(t) and matrices 0 < H, 0 < Q satisfying

(a)

AT (t)H +HA(t) +Q− ℵ(t)H ZT (t)H

∗ −(1− δ)Q

 ≤ 0, t ∈ [0, T ],
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(b)
∫ t
0
(ℵ(ν) ∨ 0)dν ≤ ln λ2β2

λ1β1
, t ∈ [0, T ],

where λ1 = λmax(H̃) + ϑλmax(Q̃), λ2 = λmin(H̃), H̃ = W− 1
2HW− 1

2 , Q̃ =

W− 1
2QW− 1

2 .

Proof. Select Lyapunov functional

G(t, µ(t)) = µT (t)Hµ(t) +

∫ t

t−ρ(t)
µT (ν)Qµ(ν)dν. (3.14)

So, we can get

G(0, µ(0)) = µT (0)Hµ(0) +

∫ 0

−ρ(t)
µT (ν)Qµ(ν)dν

≤ µT (0)Hµ(0) +

∫ 0

−ϑ
µT (ν)Qµ(ν)dν

≤ (λmax(H̃) + ϑλmax(Q̃))∥φ∥ϑW . (3.15)

Moreover, one has

G(t, µ(t)) ≥ λmin(H̃)∥µ(t)∥W . (3.16)

Taking the derivative of G(t, µ(t)) in equation (3.14) along system (3.7) and calculate
as

Ġ(t, µ(t)) ≤ µT (t)(AT (t)H +HA(t) +Q)µ(t) + µT (t)(ZT (t)H +HZ(t))µ(t− ρ(t))

−(1− δ)µT (t− ρ(t))Qµ(t− ρ(t)). (3.17)

Therefore, similar to Corollary 3.1, one has

Ġ(t, µ(t))− ℵ(t)G(t, µ(t))

≤ ξT (t)

AT (t)H +HA(t) +Q− ℵ(t)H ZT (t)H

∗ −(1− δ)Q

 ξ(t)

+
(
(−ℵ(t)) ∨ 0

)
G(t, µ(t))

≤
(
(−ℵ(t)) ∨ 0

)
G(t, µ(t)), (3.18)

where ξ(t) =
(
µ(t) µ(t − ρ(t))

)T
. The latter proof is analogue to Corollary 3.1,

and is omitted here.

Remark 3.3. Corollary 3.1 and 3.2 can deal with non-autonomous systems, but
the conclusions in [27] cannot. If 0 < ℵ(t), t ∈ [0, T ], the condition (b) in Corollary
3.1 and 3.2 can be simply written as

∫ T
0

ℵ(ν)dν ≤ ln λ2β2

λ1β1
. Furthermore, we can

similarly achieve the following result of the Theorem 3.1.

Theorem 3.2. Suppose functions ψ1, ψ2 ∈ κ, and give three scalars 0 < T , 0 <
β1 < β2 and a matrix W > 0. If there exist nonegative integrable function ℵ(t) :
R+ → R+ and function G : [−ϑ, T ]×Rn → R+ is differentiable, such that
(a) ψ2(∥µ(t)∥W ) ≤ G(t, µ(t)), and ψ1(∥φ∥ϑW ) ≥ G(0, µ(0)), for ∀(t, φ) ∈ [−ϑ, T ] ×
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Rn;
(b) Ġ(t, µ(t)) ≤ ℵ(t)G(t, µ(t)), t ∈ [0, T ];
(c)

∫ T
0

ℵ(ν)dν ≤ ln ψ2(β2)
ψ1(β1)

,

then system (2.1) is FTS subject to (β1, β2,W, T ).

If A(t) = A,Z(t) = Z in system (3.7), by Theorem 3.2, we have

Corollary 3.3. Three scalars 0 < T , 0 < β1 < β2 and a matrix W > 0 are given.
If there exist a scalar ℵ > 0 and matrices 0 < H, 0 < Q, such that

(a)

ATH +HA+ 1
ϑQ− ℵH ZTH

∗ − 1
ϑQ

 ≤ 0,

(b) ℵ ≤ 1
T ln λ2β2

λ1β1
,

where λ1=λmax(H̃)+λmax(Q̃), λ2=λmin(H̃), H̃=W− 1
2HW− 1

2 , Q̃=W− 1
2QW− 1

2 .
Then system (3.7) with constant delay ϑ is FTS subject to (β1, β2,W, T ).

Corollary 3.4. Three scalars 0 < T , 0 < β1 < β2 and a matrix W > 0 are given.
If there exist a scalar ℵ > 0 and matrices 0 < H, 0 < Q, such that

(a)

ATH +HA+Q− ℵH ZTH

∗ −(1− δ)Q

 ≤ 0,

(b) ℵ ≤ 1
T ln λ2β2

λ1β1
,

where λ1 = λmax(H̃) + ϑλmax(Q̃), λ2 = λmin(H̃), H̃ = W− 1
2HW− 1

2 , Q̃ =

W− 1
2QW− 1

2 , ϑ ≥ ρ(t) > 0, 1 > δ ≥ ρ̇(t).
Then system (3.7) with time-varying delay ρ(t) is FTS subject to (β1, β2,W, T ).

4. Application to finite time stabilization and FTS
4.1. Finite time stabilization for linear time delay systems
In the subsection, we consider the controlled system

µ̇(t) = Aµ(t) + Zµ(t− ϑ) + Su(t), 0 ≤ t,

u(t) = Uµ(t),

µ0(t) = φ(t), t ∈ [−ϑ, 0],

(4.1)

where matrices A,Z, S are known, and U is unknown gain matrix which will be
determined in designing controller u(t). The system (4.1) can be abbreviated as µ̇(t) = (A+ SU)µ(t) + Zµ(t− ϑ), t ≥ 0,

µ0(t) = φ(t), t ∈ [−ϑ, 0].
(4.2)

Applying Corollary 3.3 to the system (4.2), we obtain
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Corollary 4.1. Three scalars 0 < T , 0 < β1 < β2 and a matrix W > 0 are given.
If there exist matrix R > 0, symmetric matrices E, Y1, Y2 and positive scalar ℵ such
that

(a)

RAT +MTST +AR+ SM + 1
ϑE − ℵR RZT

∗ − 1
ϑE

 ≤ 0, (4.3)

(b) T ℵ − ln Y2β2

Y1β1
≤ 0,

where

R = H−1, M = UH−1, E = H−1QH−1, Q = HEH,

Y1 = H−1λ1H
−1, Y2 = H−1λ2H

−1, λ1 = λmax(H̃) + λmax(Q̃),

λ2 = λmin(H̃), H̃ =W− 1
2HW− 1

2 , Q̃ =W− 1
2QW− 1

2 .

Then system (4.1) with controller is FTS subject to (β1, β2,W, T ).

Remark 4.1. If the system (3.7) with constant delay ϑ is not FTS, Corollary 4.1
may offer us the method to design the controller which can take the constant delay
system FTS subject to (β1, β2,W, T ). An example will be given to test the validity
of Corollary 4.1 in Section 5.

Remark 4.2. If the term A+SU is directly used instead of the term A in Corollary
3.3, it should be noted that the term UTSTH is nonlinear. To eliminate these
nonlinearity, we multiply the inequality in condition (a) of Corollary 3.3 by the
following diagonal matrix from both left and right sides

diag{H−1 H−1},

similarly, the inequality in condition (b) of Corollary 3.3 multiplies by H−1 from
both left and right sides. Thus Corollary 4.1 is obtained, then the gain matrix
U =MR−1.

4.2. FTS for impulsive switched linear time-varying systems
Let ϑ = 0, consider the linear switched impulsive systems µ̇(t) = Aϱ(t)(t)µ(t), t ̸= tαk

µ(t+αk
) = B(tαk

)µ(tαk
), t = tαk

(4.4)

where µ(t) ∈ Rn is the state, initial condition µ(t+0 ) = µ0. Switching signal ϱ(·) :
[t0, t0 + T ] → M = {1, 2, · · · ,m} is a left-continuous piecewise constant function.
Accordingly, {µ0; (i0, t0), (i1, t1), · · · , (iα, tα), · · · , |iα ∈ M, α ∈ N} is the switching
sequence, in which ϱ(t+α ) = iα, and we say that when t ∈ (tα, tα+1], tα ∈ [t0, t0+T ],
the iα-th subsystem is activated, a total of kα impulsive have occurred. tαk

is the
point when the k-th impulsive occurred in time interval (tα, tα+1], where (0 ≤ k ≤
kα), and the impulsive and switching occur at the same time at tα, here α ̸= 0 (t1
is the first impulsive-switching time).

For each iα ∈ M, a matrix-valued function Aiα(·) : [t0, t0 + T ] → Rn×n is
continuous. B(·) : [t0, t0 + T ] → Rn×n is the matrix-valued function. △µ(t) is
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defined as △µ(tαk
) = µ(t+αk

) − µ(tαk
), among them, we assume that µ(t) remains

left continuous every time tαk
, that is, µ(tαk

) = µ(t−αk
) = lim

r→0−
µ(tαk

+ r), µ(t+αk
) =

lim
r→0+

µ(tαk
+ r).

Theorem 4.1. Three scalars 0 < T , 0 < β1 < β2 are given. If there exist a function
ℵ(t) : [t0, t0 + T ] → R is piecewise continuous, a function b(t) : [t0, t0 + T ] → R+,
and positive definite matrice Piα such that

(a) ℵϱ(t)(t)Pϱ(t) ≥ ATϱ(t)(t)Pϱ(t) + Pϱ(t)Aϱ(t)(t), t ̸= tαk
, (4.5)

(b) b(tαk
)Pϱ(tαk

) ≥ BT (tαk
)Pϱ(t+αk

)B(tαk
), t = tαk

, (4.6)

(c)

α∏
n=0

kn∏
z=1

b(tnz )b(t1) · · · b(tα)e
∫ t
t0

ℵ(ν)dν ≤ a2β2
a1β1

, t ∈ [t0, t0 + T ], (4.7)

where
∫ t
t0
ℵ(ν)dν =

∫ t1
t0

ℵi0(ν)dν + · · · +
∫ t
tα

ℵiα(ν)dν,a1 = max
iα∈M

{λmax(P̃iα)}, a2 =

min
iα∈M

{λmin(P̃iα)}, P̃iα =W− 1
2PiαW

− 1
2 , for any iα ∈ M, α ∈ N .

Then system (4.4) is FTS subject to (β1, β2,W, t0, T ).

Proof. Choose a Lyapunov functional

G(t) = Gϱ(t)(t) = µT (t)Pϱ(t)µ(t).

For any t ∈ (tα, tα+1], ϱ(t
+
α ) = iα. Dividing interval (α, α + 1] into the fol-

lowing subintervals (α, α1], · · · , (αk−1, αk], (αk, α + 1], k = {1, 2, · · · , l}. Taking
t ∈ (tαk−1

, tαk
], from the first formula of system (4.4) and condition (4.5), one has

Ġiα(t) = µT (t)[ATiα(t)Piα + PiαAiα(t)]µ(t) ≤ ℵiα(t)Giα(t), iα ∈ M. (4.8)

It means that the condition (b) of Theorem 3.1 holds, except possibly at the
impulsive and switching points. Now, let us look at these time points. Which
implies that

Giα(t) ≤ e
∫ t
tαk

ℵiα (ν)dνGiα(t+αk
), (4.9)

from the second formula of system (4.4) and condition (4.6), it yields

Giα(t+αk
) = µT (tαk

)BT (tαk
)PiαB(tαk

)µ(tαk
) ≤ b(tαk

)Giα(tαk
), t = tαk

, (4.10)

specially t = tα, the system switches to the iα-th subsystem from the iα−1-th
subsystem. Further, we have that

Giα(t+α ) = µT (tα)B
T (tα)Piα−1

B(tα)µ(tα) ≤ b(tα)Giα−1
(tα). (4.11)

Substituting (4.10) into (4.9),

Giα(t) ≤ e
∫ t
tαk

ℵiα (ν)dνGiα(t+αk
) ≤ e

∫ t
tαk

ℵiα (ν)dν
b(tαk

)Giα(tαk
). (4.12)

When t = tα+1, we get

Giα(tα+1) ≤ e
∫ tα+1
tαk

ℵiα (ν)dνGiα(t+αk
) ≤ e

∫ tα+1
tαk

ℵiα (ν)dν
b(tαk

)Giα(tαk
), (4.13)
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where t ∈ (tαk
, tα+1]. Similarly, it is easy to get

Giα(tαk
) ≤ e

∫ tαk
tαk−1

ℵiα (ν)dν
b(tαk−1

)Giα(tαk−1
), t ∈ (tαk−1

, tαk
],

...

Giα(tα2
) ≤ e

∫ tα2
tα1

ℵiα (ν)dν
b(tα1

)Giα(tα1
), t ∈ (tα1

, tα2
],

Giα(tα1) ≤ e
∫ tα1
tα

ℵiα (ν)dνb(tα)Giα−1(tα), t ∈ (tα, tα1 ]. (4.14)

From (4.13)-(4.14) we get that the following formula is satisfied for any t ∈ (tα, tα+1],

Giα(t) ≤ e
∫ t
tα

ℵiα (ν)dν
kα∏
z=1

b(tαz
)b(tα)Giα−1

(tα). (4.15)

Repeating the above process, it is easy to sort out

Giα−1
(tα) ≤ e

∫ tα
tα−1

ℵiα−1
(ν)dν

kα−1∏
z=1

b(tα−1z )b(tα−1)Giα−2
(tα−1),

...

Gi1(t2) ≤ e
∫ t2
t1

ℵi1 (ν)dν
k1∏
z=1

b(t1z )b(t1)Gi0(t1),

Gi0(t1) ≤ e
∫ t1
t0

ℵi0
(ν)dν

k0∏
z=1

b(t0z )Gi0(t+0 ), (4.16)

combining (4.15) with (4.16),

G(t) ≤ e
∫ t
t0

ℵ(ν)dν
α∏
n=0

kn∏
z=1

b(tnz )b(t1) · · · b(tα)Gi0(t+0 ), t ∈ [t0, t0 + T ], (4.17)

where satisfies
∫ t
t0
ℵ(ν)dν =

∫ t1
t0

ℵi0(ν)dν + · · ·+
∫ t
tα

ℵiα(ν)dν. Then, we prove that
the G(t) satisfies condition (a) of Theorem 3.1. On the one hand,

Gi0(t+0 ) = µT0 Pi0µ0 ≤ a1µ
T
0Wµ0 ≤ a1β1, (4.18)

on the other hand,

G(t) = µT (t)Pϱ(t)µ(t) ≥ a2µ
T (t)Wµ(t), (4.19)

thus, the condition (a) of Theorem 3.1 is established. It is easy to see from conditions
(4.7) and (4.17) - (4.19)

µT (t)Wµ(t) ≤ β2. (4.20)

It further shows that condition (4.7) is equivalent to condition (c) of Theorem
3.1. For this reason, system (4.4) is FTS. The proof is accomplished.
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5. Numerical examples
Example 5.1. The scalar system with delay ρ(t) = ϑ = 0.15 is considered as
follows:

µ̇(t) =
(
0.5 cos t− 0.4

)
µ(t) + 0.5µ(t− ρ(t)). (5.1)

Select a Lyapunov function as G(µ(t)) = hµ2(t) + q
ϑ

∫ t
t−ϑ µ

2(ν)dν, where h =
1, q = 0.15, and then one has

Ġ(µ(t)) ≤
(
ℵ(t) ∨ 0

)
G(µ(t)),

where ℵ(t) = 0.46 + cos t. By computation, 2hA(t) + 1
ϑq − ℵ(t)h hZ(t)

∗ − 1
ϑq

 < 0,

and ∫ t

0

(
ℵ(ν) ∨ 0

)
dν ≤ ln

λ2β2
λ1β1

, t ∈ [0, 6.3],

where λ1 = 1.15, λ2 = 1, β1 = 1, β2 = 44.7230,W = I.
Hence, the criteria of Corollary 3.1 are satisfied, and according to Corollary 3.1,

the system (2.1) is FTS with β1 = 1, β2 = 44.7230,W = I, T = 6.3. The simulation
result are demonstrated in Fig. 1 and Fig. 2.

0 2 4 6 8 10

t

0.5

1

1.5

2

2.5

3

3.5

µ
(t

)

Figure 1. The dynamical behaviors of µ(t) in Example 5.1.

Example 5.2. Take the linear system with time-varying delay into consideration,
as follows:  µ̇(t) = A(t)µ(t) + Z(t)µ(t− 0.7 sin t), t ≥ 0,

µ0(t) = (0.7070,−0.7070), t ∈ [−ϑ, 0],
(5.2)
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Figure 2. The dynamical behaviors of µT (t)Wµ(t) with β1 = 1, β2 = 44.7230,W = I, T = 6.3 in
Example 5.1.

where

A(t) =

0.5 cos(0.5t) + 0.05 −0.6

0.6 0.5 cos(0.5t) + 0.05

 , Z(t) =

 0.01 0

−0.01 −0.01

 .

Consider the FTS the system with respect to (β1 = 1, β2 = 34.1083,W = I, T =

9.2), and select Lyapunov function G(t) = µT (t)µ(t) + 0.05
∫ t
t−0.7 sin t

µT (ν)µ(ν)dν.
By computation, ω1(ν) = 2ν, ω2(ν) = ν, ℵ(t) = 0.18 + cos(0.5t), and

∫ t
0
(ℵ(ν) ∨

0)dν ≤ 2.598, t ∈ [0, 9.2]. Therefore, the sufficient criteria to satisfy Corollary 3.2,
and the system is FTS subject to (β1 = 1, β2 = 34.1083,W = I, T = 9.2). The
behaviors of the system are shown in Fig. 3 and Fig. 4.
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µ
3
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Figure 3. The trajectories of µ1(t), µ2(t) with µ1(0) = 0.7070, µ2(0) = −0.707.
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Figure 4. The trajectories of µT (t)Wµ(t) change with time t.

Example 5.3. Consider system (4.1) with constant delays ϑ = 0.2,

A =


−0.7 1.7 0

1.3 −0.5 0.7

0.7 1 −0.6

 , Z =


1.5 −1.0 0.2

−1.3 1 −0.3

−0.7 1 0.6

 ,

S =


0.6717 0.4486 −0.5402

0.0460 0.4922 0.3269

−0.0134 −0.0134 0.6471

 , (5.3)

the simulation result about the behavior of system (4.1) without controller are
depicted in Fig.5 and Fig.6.

0 0.5 1 1.5 2

t

0

1

2

3

4

5

6

µ
1
(t

),
µ

2
(t

),
µ

3
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Figure 5. The dynamical behaviors of µ(t) with µ1(0) = 0.4, µ2(0) = 0.2, µ3(0) = 0.4. in Example 5.3.
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Figure 6. The dynamical behaviors of µT (t)Wµ(t) with β1 = 0.36, β2 = 3,W = I, T = 7 in Example
5.3.

From Fig.6, it is obvious that the system (4.1) without controller is not FTS
with β1 = 0.36, β2 = 3,W = I, T = 7.

By computing LMI (4.3), we have ℵ = 0.2,

R=


21.7948 2.5260 1.4054

2.5260 22.1948 − 1.2161

1.4054 − 1.2161 22.4758

 , E=


9.1317 − 2.5311 − 1.3010

−2.5311 8.7449 1.1005

−1.3010 1.1005 8.7134

 ,

M=


−36.4397 − 25.8121 − 5.1372

−25.8121 − 37.3960 − 34.0367

−5.1372 − 34.0367 − 26.2394

 , Q=


0.0067 − 0.0016 − 0.0009

−0.0016 0.0064 0.0008

−0.0009 0.0008 0.0061

 .

Then, the gain matrix is given as

U =MR−1 =


−1.5444 − 0.9974 − 0.1860

−0.8911 − 1.6684 − 1.5489

0.0314 − 1.6060 − 1.2563

 ,

λ1 = 0.0538 + 0.0087 = 0.0625, λ2 = 0.0408, Y1 = H−1λ1H
−1 = 0.0625, Y2 =

H−1λ2H
−1 = 0.0408, and the condition (b) of Corollary 4.1 hold, therefore, the

system (4.1) with controller is FTS subject to (β1 = 0.36, β2 = 3,W = I, T = 7).
The simulation of the dynamical behaviors of the system (4.1) with controller are
shown in Fig.7 and Fig.8.

Example 5.4. Let us consider system (4.4) with matrices Aiα(t), B(t),
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Figure 7. The dynamical behaviors of µ(t) with controller in Example 5.3.

0 1 2 3 4 5 6 7

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

µ
T
(t

)W
µ

(t
)

Figure 8. The dynamical behaviors of µT (t)Wµ(t) with β1 = 0.36, β2 = 3,W = I, T = 7 in Example
5.3.

iα = 1, 2, where

A1(t) =

 1−sin 2t
2 −1.1t

1.1t 1−sin 2t
2

 , A2(t) =

 1−sin 2t
2 1.1t

−1.1t 1−sin 2t
2

 ,

B(t)= (1 − 0.3 sin t)I2. Let µ0 = [0.8 0.6], t0 = 0, α = 1, k=1, P1 =P2 = I2, and
W = I, it is easy to get a1 = 1, a2 = 1. Then we have

AT1 (t)P1 + P1A1(t) ≤ (1− sin 2t)P1, i0 = 1.

AT2 (t)P2 + P2A2(t) ≤ (1− sin 2t)P2, i1 = 2.

BT (t)P1B(t) ≤ (1− 0.3 sin t)2I2, i0 = 1, t = t01 , t1.

BT (t)P2B(t) ≤ (1− 0.3 sin t)2I2, i1 = 2, t = t11 .
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Let ℵ1(t) = ℵ2(t) = 1 − sin 2t, b(t) = (1 − 0.3 sin t)2, then (4.5) and (4.6) are
satisfied.

For a given finite time interval [0, 4], switching period is 2. t01 , t11 is the moment
when only the impulsive occurs, and t1 is the moment when impulsive and switching
happen at the same time. Given t01 = 0.9, t1 = 2, t11 = 2.3, β1 = 1, β2 = 8.213,
then

b(t01)b(t11)b(t1)e
∫ t
0
ℵ(ν)dν ≤ a2β2

a1β1
, t ∈ [0, 4],

thus, the conditions (4.5)-(4.7) of Theorem 4.1 are satisfied.
From Fig.9, it is obvious that system (4.4) without impulsive is not FTS with

β1 = 1, β2 = 8.213,W = I, t0 = 0, T = 4. As shown in Fig.10, system (4.4) with
impulsive is FTS subject to (β1 = 1, β2 = 8.213,W = I, t0 = 0, T = 4). Therefore,
when the impulsive and switching occur at the same time, the minimum value of
β2 can be obtained by ensuring FTS of system (4.4).
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Figure 9. The dynamical behaviors of µT (t)Wµ(t) without impulsive in Example 5.4.
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Figure 10. The dynamical behaviors of µT (t)Wµ(t) with impulsive in Example 5.4.
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6. Conclusion
By using the Lyapunov method and combining with the technique of matrix in-
equality, the sufficient criteria for the FTS of time-delay systems are proposed.
The algebraic judgment does not need the Lyapunov-Razumikhin condition and
the judgment M matrix, and reduces the cost of verification to certain extent. Af-
ter that, combining the designed feedback controller with Corollary 3.3, a criterion
for finite time stabilization is put forwarded. In addition, the conclusion of The-
orem 3.1 is extended to the stability study of impulsive switched nonautonomous
time-varying systems, and it is concluded that the application of impulsive control
in a finite time can make the switching system stable. Ultimately, the effectiveness
of proposed approach was verified by four examples.
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