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λ-FIXED POINT THEOREM WITH KINDS OF
FUNCTIONS OF MIXED MONOTONE

OPERATOR

M Gholami1,† and A Neamaty1

Abstract Our work is related to the existence and uniqueness of positive so-
lution to the fractional boundary value problem(BVP) with Riemann-Liouville
fractional derivative. We employ the fixed point theorem of mixed monotone
operator and the attributes of the Green function to consider the following:

−Dν
0+u(t) = λ−1(f(t, u(t),v(t)) + g(t, u(t)) + k(t,v(t))), 0<t<1, 3≤ν≤4,

u(0) = u′(0) = u′′(0) = 0,

[Dρ

0+
u(t)]t=1 = 0, 1 ≤ ρ ≤ 2.

λ is a positive number. Dν
0+ and Dρ

0+
are the standard Riemann-Liouville

fractional derivatives of degree ν and ρ, respectively. In the end, we provide
an exemplar to illustrate the outcome. It should also be noted that in this
paper we have assumed the variable v as follows:

v(t) = 1− Γ(2− ρ)

t1−ρ
Dρ

0+
u(t).

Keywords BVP, positive solution, mixed monotone operator, Green func-
tion, fixed point theorem, fractional derivative.
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1. Introduction
Years ago, fractional differential equations was located a lot of writers and is still
ongoing. Here are some of the works done by these writers. We want to examine
the existence and uniqueness of positive solutions to the fractional BVP, which is
a sum of three continuous functions f, g and k. The f-function is a three-variable
function in which the variable v is a special case of the variable u. Our problem in
as follows:

−Dν
0+u(t) = λ−1(f(t, u(t),v(t)) + g(t, u(t)) + k(t,v(t))), 0 < t < 1, 3 ≤ ν ≤ 4,

u(0) = u′(0) = u′′(0) = 0, (1.1)
[Dρ

0+u(t)]t=1 = 0, 1 ≤ ρ ≤ 2.
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λ is a positive number. ν and ρ are real numbers, the functions f : [0, 1] × ℜ+ ×
ℜ+ −→ ℜ+, g : [0, 1]×ℜ+ −→ ℜ+ and k : [0, 1]×ℜ+ −→ ℜ+ are continuous. Dν

0+

and Dρ
0+ are the standard Riemann-Liouville fractional derivatives of degree ν and

ρ, respectively. A function u ∈ C[0, 1] is called a positive solution of problem (1.1)
if u > 0 on (0, 1), Dρu ∈ C[0, 1], Dνu ∈ L1[0, 1], u meets the boundary conditions,
and parity (1.1) holds a.e. on [0, 1].

Remark 1.1. In this paper, we express the variable v in the function f as follows:

v(t) = 1− Γ(2− ρ)

t1−ρ
Dρ

0+u(t).

In [3], D. Min, L. Liu, and Y. Wu shown unique positive solutions to the following
fractional differential equation with integral boundary conditions:

Dα
0+x(t) + f(t, x(t), Dα1

0+x(t), ..., D
αn−2

0+ x(t)) = 0, t ∈ (0, 1),

x(0) = Dγ1

0+x(0) = ... = D
γn−2

0+ x(0) = 0,

Dβ1

0+x(1) =

∫ η

0

h(s)Dβ2

0+x(s)dA(s) +

∫ 1

0

a(s)Dβ2

0+x(s)dA(s),

where a, h are continuous functions in the (0,1). The above integrals in the second
boundary condition are called Riemann-Stieljes integrals with respect to A.

In [5], S. Song, and Y. Cui concerned the existence of solutions of the following
nonlinear mixed fractional differential equation with the integral BVP:

CDα
1−D

β
0+u(t) = f(t, u(t), Dβ+1

0+ u(t), Dβ
0+u(t)), 0 < t < 1, (1.2)

u(0) = u′(0) = 0, u(1) =

∫ 1

0

u(t)dA(t),

where CDα
1− is the Capato fractional derivative of degree α ∈ (1, 2], and Dβ

0+ is
the right Riemann-Liouville fractional derivative of degree β ∈ (0, 1]. Authors con-
cerned the nonlinear mixed fractional differential equation with a combination of
the Capato derivative and the fractional Riemann-Liouville derivative with an inte-
gral boundary condition of the type of Riemann-Stieltjes integral. Using Mawhin’s
coincidence degree theory, they proved the existence of solution of such problems.
The authors were able to check the existence of a solution to the boundary value
problem (1.2) based on the existence of a solution to a type of operator equation
with the Fredholm operator on a Banach space E.

In [6], Y. Sang, H. Luxuan, W.Yanling, R. Yaqi, and S. Na checked the existence
and uniqueness of solutions of the following fractional order BVP:

Dα
0+u(t) + f(t, u(t), Dβ

0+u(t)) + g(t, u(t), (Hu)(t))− b = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, n− 1 < α < n, n > 3 (n ∈ N), (1.3)
[Dγ

0+u(t)]t=1 = K(u(1)),

where b > 0 is a constant. Dα
0+ is the Riemann-Liouville fractional derivative of

degree α. The authors proved the unique solution and construct the corresponding
iterative sequence to approximate the unique solution of a class of boundary value
problem with derivative term. Using the existence of the unique solution of the
mixed monotone operator on the Banach space E with cone Ph,e and obtained
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itrerative sequences, they investigated the existence and uniqueness of the positive
solution of the problem (1.3).

In [10], Z. Z. Yue, and Y. Zou studied the uniqueness of solutions of Dirichlet
BVP for fractional differential equation given by:

Dα
0+u(t) + f(t, u(t), u′(t)) = 0, t ∈ (0, 1), 1 < α ⩽ 2,

u(0) = u(1) = 0,

where Dα
0+u(t) is the standard Riemann-Liouville fractional derivative. Using the

Banach contraction mapping principle and a weighted norm in the product space,
they investigated the sufficient conditions for the uniqueness of the solutions. They
introduced two Green’s functions G and G1,and by introducing the system of in-
equalities that have solutions, they were able to check the uniqueness of the problem.
That is, they proved the existence of a positive solution by using the existence of a
fixed point on T on the product Banach space.

In [7], H.Wang, and L.L. Zhang established the following non-singular BVP with
a parameter:

u(4)(t) = λf(t, u(t), (Hu)(t)), 0 < t < 1,

u(0) = u′(0) = 0,

u′(1) = 0, u′′′′(1) = λg(u(1)),

where λ is a positive parameter. H is a individual parameter. By using the fixed
point theorems of mixed monotone operator and properties of cone, they checked
the non-singular and singular case, respectively, and achievabled the sufficient con-
ditions which guarantee the local existence and uniqueness of increasing positive
solutions.

In [11], B. Zhou, L. L. Zhang, E. N. Addai, and N. Zhang studied the existence
of multiple positive solutions for BVP of high-order Riemann-Liouville fractional
differential equations involving the P-Laplacian operator given by:

ℜ
0 D

α
t (φP (

ℜ
0 D

α
t u(t))) = f(t, u(t),ℜ0 Dα

t u(t)), 0 ⩽ t ⩽ 1,

u(i)(0) = 0, [φP (
ℜ
0 D

α
t ]

(i)(0) = 0, i = 0, 1, 2, · · · , n− 2,

[ℜ0 D
β
t u(t)]t=1 = 0, 0 < β ⩽ α− 1,

[ℜ0 D
β
t (φP (

ℜ
0 D

α
t u(t)))]t=1 = 0,

where n− 1 < α ⩽ n, ℜ
0 D

α
t is the standard Riemann-Liouville fractional derivative.

φP is the P-Laplacian operator, P > 1.
Motivated by above mentioned works, this is our goal to investigate the exis-

tence and uniqueness of the positive solution to BVP (1.1), which is different from
previous work. In this problem, we consider a different condition for mixed mono-
tone operator with a positive number λ. We check the existence and uniqueness of
positive solution.

In second part, we express some Lemmas, Definitions and several attributes of
the Green function that we use to prove the main results.
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2. Preliminaries
2.1. Definition, Theorem and Lemma
In this section, we express several Definitions and Lemmas. Presuppose that (E, ∥.∥)
is a real Banach space. If P is a convex, closed, non-empty set, and it is valid in
the following conditions:

(i) x ∈ P, λ > 0 =⇒ λx ∈ P;
(ii) x ∈ P, − x ∈ P =⇒ x = 0.

then, P is called a cone. E is partly ordered by a cone P ⊂ E, that’s mean x ⩽ y if
and only if y− x ∈ P. If x ⩽ y and x ̸= y thus, we show x < y. If P0 = {x ∈ P|x
is an interior point of P} is non-empty then, cone P is called solidity. Moreover, if
a constant N > 0 exists so that for all x,y ∈ E, 0 ⩽ x ⩽ y implies ∥x∥ ⩽ N∥y∥
then, P is called the normal cone; in this case N is called the normality constant
of P. An operator A : E −→ E is increasing if x ⩽ y inferring Ax ⩽ Ay, and an
operator A : E −→ E is deceasing if x ⩽ y inferring Ax ⩾ Ay.

The following Definitions are derived from references [2] and [13].

Definition 2.1. If Ω = [0, b](0 < b < ∞) be a finite interval on the real axis ℜ.
Riemann-Liouville fractional integrals Iρ0+ f of degree ρ > 0 is defined by

Iρ0+ f(x) =
1

Γ(ρ)

∫ x

0

f(t)

(x− t)1−ρ
dt (x > 0; ρ > 0).

Here Γ(ρ) is the Gamma function.

Definition 2.2. If ρ > 0 be. Riemann-Liouville fractional derivative Dρ
0+g of

degree ρ > 0 is defined as follows:

(Dρ
0+g)(x) := (

d

dx
)n(In−ρ

0+ g)(x) =
1

Γ(n− ρ)
(
d

dx
)n

∫ x

0

g(t)

(x− t)ρ−n+1
dt,

(n = [ρ] + 1; x > 0).

Where [ρ] mean the integral part of ρ.

Definition 2.3. A : P −→ P is called to be a general α-concave operator if it
satisfies:

for all x ∈ P and t ∈ (0, 1) there is 0 < α(t) < 1 such that

A(tx) ⩾ tα(t)Ax, ∀t ∈ (0, 1), x ∈ P, (2.1)

Definition 2.4. An operator A : P×P −→ P is called a mixed monotone operator
if A(u,v) is increasing in u and decreasing in v, that’s mean, ui,vi ∈ P (i = 1, 2),
u1 ≤ u2, v1 ≥ v2 imply

A(u1,v1) ≤ A(u2,v2),

the element x ∈ P is called a fixed point of A if A(x,x) = x.

Theorem 2.1. Let y ∈ C[0, 1] be given. Thus, the uniquely solution to problem
−Dν

0+u(t) = λ−1y(t) along with the boundary conditions u(0) = u′(0) = u′′(0) = 0
and [Dρ

0+u(t)]t=1 = 0, where 1 ⩽ ρ ⩽ 2 is

u(t) = λ−1

∫ 1

0

G(t, r)y(r)dr, (2.2)
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where

G(t, r) =


tν−1(1− r)ν−ρ−1 − (t− r)ν−1

Γ(ν)
, 0 ≤ r ≤ t ≤ 1,

tν−1(1− r)ν−ρ−1

Γ(ν)
, 0 ≤ t ≤ r ≤ 1,

(2.3)

is the Green function for this problem.

Proof. The process of proving this theorem is similar to the process of proving
theorem 3.1 in reference [1].

We now describe several properties of the Green function as in (2.3). The fol-
lowing Lemmas is expressed in references [12] and [14].

Lemma 2.1. Suppose G(t, r) is the same as in the statement of theorem 2.1. Hence,
we have that on set [0, 1]× [0, 1], the G function is continuous and positive.

Lemma 2.2. Suppose G(t, r) is the same as in the statement of theorem 2.1. Hence,
it has after feature:

[1− (1− r)ρ](1− r)ν−ρ−1tν−1 ⩽ Γ(ν)G(t, r) ⩽ (1− r)ν−ρ−1tν−1, t, r ∈ [0, 1].

3. Main results
In this part, we check uniqueness and existence of positive solutions for the fractional
BVP (1.1) by means of the FPT of mixed monotone operator. If E = C[0, 1] =
{x|x : [0, 1] −→ ℜ,x is continuous function}be a Banach space with the standard
norm ∥x∥ = Sup{|x(t)| : t ∈ [0, 1]}. Notice that E can be equipped with a regular
component given by x,y ∈ C[0, 1], x ⩽ y ⇔ x(t) ⩽ y(t) for t ∈ [0, 1]. For all
x,y ∈ E, the notational x ∼ y that’s mean there are λ1 > 0 and λ2 > 0 so that
λ1x ⩽ y ⩽ λ2x. Clearly, ∼ is an equivalence relation. Give h > 0, we indicate
by Ph the set Ph = {x ∈ E | x ∼ h}. It is clear that Ph ⊂ P for h ∈ P. Set
P = {x ∈ C[0, 1] | x(t) ⩾ 0, t ∈ [0, 1]} is the standard cone. It is obvious that P is
a normal cone in C[0, 1] and the normality constant is 1. We take h0 ∈ E,h0 > 0,
and the set Ph ⊆ P is expressed as follows:

Ph = {h0 ∈ E : ∃t0 ∈ (0, 1),ht0 ≤ h0 ≤ 1

t0
h},

where h(t) = tν−1, t ∈ (0, 1).

Lemma 3.1. Assume that P be a normal cone in a real Banach space E, T :
P × P −→ P mixed monotone operator and satisfies:

T (tu, t−1v) ⩾ tβ(t)+α(t)T (u,v), (3.1)

functions α(t), β(t) are different and continuous. Also, 0 < α(t) < 1, 0 < β(t) < 1
and 0 < β(t) + α(t) < 1.

(J1) there is h0 ∈ P with h0 ̸= 0 so that T (h0,h0) ∈ Ph;
(J2) for each u,v ∈ P and t ∈ (0, 1), there is φ(t) ∈ (t, 1] so that T (tu, t−1v) ≥

φ(t)T (u,v).



λ-FPT with Kinds of functions of mixed monotone operator 1857

Thus,

(1) T : Ph × Ph −→ Ph;
(2) there exists u0,v0 ∈ Ph and r ∈ (0, 1) so that rv0 ⩽ u0 < v0, u0 ⩽

λ−1T (u0,v0) ⩽ λ−1T (v0, u0) ⩽ v0;
(3) λ−1T (x,x) = x has a uniquely λ-fixed point x∗

λ in Ph, λ > 0;
(4) for any initial values x0,y0 ∈ Ph, λ ∈ (0, 1), building consecutive the sequences

xn = λ−1T (xn−1,yn−1), yn = λ−1T (yn−1,xn−1), n = 1, 2, ...,

we have xn −→ x∗
λ and yn −→ y∗

λ as n −→ ∞.

Proof. Since T (h0,h0) ∈ Ph there are constants 0 < λ−1η < 1 and λ−1γ > 1 so
that

γh ≤ T (h0,h0) ≤ ηh. (3.2)

We also have a high relations by multiplying the constant λ−1 on the sides λ−1γh ≤
λ−1T (h0,h0) ≤ λ−1ηh. We show that T : Ph × Ph −→ Ph. Since h0 ∈ Ph, let’s
select a number t0 ∈ (0, 1) that it is enough small so that t0h ≤ h0 ≤ 1

t0
h. Using

the relations (3.1) and (3.2), we have

T (h,h) ≥ T (t0h0,
1

t0
h0) ≥ t

β(t0)+α(t0)
0 T (h0,h0) ⩾ γht

β(t0)+α(t0)
0 , (3.3)

T (h,h) ⩽ T (
1

t0
h0, t0h0) ⩽

1

t
β(t0)+α(t0)
0

T (h0,h0) ⩽
ηh

t
β(t0)+α(t0)
0

. (3.4)

Nothing that γht
β(t0)+α(t0)
0 , ηh

t
β(t0)+α(t0)
0

> 0. We can get T (h,h) ∈ Ph, that’s mean
T : Ph × Ph −→ Ph. Also 0 < α(t0) < 1, 0 < β(t0) < 1 and 0 < β(t0) + α(t0) < 1.
We can get a positive integer m so that

m >
2(β(t0) + α(t0))

1− (β(t0) + α(t0))
. (3.5)

Put u0 = tm0 h and v0 = 1
tm0

h. Evidently, u0,v0 ∈ Ph, u0 < v0. Through the mixed
monotone operator of T , we have

T (u0,v0) ⩽ T (v0, u0).

We also have a high relationship by multiplying the constant λ−1 on both sides

λ−1T (u0,v0) ⩽ λ−1T (v0, u0).

Using the relation (3.5), we have

m−m(β(t0) + α(t0)) > 2(β(t0) + α(t0)),

that’s mean m > (m+ 2)(β(t0) + α(t0)). Thus,

tm0 < t
(m+2)(β(t0)+α(t0))
0 . (3.6)
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Using the relations (3.1), (3.3) and (3.6), we have

λ−1T (u0,v0) = λ−1T (tm0 h,
1

tm0
h)

= λ−1T (t0t
m−1
0 h, t−1

0 t1−m
0 h)

⩾ λ−1t
β(t0)+α(t0)
0 T (tm−1

0 h, t1−m
0 h)

= λ−1t
β(t0)+α(t0)
0 T (t0t

m−2
0 h, t−1

0 t2−m
0 h)

⩾ λ−1t
2(β(t0)+α(t0))
0 T (tm−2

0 h, t2−m
0 h)

...

⩾ λ−1t
m(β(t0)+α(t0))
0 T (t0h, t

−1
0 h)

⩾ λ−1t
(m+1)(β(t0)+α(t0))
0 T (h,h)

⩾ λ−1γht
(m+2)(β(t0)+α(t0))
0

⩾ λ−1tm0 γh

= λ−1γu0

⩾ u0.

Now, we show that λ−1T (u0,v0) ⩽ v0. Using the relations (3.1), (3.4) and (3.6),
we have

λ−1T (v0, u0) = λ−1T (
1

tm0
h, tm0 h)

= λ−1T (t−1
0 t1−m

0 h, t0t
m−1
0 h)

⩽ λ−1

t
β(t0)+α(t0)
0

T (t1−m
0 h, tm−1

0 h)

...

⩽ λ−1

t
β(t0)+α(t0)
0

T (t−1
0 h, t0h)

⩽ λ−1

t
(m+1)(β(t0)+α(t0))
0

T (h,h)

⩽ λ−1

t
(m+2)(β(t0)+α(t0))
0

ηh

⩽ λ−1

tm0
ηh

= λ−1ηv0

⩽ v0.

Consequently

u0 ⩽ λ−1T (u0,v0) ⩽ λ−1T (v0, u0) ⩽ v0. (3.7)

Building consecutive the sequence

un = λ−1T (un−1,vn−1),



λ-FPT with Kinds of functions of mixed monotone operator 1859

vn = λ−1T (vn−1, un−1), n = 1, 2, · · · .

By the relation (3.7), we have

u1 = λ−1T (u0,v0) ⩽ λ−1T (v0, u0) = v1,

in general we got that un < vn, n = 1, 2, .... So, we have

u0 ⩽ u1 ⩽ · · · ⩽ un ⩽ · · · ⩽ vn ⩽ · · · ⩽ v1 ⩽ v0. (3.8)

We can take u0 = t2m0 v0 therefore,

un ⩾ u0 ⩾ t2m0 v0 ⩾ t2m0 vn, n = 1, 2, · · · .

Suppose

tn = sup{t > 0 | un ⩾ tvn}, n = 1, 2, · · · .

So, we have:

un ⩾ tnvn,

un+1 ⩾ un ⩾ tnvn ⩾ tnvn+1, n = 1, 2, · · · .

Thus, tn+1 ⩾ tn that’s mean tn is increasing with tn ⊆ (0, 1]. We presume lim
n→∞

tn =

t∗λ. We show t∗λ = 1. Differently 0 < t∗λ < 1, we check two cases.
Case (1): existence an integer N so that tN = t∗λ in this case we be aware tn = t∗λ

for all n ⩾ N . Thus, for each n ⩾ N , we have

un+1 = λ−1T (un,vn)

⩾ λ−1T (tnvn,
1

tn
un)

= λ−1T (t∗λvn,
1

t∗λ
un)

⩾ t
∗β(t∗λ)+α(t∗λ)
λ λ−1T (vn, un)

= t
∗β(t∗λ)+α(t∗λ)
λ vn+1.

According to the definition of tn, we have

tn+1 = t∗λ ⩾ t
∗(β(t∗λ)+α(t∗λ))
λ > t∗λ,

which is against our hypothesis.
Case(2): For each integer n, tn < t∗λ thus, we attain:

un+1 = λ−1T (un,vn)

⩾ λ−1T (tnvn,
1

tn
un)

= λ−1T (
tn
t∗λ

× t∗λvn,
t∗λ
tnt∗λ

un)

⩾ (
tn
t∗λ

)
β( tn

t∗
λ
)+α( tn

z∗
λ
)
λ−1T (t∗λvn,

1

t∗λ
un)
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⩾ tn
t∗λ

t
∗(β(t∗λ)+α(t∗λ))
λ λ−1T (vn, un)

= tnt
∗(β(t∗λ)+α(t∗λ))−1
λ λ−1T (vn, un)

= tnt
∗(β(t∗λ)+α(t∗λ))−1
λ vn+1.

By the definition of tn, and tn is increasing

tn+1 ⩾ tnt
∗(β(t∗λ)+α(t∗λ))−1
λ .

By taking the limit from the parties as n −→ ∞, we have

t∗λ ⩾ t∗λt
∗(β(t∗λ)+α(t∗λ))−1
λ

= t
∗(β(t∗λ)+α(t∗λ))
λ

> t∗λ,

which is against our hypothesis. So, lim
n→∞

tn = 1. For each natural number P, we
have:

0 ⩽ un+P − un ⩽ vn − un ⩽ vn − tnvn = (1− tn)vn ⩽ (1− tn)v0,

0 ⩽ vn − vn+P ⩽ vn − un ⩽ vn − tnvn = (1− tn)vn ⩽ (1− tn)v0.

Since P is normal, we have

∥un+P − un∥ ⩽ N (1− tn)∥v0∥ → 0, (as n → ∞),

∥vn − vn+P∥ ⩽ N (1− tn)∥v0∥ → 0, (as n → ∞),

where N is a normal constant. Thus, un and vn are Cauchy sequences. Because E
is complete, there are u∗λ, v∗

λ so that un → u∗λ and vn → v∗
λ as n → ∞. By (3.8),

we know that

un ⩽ u∗λ ⩽ v∗
λ ⩽ vn,

and

0 ⩽ v∗
λ − u∗λ ⩽ (1− tn)v0,

therefore,

∥v∗
λ − u∗λ∥ ⩽ N (1− tn)∥v0∥ → 0, (as n → ∞).

That’s mean u∗λ = v∗
λ. Let x∗

λ := u∗λ = v∗
λ thus, we attain

un+1 = λ−1T (un,vn) ⩽ λ−1T (x∗
λ,x

∗
λ) ⩽ λ−1T (vn, un) = vn+1.

If n → ∞ we receive x∗
λ = λ−1T (x∗

λ,x
∗
λ). That’s mean x∗

λ is the λ-fixed point of T
in Ph. We showed that x∗

λ is the λ-fixed point of T . Now we show that x∗
λ is the

uniquely λ-fixed point of T in Ph. Assume that xλ is the λ-fixed point of T in Ph.
There are e1,

1
e1

> 0 so that

e1xλ ⩽ x∗
λ ⩽ 1

e1
xλ.
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Let

e2 = sup{e1 > 0 | e1xλ ⩽ x∗
λ ⩽ 1

e1
xλ},

we prove that e2 = 1. Differently 0 < e2 < 1. Thus,

x∗
λ = λ−1T (x∗

λ,x
∗
λ)

⩾ λ−1T (e2xλ,
1

e2
xλ)

⩾ e
β(e2)+α(e2)
2 λ−1T (xλ,xλ)

= e
β(e2)+α(e2)
2 xλ,

x∗
λ = λ−1T (x∗

λ,x
∗
λ)

⩽ λ−1T (
1

e2
xλ, e2xλ)

⩽ 1

e
β(e2)+α(e2)
2

λ−1T (xλ,xλ)

=
1

e
β(e2)+α(e2)
2

xλ.

Because e
β(e2)+α(e2)
2 > e2 the above relationship is against our hypothesis. Thus,

e2 = 1. Therefore, x∗
λ = xλ. Thus, x∗

λ is the uniquely λ-fixed point of T in Ph. For
each x0,y0 ∈ Ph, we can select a small number e3 ∈ (0, 1) so that

e3h ⩽ y0 ⩽ 1

e3
h, e3h ⩽ x0 ⩽ 1

e3
h.

Let u0 = e3h, v0 = 1
e3
h, we look that u0,v0 ∈ Ph and u0 ⩽ y0 ⩽ v0, u0 ⩽ x0 ⩽ v0.

We put

un = λ−1T (un−1,vn−1),

vn = λ−1T (vn−1, un−1),

xn = λ−1T (xn−1,yn−1),

yn = λ−1T (yn−1,xn−1).

Similarly to the previous part, there exists a y∗
λ ∈ Ph so that λ−1T (y∗

λ,y
∗
λ) = y∗

λ,
lim

n→∞
un = y∗

λ and lim
n→∞

vn = y∗
λ. Given the uniqueness of the constant point of the

operator T in Ph, we take x∗
λ = y∗

λ. We have by analysis

un ⩽ xn ⩽ vn,

un ⩽ yn ⩽ vn,

because P is normal, we have

lim
n→∞

xn = x∗
λ,

lim
n→∞

yn = y∗
λ.
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Theorem 3.1. Assume that α(t), β(t) are two different and continuous functions,
0 < α(t) < 1, 0 < β(t) < 1, 0 < β(t) + α(t) < 1, and A : P × P −→ P is a
mixed monotone operator. B : P −→ P is a increasing σ(t)-concave operator, and
C : P −→ P is a decreasing σ(t)-concave operator. Where σ(t) is a continuous
function. They satisfy the following conditions:

A(tx, t−1y) ⩾ tβ(t)+α(t)A(x,y), ∀t ∈ (0, 1), x,y ∈ P, (3.9)
B(tx) ⩾ tσ(t)B(x), ∀t ∈ (0, 1), x ∈ P, (3.10)
C(t−1y) ⩾ tσ(t)C(y), ∀t ∈ (0, 1), y ∈ P. (3.11)

Assume that J3 and J4 hold:

(J3) there exist h0 ∈ Ph so that A(h0,h0) ∈ Ph, B(h0) ∈ Ph, C(h0) ∈ Ph;
(J4) there are two constants δ1, δ2 > 0 so that

A(x,y) ⩾ δ1B(x) + δ2C(y), ∀x,y ∈ P. (3.12)

Thus,

(1) A : Ph × Ph −→ Ph, B : Ph −→ Ph, C : Ph −→ Ph;
(2) there are u0,v0 ∈ Ph and r ∈ (0, 1) so that

rv0 ⩽ u0 < v0,

u0 ⩽ λ−1T (u0,v0) = A(u0,v0) +B(u0) + C(v0)

⩽ λ−1T (v0, u0) = A(v0, u0) +B(v0) + C(u0) ⩽ v0;

(3) the operator equation λ−1T (x,y) = A(x,y)+B(x)+C(y) = x has a uniquely
solution x∗

λ in Ph;
(4) for each λ > 0 and initial values x0,y0 ∈ Ph, building consecutive the se-

quences

xn = λ−1T (xn,yn) = A(xn−1,yn−1) +B(xn−1) + C(yn−1), n = 1, 2, · · · ,
yn = λ−1T (yn,xn) = A(yn−1,xn−1) +B(yn−1) + C(xn−1), n = 1, 2, · · · .

We have xn −→ x∗
λ and yn −→ y∗

λ as n −→ ∞.

Proof. Using of relations (3.9), (3.10) and (3.11), we have

A(t−1x, ty) ⩽ 1

tβ(t)+α(t)
A(x,y), t ∈ (0, 1), x,y ∈ P, (3.13)

B(t−1x) ⩽ 1

tσ(t)
B(x), t ∈ (0, 1), x ∈ P, (3.14)

C(ty) ⩽ 1

tσ(t)
C(y), t ∈ (0, 1), x ∈ P. (3.15)

We show that A : Ph × Ph −→ Ph, B : Ph −→ Ph and C : Ph −→ Ph. Because
A(h0,h0) ∈ Ph, B(h0) ∈ Ph and C(h0) ∈ Ph, there are constants γ1, γ2, γ3, η1, η2
and η3 > 0, where 0 < λ−1ηi < 1, λ−1γi > 1, so that

λ−1γ1h ⩽ A(h0,h0) ⩽ λ−1η1h, (3.16)
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λ−1γ2h ⩽ B(h0) ⩽ λ−1η2h, (3.17)
λ−1γ3h ⩽ C(h0) ⩽ λ−1η3h. (3.18)

From h0 ∈ Ph, there is a constant t0 ∈ (0, 1) so that t0h ⩽ h0 ⩽ 1
t0
h. Using the

relations (3.14), (3.15), (3.17) and (3.18), we have

B(h) ⩽ B(
1

t0
h0) ⩽

1

t
σ(t0)
0

B(h0) ⩽
λ−1

t
σ(t0)
0

η2h, (3.19)

B(h) ⩾ B(t0h0) ⩾ t
σ(t0)
0 B(h0) ⩾ λ−1t

σ(t0)
0 γ2h, (3.20)

C(h) ⩽ C(t0h0) ⩽
1

t
σ(t0)
0

C(h0) ⩽
λ−1

t
σ(t0)
0

η3h, (3.21)

C(h) ⩾ C(
1

t0
h0) ⩾ t

σ(t0)
0 C(h0) ⩾ λ−1t

σ(t0)
0 γ3h. (3.22)

Also using the relations (3.13) and (3.16), we have

A(h,h) ⩽ A(
1

t0
h0, t0h0) ⩽

1

t
β(t0)+α(t0)
0

A(h0,h0) ⩽
λ−1η1

t
β(t0)+α(t0)
0

h, (3.23)

A(h,h) ⩾ A(t0h0,
1

t0
h0) ⩾ t

β(t0)+α(t0)
0 A(h0,h0) ⩾ λ−1t

β(t0)+α(t0)
0 γ1h. (3.24)

Noting that λ−1η1

t
β(t0)+α(t0)
0

, λ−1t
β(t0)+α(t0)
0 γ1 > 0, we can get A(h,h) ∈ Ph. For each

x,y ∈ Ph, a enough small number ζ ∈ (0, 1) choose so that ζh ⩽ x,y ⩽ 1
ζh. Using

the relations (3.17), (3.18), (3.19), (3.20), (3.21) and (3.22), we have

B(x) ⩽ B(
1

ζ
h) ⩽ 1

ζσ(ζ)
× λ−1

t
σ(t0)
0

η2h,

B(x) ⩾ B(ζh) ⩾ ζσ(ζ)t
σ(t0)
0 λ−1γ2h,

C(y) ⩽ C(ζh) ⩽ 1

ζσ(ζ)
× λ−1

t
σ(t0)
0

η3h,

C(y) ⩾ C(
1

ζ
h) ⩾ ζσ(ζ)t

σ(t0)
0 λ−1γ3h.

Evidently, λ−1

ζσ(ζ)t
σ(t0)
0

η2,
λ−1

ζσ(ζ)t
σ(t0)
0

η3, ζ
σ(ζ)t

σ(t0)
0 λ−1γ2 and ζσ(ζ)t

σ(t0)
0 λ−1γ3 > 0. Thus,

B(x) ∈ Ph, C(y) ∈ Ph; that’s mean, B : Ph −→ Ph, C : Ph −→ Ph. Using the
relations (3.16), (3.23) and (3.24) we have:

A(x, y) ≤ A(
1

ζ
h, ζh) ≤ 1

ζβ(ζ)+α(ζ)
× λ−1η1

t
β(t0)+α(t0)
0

h,

A(x, y) ≥ A(ζh,
1

ζ
h) ≥ ζβ(ζ)+α(ζ)λ−1t

β(t0)+α(t0)
0 h.

Thus A(x, y) ∈ Ph; that’s mean, A : Ph × Ph −→ Ph. Using Lemma 3.1, we
conclude that A : Ph × Ph −→ Ph and B,C : Ph −→ Ph. So, the conclusion (1) is
true. Now we have to prove that the results (2)-(4) are true. Now we describe an
operator λ−1T = A+B+ C by

λ−1T (x,y) = A(x,y) +B(x) + C(y). (3.25)
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Thus, T : P × P −→ P is a mixed monotone operator and T (h,h) ∈ Ph. Now we
demonstrate that there is φ(t) ∈ (t, 1] so that

T (tx, t−1y) ⩾ φ(t)T (x,y), ∀x,y ∈ P.

For each x,y ∈ P, using J4 there are two constants δ1, δ2 that if δ = min{δ1, δ2},
we demonstrate

A(x,y) + δA(x,y) ⩾ δ(B(x) + C(y)) + δA(x,y). (3.26)

It results that

A(x,y) ⩾ A(x,y) +B(x) + C(y)

1 + δ−1
=

λ−1T (x,y)

1 + δ−1
,∀x,y ∈ P. (3.27)

Also using the relations (3.13), (3.14), (3.15) and (3.27), we have

λ−1T (tx, t−1y)− tσ(t)λ−1T (x,y) = A(tx, t−1y) +B(tx) + C(t−1y)

− tσ(t)A(x,y)− tσ(t)B(x)− tσ(t)C(y)

⩾ (tβ(t)+α(t) − tσ(t))A(x,y)

⩾ tβ(t)+α(t) − tσ(t)

1 + δ−1
λ−1T (x,y),

∀x,y ∈ P, t ∈ (0, 1).

Hence, for each x,y ∈ P, t ∈ (0, 1),

T (tx, t−1y) ⩾ tσ(t)T (x,y) +
tβ(t)+α(t) − tσ(t)

1 + δ−1
T (x,y)

= (tσ(t) +
tβ(t)+α(t) − tσ(t)

1 + δ−1
)T (x,y).

Let

φ(t) = tσ(t) +
tβ(t)+α(t) − tσ(t)

1 + δ−1
, t ∈ (0, 1).

Thus, φ(t) ∈ (t, 1] and T (tx, t−1y) ⩾ φ(t)T (x,y) for each t ∈ (0, 1) and x,y ∈ P.
Hence, the condition (J2) in the Lemma 3.1 is satisfied. Using Lemma 3.1 inferring:

(I) there are u0,v0 ∈ Ph and h ∈ (0, 1) so that

rv0 ⩽ u0 < v0, u0 ⩽ λ−1T (u0,v0) ⩽ λ−1T (v0, u0) ⩽ v0;

(II) the operator λ−1T has a unique λ-fixed point x∗
λ in Ph;

(III) for each initial values x0,y0 ∈ Ph and λ > 0,

building consecutive the sequences

xn = λ−1T (xn−1,yn−1), n = 1, 2, ...,

yn = λ−1T (yn−1,xn−1), n = 1, 2, ....

We have xn −→ x∗
λ and yn −→ x∗

λ as n −→ ∞. that’s mean, the results (2)-(4)
hold. The prove is finished.
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Theorem 3.2. Let (J ′
1) - (J ′

4) be hold in (1.1):

(J ′
1) f : [0, 1]×ℜ+ ×ℜ+ −→ ℜ+, g : [0, 1]×ℜ+ −→ ℜ+ and k : [0, 1]×ℜ+ −→ ℜ+

are continuous, with f(t, 0, 1) ̸≡ 0, k(t, 1) ̸≡ 0, g(t, 0) ̸≡ 0, t ∈ [0, 1];
(J ′

2) for each fixed t ∈ [0, 1] and v ∈ [0,∞), f(t, u,v) is increasing in u ∈ [0,∞); for
each fixed t ∈ [0, 1] and u ∈ [0,∞), f(t, u,v) is decreasing in v ∈ [0,∞). For
each fixed t ∈ [0, 1], g(t, u) is increasing in u ∈ [0,∞), and k(t,v) is decreasing
in v ∈ [0,∞);

(J ′
3) for each ι ∈ (0, 1), t ∈ [0, 1], u,v ∈ [0,∞),

g(t, ιu) ⩾ ισ(ι)g(t, u),

k(t, ι−1v) ⩾ ισ(ι)k(t,v),

where σ(ι) is a continuous function. There are two different and continuous
functions 0 < α(ι) < 1, 0 < β(ι) < 1, 0 < β(ι) + α(ι) < 1 so that

f(t, ιu, ι−1v) ⩾ ιβ(ι)+α(ι)f(t, u,v);

(J ′
4) there are two constants δ1, δ2 > 0 so that

δ1g(t, u) + δ2k(t,v)) ⩽ f(t, u,v), ∀t ∈ [0, 1], u,v ∈ [0,∞).

Thus,

(1) there are u0,v0 ∈ Ph and r ∈ (0, 1) so that rv0 ⩽ u0 < v0 and

u0(t) ⩽ λ−1

∫ 1

0

G(t, r)[f(r, u0,v0) + g(r, u0) + k(r,v0)]dr, t ∈ [0, 1],

v0(t) ⩾ λ−1

∫ 1

0

G(t, r)[f(r,v0, u0) + g(r,v0) + k(r, u0)]dr, t ∈ [0, 1],

where h(t) = tν−1, t ∈ [0, 1];
(2) the problem (1.1) has a uniquely positive solution u∗λ in Ph;
(3) for each x0,y0 ∈ Ph, building consecutive the sequences

xn+1 = λ−1

∫ 1

0

G(t, r)[f(r,xn(r),yn(r)) + g(r,xn(r)) + k(r,yn(r))]dr,

yn+1 = λ−1

∫ 1

0

G(t, r)[f(r,yn(r),xn(r)) + g(r,yn(r)) + k(r,xn(r))]dr,

n = 0, 1, 2, ...,

we have ∥xn − u∗λ∥ −→ 0 and ∥yn − u∗λ∥ −→ 0, as n −→ ∞.

Proof. From Theorem 2.1, the problem (1.1) has the following solution

u(t) = λ−1

∫ 1

0

G(t, r)[f(r, u(r),v(r)) + g(r, u(r)) + k(r,v(r))]dr,
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where G(t, r) is given as in (2.3). We prove that u is the solution of the problem
(1.1) if and only if u = λ−1T (u,v) = A(u,v) + B(u) + C(v). We define three
operators A : P × P −→ E, B,C : P −→ E as follows:

A(u,v)(t) = λ−1

∫ 1

0

G(t, r)f(r, u(r),v(r))dr,

B(u)(t) = λ−1

∫ 1

0

G(t, r)g(r, u(r))dr,

C(v)(t) = λ−1

∫ 1

0

G(t, r)k(r,v(r))dr.

We show that A is a mixed monotone operator, B is an increasing σ-concave opera-
tor, and C is a decreasing σ-concave operator. For ui,vi ∈ P, i = 1, 2 with u1 ⩾ u2,
v1 ⩽ v2, we know that u1(t) ⩾ u2(t), v1(t) ⩽ v2(t), t ∈ [0, 1] and by (J ′

2) we have

A(u1,v1)(t) = λ−1

∫ 1

0

G(t, r)f(r, u1(r),v1(r))dr

⩾ λ−1

∫ 1

0

G(t, r)f(r, u2(r),v2(r))dr

= A(u2,v2)(t).

That’s mean, A(u1,v1)(t) ⩾ A(u2,v2)(t). Now we show that the relation (3.13) is
true for ι ∈ (0, 1), 0 < α(ι) < 1, 0 < β(ι) < 1, 0 < β(ι)+α(ι) < 1 and u,v ∈ [0,∞).
Where α(ι), β(ι) are different and continuous functions. Using J ′

3, we have

A(ιu, ι−1v)(t) = λ−1

∫ 1

0

G(t, r)f(r, ιu(r), ι−1v(r))dr

⩾ ιβ(ι)+α(ι)λ−1

∫ 1

0

G(t, r)f(r, u(r),v(r))dr

= ιβ(ι)+α(ι)A(u,v)(t).

That’s mean, A(ιu, ι−1v) ⩾ ιβ(ι)+α(ι)A(u,v). Which holds at (3.13). Using J ′
2, we

show that B is an increasing operator, and C is decreasing operator.

B(u1)(t) = λ−1

∫ 1

0

G(t, r)g(r, u1(r))dr

⩾ λ−1

∫ 1

0

G(t, r)g(r, u2(r))dr

= B(u2)(t).

That’s mean, B(u1)(t) ⩾ B(u2)(t).

C(v1)(t) = λ−1

∫ 1

0

G(t, r)k(r,v1(r))dr

⩾ λ−1

∫ 1

0

G(t, r)k(r,v2(r))dr

= C(v2)(t).
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That’s mean, C(v1)(t) ⩾ C(v2)(t). Using J ′
3 for ι ∈ (0, 1), t ∈ [0, 1], u,v ∈ [0,∞)

and continuous function 0 < σ(ι) < 1, we have

B(ιu)(t) = λ−1

∫ 1

0

G(t, r)g(r, ιu(r))dr

⩾ ισ(ι)λ−1

∫ 1

0

G(t, r)g(r, u(r))dr

= ισ(ι)B(u)(t).

C(ι−1v)(t) = λ−1

∫ 1

0

G(t, r)k(r, ι−1v(r))dr

⩾ ισ(ι)λ−1

∫ 1

0

G(t, r)k(r,v(r))dr

= ισ(ι)C(v)(t).

That’s mean, B(ιu)(t) ⩾ ισ(ι)B(u)(t) and C(ι−1v)(t) ⩾ ισ(ι)C(v)(t), which satisfy
respectively at (3.14) and (3.15). Therefore, B is a increasing σ(ι)-concave operator,
and C is a decreasing σ(ι)-concave operator. Now we show that A(h,h) ∈ Ph,
B(h) ∈ Ph and C(h) ∈ Ph. By using J ′

1, J ′
2 and Lemma 2.2 for each t ∈ [0, 1], we

know that

A(h,h)(t) = λ−1

∫ 1

0

G(t, r)f(r,h(r),h(r))dr

⩽ λ−1

Γ(ν)
h(t)

∫ 1

0

(1− r)ν−α−1f(r, 1, 0),

A(h,h)(t) = λ−1

∫ 1

0

G(t, r)f(r,h(r),h(r))dr

⩾ λ−1

Γ(ν)
h(t)

∫ 1

0

[1− (1− r)α](1− r)ν−α−1f(r, 0, 1).

From (J ′
2), we have

f(r, 1, 0) ⩾ f(r, 0, 1) ⩾ 0.

Because f(t, 0, 1) ̸≡ 0, we give∫ 1

0

f(r, 1, 0)dr ⩾
∫ 1

0

f(r, 0, 1)dr > 0,

and in consequence

L1 :=
λ−1

Γ(ν)

∫ 1

0

(1− r)ν−α−1f(r, 1, 0)dr,

L2 :=
λ−1

Γ(ν)

∫ 1

0

[1− (1− r)α](1− r)ν−α−1f(r, 0, 1)dr.

So L2h(t) ⩽ A(h,h)(t) ⩽ L1h(t), t ∈ [0, 1] and hence, we have A(h,h) ∈ Ph.
Similarly, since g(t, 0) ̸≡ 0 and k(t, 1) ̸≡ 0, we have

λ−1

Γ(ν)
h(t)

∫ 1

0

[1− (1− r)α](1− r)ν−α−1g(r, 0)dr
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⩽ B(h)(t) ⩽ λ−1

Γ(ν)
h(t)

∫ 1

0

(1− r)ν−α−1g(r, 1)dr,

λ−1

Γ(ν)
h(t)

∫ 1

0

[1− (1− r)α](1− r)ν−α−1k(r, 1)dr

⩽ C(h)(t) ⩽ λ−1

Γ(ν)
h(t)

∫ 1

0

(1− r)ν−α−1k(r, 0)dr.

That’s mean B(h) ∈ Ph and C(h) ∈ Ph. For u,v ∈ P and each t ∈ [0, 1] by (J ′
4),

there are two constants δ1, δ2 that if δ = min{δ1, δ2},

A(u,v)(t) = λ−1

∫ 1

0

G(t, r)f(r, u(r),v(r))dr

⩾ δ1λ
−1

∫ 1

0

G(t, r)g(r, u(r)) + δ2λ
−1

∫ 1

0

G(t, r)k(r,v(r))]dr

= δ1B(u)(t) + δ2C(v)(t)

⩾ δ[B(u)(t) + C(v)(t)].

Thus, we take A(u,v) ⩾ δ(B(u) + C(v)), for u,v ∈ P.
Finally, by means Theorem 3.1 we calculate that exist u0,v0 ∈ Ph, r ∈ (0, 1) so

that

rv0 ⩽ u0 < v0,

u0 ⩽ λ−1T (u0,v0) = A(u0,v0) +B(u0) + C(v0)

⩽ λ−1T (v0, u0) = A(v0, u0) +B(v0) + C(u0) ⩽ v0,

equation operator λ−1T = A(u,v) +B(u) + C(v) = u has an uniquely solution u∗λ
in Ph. For each initial values x0,y0 ∈ Ph, building consecutive sequences

xn = λ−1T (xn−1,yn−1) = A(xn−1,yn−1) +B(xn−1) + C(yn−1), n = 1, 2, · · · ,
yn = λ−1T (yn−1,xn−1) = A(yn−1,xn−1) +B(yn−1) + C(xn−1), n = 1, 2, · · · ,

we have xn −→ u∗λ and yn −→ u∗λ as n −→ ∞. That’s mean

u0(t) ⩽ λ−1

∫ 1

0

G(t, r)[f(r, u0(r),v0(r)) + g(r, u0(r)) + k(r,v0(r))]dr,

v0(t) ⩾ λ−1

∫ 1

0

G(t, r)[f(r,v0(r), u0(r)) + g(r,v0(r)) + k(r, u0(r))]dr.

Therefore, BVP (1.1) has a uniquely solution u∗λ in Ph. For x0,y0 ∈ Ph building
consecutive sequences:

xn+1(t) = λ−1

∫ 1

0

G(t, r)[f(r,xn(r),yn(r)) + g(r,xn(r)) + k(r,yn(r))]dr,

yn+1(t)=λ−1

∫ 1

0

G(t, r)[f(r,yn(r),xn(r))+g(r,yn(r))+k(r,xn(r))]dr,n=0, 1, 2, · · · .

Thus, ∥xn − u∗λ∥ −→ 0 and ∥yn − u∗λ∥ −→ 0 as n −→ ∞. So, the conclusions of
Theorem 3.2 follow from Theorem 3.1, and the Proof of Theorem 3.2 is finished.
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4. Example
In this section, we present the following example for the correctness of our theory.
We check BVP:

−D
7
2

0+u(t) =
1

2
(u

1
10 sin(t)(t) + (1−

√
π

t
1
2

D
3
2

0+u(t))
−1
10 cos(t)

+ u
1
10 cos(t)(t) + v

−1
10 cos(t)(t) + 2t2 + 2t3), (4.1)

with conditions boundary

u(0) = u′(0) = u′′(0) = 0, [D
3
2

0+u(t)]t=1 = 0.

In this example, we have ν = 7
2 . We assume

1−
√
π

t
1
2

D
3
2

0+u(t) = v(t),

β(t) =
1

10
sin(t), α(t) = σ(t) =

−1

10
cos(t)

λ = 2

We have

f(t, u,v) =
1

2
u

1
10 sin(t)(t) +

1

2
(1−

√
π

t
1
2

D
3
2

0+u(t))
−1
10 cos(t) + t2,

g(t, u) =
1

2
u

1
10 cos(t)(t) +

1

2
t3,

k(t,v) =
1

2
v

−1
10 cos(t)(t) +

1

2
t3,

ρ =
3

2
.

Obviously, the functions f : [0, 1] × ℜ+ × ℜ+ −→ ℜ+, g,k : [0, 1] × ℜ+ −→ ℜ+

are continuous with f(t, 0, 1) ̸≡ 0, g(t, 0) ̸≡ 0 and k(t, 1) ̸≡ 0. f(t, u,v) for fixed
t ∈ [0, 1] and v ∈ [0,∞) are increasing in u ∈ [0,∞); f(t, u,v) for fixed t ∈ [0, 1]
and u ∈ [0,∞) are decreasing in v ∈ [0,∞), and g(t, u) is increasing σ(t)-concave
in u ∈ [0,∞) for fixed t ∈ [0, 1], and k(t,v) is decreasing in v ∈ [0,∞) for fixed
t ∈ [0, 1]. For each ι ∈ (0, 1), t ∈ [0, 1], u,v ⩾ 0, we have

f(t, ιu, ι−1v) =
1

2
ι

1
10 sin(t)u

1
10 sin(t)(t) +

1

2
ι

1
10 cos(t)v

−1
10 cos(t)(t) + t2

⩾ (ι
1
10 sin(t)+ 1

10 cos(t))(
1

2
u

1
10 sin(t)(t) +

1

2
v

−1
10 cos(t)(t) + t2)

= ι
1
10 sin(t)+ 1

10 cos(t)f(t, u,v).

For each ι ∈ (0, 1), t ∈ [0, 1], and u,v ⩾ 0, we have

g(t, ιu) =
1

2
ι

1
10 cos(t)u

1
10 cos(t)(t) +

1

2
t3

⩾ ι
1
10 cos(t)(

1

2
u

1
10 cos(t)(t) +

1

2
t3)
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= ι
1
10 cos(t)g(t, u),

k(t, ι−1v) = ι
1
10 cos(t)v

−1
10 cos(t)(t) +

1

2
t3

⩾ ι
1
10 cos(t)(v

−1
10 cos(t)(t) +

1

2
t3)

= ι
1
10 cos(t)k(t,v).

For u,v ⩾ 0, we assume that δ1 = 1
3 , δ2 = 1

6 , so that δ = min{ 1
3 ,

1
6} = 1

6 ∈ (0, 1],

f(t, u,v) =
1

2
u

1
10 sin(t)(t) +

1

2
v

−1
10 cos(t)(t) + t2

⩾ [
1

2
u

1
10 cos(t)(t) +

1

2
t3 +

1

2
v

−1
10 cos(t)(t) +

1

2
t3]

⩾ 1

3
(
1

2
u

1
10 cos(t)(t) +

1

2
t3) +

1

6
(v

−1
10 cos(t)(t) +

1

2
t3)

⩾ 1

6
(
1

2
u

1
10 cos(t)(t) +

1

2
v

−1
10 cos(t)(t) + t3)

=
1

6
[g(t, u) + k(t,v)].

Therefor, all the conditions of Theorem 3.2 are true. Hence, problem (4.1) has a
uniquely positive solution in Ph, where h(t) = tν−1 = t

5
2 , t ∈ [0, 1].
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