Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 13, Number 4, August 2023, 1890-1909 DOI:10.11948/20220279

A NOVEL TECHNIQUE FOR SOLVING (2+1)
DIMENSIONAL SYSTEM OF NONLINEAR
COUPLED PARTIAL DIFFERENTIAL
EQUATION

S. Kumbinarasaiah, Mustafa Inc?3', Hadi Rezazadeh*

and J. C. Umavathi®

Abstract We present a highly efficient method to find numerical solutions
to the system of PDEs. The method unifies the methods of collocation and
Laguerre wavelet series (LWS). The system of (2+1)-dimensional PDEs is re-
duced to a set of equations having Laguerre wavelet coefficients (LWC). Com-
putational examples are provided to validate the efficiency of the technique
and we discussed the comparison between the present method and other meth-
ods solution with the exact solution. Computational results indicate that the
present method is better than the other methods in the literature.

Keywords Wavelets, Laguerre wavelet, collocation method, system of partial
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1. Introduction

We present a new method to acquire numerical solutions to the system of (241)-
dimensional PDEs. Determining the numerical solutions for a system of nonlinear
PDEs is a significantly useful research area. These equations appeared in many
disciplines, including plasma physics, solid-state physics, fluid mechanics, chemical
physics, and plasma waves. Consider,

77777 ’U? = P(z,y,t), (1.1)
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77777 u? :Q(m,y,t), (1'2)

with physical constraints,

(
U;(O,y, t) - b(yat)v
u(z,0,t) = c(x,t), (1.3)
U(0,0,t) = g(t)7
U(l’,y, 0) - d((l)‘,y)’
v(0,y,t) = e(y, 1),
v(z,0,t) = f(z,1), (1.4)
v(0,0,t) = h(t),

where, 0 < 2 < 1,0 <y < 1,0 <t < 1, and Q(=,y,t), P(z,y,t),a(x,y),b(y, 1),
c(z,t),g(t),d(z,y), e(y,t), f(x,t) and h(t) are real-valued continuous functions. Wa-
velets are useful and important functions having a broad range of applications in-
cluding time-frequency analysis and signal processing and so on, see [23]. The use
of wavelets in the solutions of the system of PDEs is still in its infancy.

Wavelets used to solve the PDEs may be listed as follows: Cardinal B-spline
wavelet to the Burgers-Huxley equation (BHE) [27], some others for the nonlinear
Klein-Gordon equation [9], Laguerre wavelets to the system of differential equa-
tions [28], Haar wavelets to the system of PDEs [1]. There are some other related
methods to solve the system of NPDEs such as Homotopy perturbation [4], Ho-
motopy analysis [18], solution method [32], the composite numerical scheme for
the coupled Burgers system [10], Semi-analytical technique to the foam drainage
equation [2], Haar wavelet operational method to the neutron point kinetics model
[19], variational iteration to the BH and Huxley equations [21], Wavelet collocation
to the Huxley equation [22] and two dimensional Haar wavelet collocation [20],
new Homotopy perturbation method [5,12,13], numerical approach for drainage
equation [31], efficient methods for time-dependent problems [3,7,8,11,29], Some
wavelets methods applied to solve differential equations [6,14-17,30] etc. We em-
ploy LWS and in the view of literature, no one solved this type of problem using
LWS, this impetus us to solve (2+1) dimensional system PDEs via LW.

In section 2, the fundamentals of LWS are presented. The convergence analysis
is studied in the 3rd section. Sections 4 and 5 contain the solution algorithm and
the applications, respectively. We complete the paper with a conclusions part in
Section 6.

2. Laguerre wavelets

Wavelets form a family of functions generated from translation and dilation a func-
tion known as mother wavelet. LWS are described as [24]:

k
2

Ly (22 —2n 4+ 1),

wn,m(x) =9 m! <
0,

n—1 < n
oh—1 =TS 551 (2.1)
otherwise
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in which m = 0,1,...,M — 1 and n = 1,2,...,2""! with k is a natural number,
L,,(z) are Laguerre polynomials with the weight function W(z) = 1 on [0,00)
satisfying Lo(z) =1, L1(z) =1 — =z,

(2m+3—2)Lyi1(x) — (m+ 1)Ly ()
m+ 2

Lipto(z) = where m =0,1,2,....

3. Theorem on convergence analysis

Theorem 3.1. Suppose that u(z,y,t) € L*(R? x R) is a bounded continuous real-
valued function on [0,1)? x [0,1). Then, LW expansion of u(xz,y,t) uniformly
converges to itself.

Proof. Assume that u(z,y,t) is a continuous function on [0,1)% x [0,1) and
|u(z,y,t)| < k, in which k is a natural number. Suppose that

uw,y.t chww Vi (y) i 5 (t).

1=1 j=0

Ci; =< u(z,y,t), ¥ (@) j(y)wi ;(t) >, and <,> represents the inner product.
Hence, LWC of u(z,y,t) are described as:

Cis= [ [ [ wto s @y s sy,
//wm ww )/ (z,y, ):L (2%t — 2n + 1)dtdzdy,

n —

where I*[Zk 1,2k 1)

Next by letting 2%t — 2n 4+ 1 = p, we get

25 1ot ! p—1+2n dp
s / / i@ o P2 L () Gy,

(e, P L) )5 (),

Using GMVT for integrals

Ciy = / / S s ) ) dody L)),

m' -1

where (; € (-1,

Since, L, (t) is continuous and integrable on (—1,1). Choose Ll1 L, (p)dp = A,

2= [t ! 2
Gy =A% [ [ty S5 0 )y,

k n k
2% [l kT —14+2n .22

— a2 [ [T e S D2y - 20+ )y
0 i |
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Now by changing the variable 2Fy — 2n + 1 = ¢, we obtain

A ! ! q—142n ¢4 —14+2n dq
Cis = oz | us@) [ u I L (g S,
(mh)? Jo -1 2

ok ok
A2~k 1 ! g—14+2n GG —14+2n
Cij= W/o wi,j(x)/_lu(:v, ST o) Lm(a)dadz.

Using GMVT for integrals

A2— G—142n G—14+2n_ !
i\ / w%] ok ’ ok )/_1 Lm(Q)dqua

where Cz c (

Since, L, (y) is continuous and integrable on (—1,1). Choose f_ll L., (q)dg = A,

A22k <2—1+2n G —1+2n

/ Yoo e T
A22’< G—-14+2n (G —14+2n
(m') /ImLm(2 2n+ ].) ( 2k: , 2k )d:l?,

now by changing the variable 2Fx —2n + 1 = r, we acquire

2V

A2 1 r—1+2n C2—1—|—2n G — 1420 dr
¢ (m!)3/ Lan (el " T

Using Generalized mean value theorem (GMVT) for integrals

A2 G142 G—1+2n G—1+2n_ [}
= , , L (r)dr.
Cis (m!)3 u 2k 2k 2k )/_1 (r)dr

Since, L, (x) is continuous and integrable on (—1,1). Choose fil L, (r)dr = A,

O_ABz% (C3—1—|—2n Go—1+42n C1—1+2n)
R S
Therefore,
‘C‘l|_|A32%m||u(C3—1+2n Co—1+2n C1—1+2n)|
W (m)3 2k ’ 2k ’ ok ’

where C1,Ca,Cs € (=1, 1).

Since u(z,y,t) is bounded. That is, |u(z,y,t)| < k, where & is real constant.

Asg=2" k.
(m!)?

Therefore Z;’ZO Z;‘io ci,j is absolutely convergent. Hence the LW expansion of
u(z,y,t) is converges uniformly. O

|Ci 5l = |
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4. Method of solution

In this section, we generate LWM to acquire numerical solution for (2+1) dimen-
sional system of NPDE given in the equation (1.1) and (1.2) with physical conditions
(1.3) and (1.4).

Consider (1.1) with constraints in (1.3) and assume:

Bu(x O u(z,y,t) Sl
atayﬁx Z Z Cn,mWn.m (@ )"'szp,qz/}p-q(y) (4.1)
=1m=0 p=1qg=0
truncating the above equation,
3Pu(z, y, 1) 2k~ M1 2k~ M1
W*Zchmwnm 202 dnapaly (4.2)
n=1 m=0 p=1 ¢g=0
Integrate (4.2) with respect to ¢ from 0 to tg,
k—1 k—1 4
Pu(w,y,t)  9u(z,y,ts) - -
dydx ~ dydx +(t_ts) Z Z Cn,m"/’n.m(-x)'i‘z Z dp,q’(/}p.q(y>
n=1 m=0 p=1 ¢q=0
(4.3)
Integrate (4.3) with respect to y from 0 to y,
Ouz,y,t) _0Ou(=,0,t)  Oul(@,y,ts) _ Ou(w,0,ts)
Ox T ox ox ox
2k M1 2k=1 M1
H0-1) [ o)+ S dyata) |
0 n=1 m=0 p=1 q=0
(4.4)
Integrate (4.4) with respect to = from 0 to z,
u(z,y,t) ~u(0,y,t) + u(x,0,t) — u(0,0,) + u(x, y, ts)
- ’IL(O, Y, ts) - ’LL(.’L‘, 07 ts) + U(O, Oa ts)
e pyl2t M1 2k=1 pr—1
=) [ Y crmtnn@+ 3 Y dtials) | dys
0 /0 _n:l m=0 p=1 ¢=0
U(Jf, Y, t) %b(y7 t) + C(l‘, t) - g(t) + CL(J?, Y, té) - b(ya ts) - C(JZ, tS) + g(ts)
z w2t M1 2k=1 proq
+(t—ts)// SN ot @+ 3N dygthpa(y) | dyda
0 | = 1 m=0 p=1 ¢=0
(4.5)
Differentiate (4.5) with respect to ¢,  and y, we get following equations:
du(z,y,t) 3b(y7 t) | Oclx,t) _ 9g(t)
o at ot
M- 2kt M1
// zz et () + dytipa(y) | dyde,
n=1 m=0 p=1 ¢q=0
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Qu(z,y,t) _ dclz,t) | Oalw,y.ts)  Oc(x,ts)

Ox Ox Ox Ox
y |28t M1 2P -1
+ (t - ts) / Z Z Cn,m'l/)n.m + dp q'l/]p q dy,
0 n=1 m=0 p=1 ¢=0
(4.7
Qu(z,y,t) _ 0by,t)  Oa(w,y.ts)  Ob(y,ts)
oy T Oy dy dy
z [2F "t M—1 2k=1 pr—1
+ (t - ts)/ Z Z CnomW¥n m(z) + dp qi/}p q( ) dx
n=1 m=0 p=1 q=0
(4.8)
Now, consider (1.2) with constraints in (1.4) and assume:
PPv(x 0v(z,y,t) e
=1m=0 p=1 q=0
truncating the above equation,
k—1 k—1
Pz, y,t) rimMo1 iMo1
“Otoyor ~ 4 Z Crom¥n.m () + 2 dpy o ¥p.q(y) (4.10)
n=1 m=0 p=1 q=0
Integrate (4.10) with respect to ¢ from 0 to ts,
k—1 k-1
0v(x,y,t)  0*v(z,y,t — FA
) ) ~ ) N d
By 8y8x nzl mZO Cn,m ¥ H; FZO pa¥p.a(Y)
(4.11)
Integrate (4.11) with respect to y from 0 to y,
Qu,yt) Ov(x,0,t)  Ov(@y,ts) v(,0,t)
Ox T oz Ox Ox
g 2"t M1 2k a1 (4.12)
=t / chnmwnm +Z de,quq dy.
n=1 m=0 p=1 ¢q=0
Integrate (4.12) with respect to 2 from 0 to z,
v(x,y,t) =v(0,y,t) + v(z,0,t) —v(0,0,t) + v(z,y,ts)
- U(O, Y, ts) - U([I,'7 0, ts) + U(Ov 0, ts)
ey [2P M1 251 M—1 !
b=t [ XY tnn(e) + 33 dy (o) |dude
0 Jo _n:l m=0 p=1 ¢q=0 _
v(z,y,t) ~e(y, t) + f(x,t) — h( ) +d($ yrts) —e(y,ts) — flx,ts) + h(ts)
— M- 2Pl M1 i
+(t—ts)/ / Z (@) + > dy (Upq(y) |dydz.
0 Jo _n: m=0 p=1 ¢=0

(4.13)
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Differentiate (4.13) with respect to ¢,  and y, we get following equations:

dv(z,y,t) Oe(y,t) Of(z,t) Oh(t)

~

ot ot ot ot
2k=1 p—1 M-
/ / ST tbnm(@) Z S i) o) |y
n=1 m=0 p=1 q=0
(4.14)
ooy, t) Of(e,t) | Ddlwyts)  Ofwit)
Ox Oz ox Ox
y |2F 7t M- 2Pt M—1
bt=t) [ |3 X chtnn@) + &y ()| dy.
0 | n=1m=0 p=1 ¢=0
(4.15)
Ov(x,y,t) de(y,t)  Od(x,y,ts) Oe(y,ts)
Ay Ay oy oy
z [2F "t M—1 2k=1 pr—1
+(t—t5) / [Z > o tnm(@) + d, Up.q(y) | dz.
0 | n=1 m=0 p=1 ¢=0
(4.16)

Substitute the equations (4.5), (4.6), (4.7), (4.8), (4.13), (4.14), (4.15) and (4.16)
in the equations (1.1) and (1.2). Then descritize the equations (1.1) and (1.2) with
following collocation points,

i— 1

2M — 1’

T =y = i=1,2,3,...2M —1, t€[0,1).

Which yields a system containing 4M — 2 number of nonlinear algebraic equations
as follows:

P(miay%t)
k—1 k—1
Ob(y, 8096“ |2 M 27 M-l
- (gt //[ chm,l/)"mxz—'_z deqd)pqyl )| dydz
n=1 m=0 p=1 q=0
dg(t
_ %Ef) — [e(yi7 ) ) h +d($l,yz,tg) 7e(yi’ts) — f(xiats) +h(tg)
2" M1 2k=1 Ar—1
(=) / / chnnﬂ/)nm% +Z dequq Yi) | dydz]
n=1 m=0 p=1 q=0
8C($i,t) aa(xivyiats) 8c(xi,ts)
2k M1 ok=1 pr_q
+ (t_ts)/ Z Z Cnmn.m (23) + dp,q¥p.q (i) | dy]
0 n=1 m=0 p=1 q=0

-1 o ot ot
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x M-1 ok—1pr 1 9% i’t) (..
—l—/o/o lzzcnm%mxz+Zdequqy1]ddH ((;/ _ (gy )

n=1m=0 p=1q=0

m2k11ul ok=1 pr_q (xy )
/ chnmwnmxz +Z de,quq yz d.’17+ g “S]

n=1 m=0 p=1 ¢=0
(4.17)
Q(xivyiat)
dely;, 9 x“ V| 2’“1M1’
- (gt f / / Z Z Cn m/l/}”m i +Z Z dp,qq/}pq yl dydﬂf
n=1 m=0 p=1 ¢q=0
Oh(t
_ 655 ) — [b(yi, t) + c(zi, t) — g(t) + alwi, yi, ts) — b(yi, ts) — (i, ts) + g(ts)
2kt M1 2kl M1
t_t / / chnmwnm L +Z dequq yl dyd.]?]
n=1 m=0 p=1 ¢=0
~ [af(xlat) + ad(ajiayhts) _ 8f(mi7ts>
ox Oz ox

2k—1 pr—1 2k—1 pr—1

t—t / [Z Z Cp mwnm xz + qqppq yl)] dy]

n=1 m=0 =1 q=0

bS]

~ | ot ot

2k=1pr—1 o is 0 iy ls
//[ chmd)nmﬂfz +sz qqppqyl]dd“ e%yy t) e(gyt)

n=1m=0 p=1q=0
2k=1pr—1 2k=1pr—1
* ad(xi, yi, ts)
|3 ot 35 dy st aes L,
n=1m=0 p=1q=0 Y
(4.18)

On solving above system by Newton-Raphson algorithm yields 4M — 2 LWCs. sub-
stitute these coefficients in (4.5) and (4.13) will contribute numerical solution for
given system of PDEs.

5. Numerical Results

Example 5.1. Consider the system of (2+1)-D PDE is of the form [1]:

ou  OvOou ou
a—aa—y—va—l—x-ky-f—t (5.1)

v
a—aa—y—u%—x—y—t—kl (5.2)
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with following physical constaints,

w(z,y,0) =z —1+y,

u(0,y,t) =y —1+1¢,

0,9,8) =y (5.3)
w(z,0,t) =2 —1+1,

u(0,0,t) =t — 1,

U(IZ?,y,O)—I+].7y,

v(0,y,t) = —y+1—1t,

(0,9,1) = —y (5.4)
v(z,0,t) =z +1—t,

v(0,0,t) =1—1.

The analytic solutions are of the form [4],
u(z,y,t) =x+y+t—1, v(z,y,t) =x—y—t+1.

On solving this problem by proposed LWM at &k = 1 and M = 2 we get a system
containing six nonlinear algebraic equations, by solving this system with a suitable
solver, we acquire six LWCs as follows:

c1,0 = 0.383372579736753,
c1,1 = —2.823876970375000,
c12 = 2.614109221441289,
c1,3 = —0.221177735008325,
c1,4 = 0.098831394776984,
c1,5 = —0.690688027006323.

Substitute these coefficients in u(x,y,t) and v(z,y,t) which yields numerical solu-
tions (ns) for given equation as,

Uapp = t+ 2 +y — 1 — V2tay(2.6141y — 2.8239z + 0.036163),
Vapp = T — t — y + 1 — V/2ty(0.098831z — 0.69069y + 1.4049).

Again, we solved this problem by increasing the size of M and these results are
compared numerically with Haar wavelet method (HWM) [1], Homotopy pertur-
bation method (HPM) [4], and Homotopy analysis method (HAM) [18] in tables 1
to 6. These tables reveal that the present method is better than methods in the
literature such as HWM, HPM, and HAM. Figures 1 to 6 represent the graphical
behavior of the exact solution (es) with the numerical solutions at different values
of M and its absolute errors. In MATLAB 2013 version, CPU time for the proposed
method is 7.34 seconds at M=2 and 12.05 seconds at M=5. For the Haar wavelet
method CPU time is 18.27 seconds.

Example 5.2. Consider the system of (1+1)-D PDEs is of the form [5]:

ou 0u ov
% Vo +u Tl —1+ e sin(t), (5.5)

ov  Oudv Oudv

oot oon Tawar = L ¢ el (56)
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Table 1. Comparison of exact and numerical values (env) of u(z,y,t) at t = 0.01, k = 1.

(xy) UEzact ULWM &t urwwm at  ugwwm UHAM UHPM
M=2 M=5 [1] [18] [4]
( ) -0.74 -0.74000 -0.74000 -0.73984 -0.73000 -0.73000
( ) -0.49 -0.49043  -0.49000  -0.48982  -0.48000  -0.48000
( ) -0.24 -0.24145 -0.24012 -0.23985 -0.23000 -0.23000
( ) 0.01 0.00695 0.00990 0.01016 0.01999 0.01999
( ) -0.49 -0.48953 -0.49001 -0.48958 -0.48000 -0.48000
(0.375,0.375) -0.24 -0.23991  -0.24124  -0.23952  -0.23000  -0.23000
(0.375,0.625)  0.01 0.00797 0.00997 0.01039 0.01999 0.01999
(0.375,0.875)  0.26 0.25413 0.26032 0.26044 0.26999 0.26999
( )
( )
( )
( )
( )
( )
( )
( )

0.125,0.125
0.125,0.375
0.125,0.625
0.125,0.875
0.375,0.125

0.625,0.125) -0.24 -0.23845 -0.24145 -0.23939 -0.23000 -0.23000
0.625,0.375) 0.01 0.01248 0.01004 0.01069 0.01999 0.01999
0.625,0.625) 0.26 0.26052 0.26002 0.26058 0.26999 0.26999
0.625,0.875) 0.51 0.50567 0.51007 0.51064 0.51999 0.51999
0.875,0.125) 0.01 0.01326 0.01006 0.01074 0.01999 0.01999
0.875,0.375) 0.26 0.26674 0.26004 0.26084 0.26999 0.26999
0.875,0.625) 0.51 0.51619 0.51010 0.51070 0.51999 0.51999
0.875,0.875) 0.76 0.76159 0.76019 0.76078 0.76999 0.76999

190009505050
SESX SIS
SIS
RESSSESISSESSIIIIIIS
0“‘0‘0‘0‘0‘ <> >

u(x,y,0.01)
u(x,y,0.01)

‘I

““

> S <>
LIS Sees

SIS IICS
SSISX SOSISIKISCS
S S SIS
S SIS S SIS SIS
S SIS SSIRISESEIEIEIISS
":’0“" <> >
3 SIS
RESSEES
<>
IS

277
4%1

77
7727
7
7547777
Y77
724777
7

\Y-

u(x,y,0.01)

S

Absolute error

SIS
%&%&"&&&%ﬁ&’
S5

Figure 1. Graphical representation of ns of u(z,y,0.01). (A) es of u(z,y,0.01), (B) ns of u(x,y,0.01)
at M = 2, (C) ns of u(z,y,0.01) at M =5, (D) absolute error (ae) between ns of u(z,y,0.01) at M = 2
with es.
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A B
g __ 10
o )
) o
o o 0
> >
k3 k3
> S5 -10
2
0 2
0
2 -2
y X

u(x,y,0.001)
Absolute error

Figure 2. Graphical representation of ns of u(z,y,0.01). (A) es of u(z,y,0.01), (B) ns of u(z,y,0.01)
at M = 2, (C) ns of u(z,y,0.01) at M =5, (D) absolute error (ae) between ns of u(z,y,0.01) at M = 2
with es.

Table 2. Comparison of env of u(z,y,t) at t = 0.001, k = 1.

(%) UBgact ULWM at  urpwm at  upwm upam (18] umpym
M=2 M=5 [1] [4]

( ) -0.749  -0.74900 -0.74900 -0.74899 -0.74800 -0.74800
( ) -0.499  -0.49904 -0.49900 -0.49899 -0.49800 -0.49800
( ) -0.249  -0.24914 -0.24901 -0.24899 -0.24800 -0.24800
( ) 0.001 0.00069 0.00099 0.00100 0.00199 0.00199
( ) -0.499  -0.49895 -0.49915 -0.49899 -0.49800 -0.49800
( ) -0.249  -0.24899 -0.24910 -0.24899 -0.24800 -0.24800
(0.375,0.625)  0.001 0.00079 0.00100 0.00100 0.00199 0.00199
(0.375,0.875)  0.251 0.25041 0.25100 0.25100 0.25199 0.25199
(0.625,0.125) -0.249  -0.24884 -0.24910 -0.24899 -0.24800 -0.24800
( )

( )

( )

( )

( )

( )

( )

0.125,0.125
0.125,0.375
0.125,0.625
0.125,0.875
0.375,0.125
0.375,0.375

0.625,0.375) 0.001  0.00124 0.00100 0.00100 0.00199 0.00199
0.625,0.625) 0.251  0.25105 0.25100 0.25100 0.25199 0.25199
0.625,0.875) 0.501  0.50056 0.50100 0.50100 0.50199 0.50199
0.875,0.125) 0.001  0.00132 0.00100 0.00100 0.00199 0.00199
0.875,0.375) 0.251  0.25167 0.25100 0.25100 0.25199 0.25199
0.875,0.625) 0.501  0.50161 0.50100 0.50100 0.50199 0.50199
0.875,0.875) 0.751  0.75115 0.75100 0.75100 0.75199 0.75199
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Figure 3. Graphical representation of ns of u(z,y,0.0001). (A) es of u(z,y,0.0001), (B) ns of
u(x,y,0.0001) at M = 2, (C) ns of u(z,y,0.0001) at M = 5, (D) ae between ns of u(z,y,0.0001)
at M = 2 with es.

Table 3. Comparison of env of u(z,y,t) at t = 0.0001, k = 1.

(xy) UEgact urwym at  upwam at  ugwwm UHAM UHPM
M=2 M=5 [1] [18] [4]
( ) -0.7499  -0.74990 -0.74990 -0.74989 -0.74980 -0.74980
( ) -0.4999  -0.49990 -0.49990 -0.49989 -0.49980 -0.49980
( ) -0.2499  -0.24991 -0.24990 -0.24989 -0.24980 -0.24980
( ) 0.0001 0.00007 0.00010 0.00010 0.00019 0.00019
( ) -0.4999  -0.49989 -0.49991 -0.49989 -0.49980 -0.49980
(0.375,0.375)  -0.2499  -0.24989 -0.24990 -0.24989 -0.24980 -0.24980
(0.375,0.625)  0.0001 0.00008 0.00010 0.00010 0.00019 0.00019
(0.375,0.875)  0.2501 0.25004 0.25010 0.25010 0.25020 0.25020
( )
( )
( )
( )
( )
( )
( )
( )

0.125,0.125
0.125,0.375
0.125,0.625
0.125,0.875
0.375,0.125

0.625,0.125) -0.2499  -0.24988 -0.24990 -0.24989 -0.24980 -0.24980
0.625,0.375)  0.0001 0.00012 0.00010 0.00010 0.00019 0.00019
0.625,0.625) 0.2501 0.25010 0.25010 0.25010 0.25020 0.25020
0.625,0.875)  0.5001 0.50005 0.50010 0.50010 0.50020 0.50020
0.875,0.125)  0.0001 0.00013 0.00010 0.00010 0.00019 0.00019
0.875,0.375)  0.2501 0.25016 0.25010 0.25010 0.25020 0.25020
0.875,0.625) 0.5001 0.50016 0.50010 0.50010 0.50020 0.50020
0.875,0.875) 0.7501 0.75011 0.75010 0.75010 0.75020 0.75020
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Figure 4. Graphical representation of ns of v(z,y,0.01). (A) es of v(z,y,0.01), (B) ns of v(xz,y,0.01)
at M =2, (C) ns of v(z,y,0.01) at M =5, (D) ae between ns of v(z,y,0.01) at M = 2 with es.

Table 4. Comparison of env of v(z,y,t) at t = 0.01, k = 1.

(va) VEzact vpwnM at vLwm at  VHWM VHAM VHPM [4]
M=2  M=5 1] [18]

( ) 0.99 098970  0.99102  0.98984  1.02000  1.02000

( ) 0.74 073923 0.74013  0.73986  0.77000  0.77000

( ) 0.49 048891 049145 048983  0.52000  0.52000

( ) 0.24 023874  0.24001  0.23987  0.27000  0.27000

( ) 124 123910 124045 123956 127000  1.27000

( ) 0.99 0.98764  0.99001  0.98963  1.02000  1.02000
(0.375,0.625)  0.74 0.73665  0.74010  0.73953  0.77000  0.77000
(0.375,0.875)  0.49 048611 049002 048954  0.52000  0.52000
(0.625,0.125)  1.49 148847 149125  1.48936  1.52000  1.52000
( )

( )

( )

( )

( )

( )

( )

0.125,0.125
0.125,0.375
0.125,0.625
0.125,0.875
0.375,0.125
0.375,0.375

0.625,0.375) 1.24 1.23599 1.24189 1.23946 1.27000 1.27000
0.625,0.625) 0.99 0.98428 0.99245 0.98932 1.02000 1.02000
0.625,0.875) 0.74 0.73333 0.74000 0.73932 0.77000 0.77000
0.875,0.125) 1.74 1.73782 1.74102 1.73923 1.77000 1.77000
0.875,0.375) 1.49 1.48428 1.49201 1.48934 1.52000 1.52000
0.875,0.625) 1.24 1.23180 1.24001 1.23918 1.27000 1.27000
0.875,0.875)  0.99 0.98039 0.99031 0.98917 1.02000 1.02000
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Figure 5. Graphical representation of ns of v(xz, y,0.001). (A) es of v(z,y,0.001), (B) ns of v(z, y, 0.001)
at M =2, (C) ns of v(z,y,0.001) at M =5, (D) ae between ns of v(z,y,0.001) at M = 2 with es.

Table 5. Comparison of env of v(z,y,t) at t = 0.001, k = 1.

(xy) VEzact vpwMm &t vpwm at  vgwMm VHAM vapm [4]
M=2 M=5 [1] [18]
(0.125,0.125)  0.999 0.99897 0.99902 0.99899 1.00200 1.00200
(0.125,0.375)  0.749 0.74892 0.74913 0.74899 0.75200 0.75200
(0.125,0.625)  0.499 0.49889 0.49905 0.49899 0.50200 0.50200
(0.125,0.875)  0.249 0.24887 0.24901 0.24899 0.25200 0.25200
(0.375,0.125)  1.249 1.24891 1.24905 1.24899 1.25200 1.25200
(0.375,0.375)  0.999 0.99876 0.99901 0.99899 1.00200 1.00200
(0.375,0.625)  0.749 0.74866 0.74910 0.74899 0.75200 0.75200
(0.375,0.875)  0.499 0.49861 0.49902 0.49899 0.50200 0.50200
(0.625,0.125)  1.499 1.49884 1.49900 1.49899 1.50200 1.50200
(0.625,0.375)  1.249 1.24859 1.24949 1.24899 1.25200 1.25200
(0.625,0.625)  0.999 0.99842 0.99945 0.99899 1.00200 1.00200
(0.625,0.875)  0.749 0.74833 0.74910 0.74899 0.75200 0.75200
(0.875,0.125)  1.749 1.73782 1.74902 1.74899 1.75200 1.75200
(0.875,0.375)  1.499 1.49842 1.49901 1.49899 1.50200 1.50200
(0.875,0.625) 1.249 1.24818 1.24901 1.24899 1.12520 1.12520
(0.875,0.875)  0.999 0.99803 0.99911 0.99899 1.00200 1.00200

with following physical constaints,
u(0,t) = sin(t),
u(z,0) =0,
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Figure 6. Graphical representation of ns of v(z,y,0.0001). (A) es of v(xz,y,0.0001), (B) ns of
v(z,y,0.0001) at M = 2, (C) ns of v(z,y,0.0001) at M = 5, (D) ae between ns of v(z,y,0.0001)
at M = 2 with es.

Table 6. Comparison of env of v(z,y,t) at ¢ = 0.0001, k = 1.

(x,y) VEzact vpwMm &t vpwm at vgwMm VHAM vepm 4]
M=2 M=5 [1] (18]

( ) 0.9999 0.99989 0.99990 0.99989 1.00020 1.00020
( ) 0.7499 0.74989 0.74991 0.74989 0.75020 0.75020
( ) 0.4999 0.49988 0.49990 0.49989 0.50020 0.50020
( ) 0.2499 0.24988 0.24990 0.24989 0.25020 0.25020
( ) 1.2499 1.24989 1.24990 1.24989 1.25020 1.25020
( ) 0.9999 0.99987 0.99990 0.99989 1.00020 1.00020
(0.375,0.625)  0.7499 0.74986 0.74991 0.74989 0.75020 0.75020
(0.375,0.875)  0.4999 0.49986 0.49990 0.49989 0.50020 0.50020
(0.625,0.125)  1.4999 1.49988 1.49990 1.49989 1.50020 1.50020
( )
( )
( )
( )
( )
( )
( )

0.125,0.125
0.125,0.375
0.125,0.625
0.125,0.875
0.375,0.125
0.375,0.375

0.625,0.375) 1.2499 1.24985 1.24994 1.24989 1.25020 1.25020
0.625,0.625) 0.9999 0.99984 0.99994 0.99989 1.00020 1.00020
0.625,0.875)  0.7499 0.74983 0.74991 0.74989 0.75020 0.75020
0.875,0.125)  1.7499 1.74987 1.74990 1.74989 1.75020 1.75020
0.875,0.375)  1.4999 1.49984 1.49990 1.49989 1.50020 1.50020
0.875,0.625) 1.2499 1.24981 1.24990 1.24989 1.12502 1.12502
0.875,0.875)  0.9999 0.99980 0.99991 0.99989 1.00020 1.00020
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Figure 7. Graphical representation of es u(z,t), ns at k =1 and M = 10,6 and its ae.

Exact solution Approximate solution at M=5 by present method

2 2

Absolute error

Figure 8. Graphical representation of es u(z,t), ns at k = 2 and M = 5,3 and its ae.

v(z,0) =e"",
v(0,t) = cos(t).

The analytic solutions is of the form [5],

(5.8)

u(xz,t) = e®sin(t), v(z,t) =e " cos(t).

We solved this problem with the proposed algorithm at different values of £ and M.
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Figure 9. Graphical representation of es v(z,t), ns at k =1 and M = 10,6 and its ae.

Exact solution Approximate solution at M=5 by present method
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Figure 10. Graphical representation of es v(x,t), ns at k = 2 and M = 5,3 and its ae.

Figs. 7,9 reveals that accuracy in solution on varying M values by fixing &k = 1 with
absolute errors. Figs. 8,10 shows that accuracy in solution on varying both M and
k values with absolute errors. From these figures, we can observe that increasing k
values is directly proportional to the accuracy of the solution. In MATLAB 2013
version, CPU time for the proposed method is 5.98 seconds at M = 2 and 9.53
seconds at M = 5.
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6. Conclusion

We developed an effective numerical technique to solve some (2+1)-D nonlinear
coupled system of PDEs. This technique is based on the LW with the collocation
method and applied to solve the (241)-D nonlinear coupled system of PDEs. This
technique is a simple and new approach to solve such equations also, convergence
analysis is discussed in the form of a theorem. Proposed technique yields better
results than the HWM, HPM, and HAM which are represented in tables 1 to 6. As
increasing the size of M accuracy goes on increases this can be observed in figures 1
to 6 as well as in the tables. This technique also works for higher-order PDEs with
slight modifications in the method. From these merits, this method might become
a promising technique in solving a (2+1)-D NPDEs and systems.

Conflict of interest. The authors declare that they have no conflict of interest.
Data Availibility. All data generated or analysed during this study are included
in this article.

References

[1] S. Arbabi, A. Nazari, M. T. Darvishi, A two dimensional Haar wavelets method
for solving systems of PDEs, Applied Mathematics and Computation, 2017, 292,
33-46.

[2] S. Arbabi, A. Nazari, M.T. Darvishi, A semi-analytical solution of foam drainage
equation by Haar wavelets method, Optik, 2016, 127, 5443-5447.

[3] A. Al-Qudah, Z. Odibat, N. Shawagfeh, A linearization-based computational
algorithm of homotopy analysis method for nonlinear reaction—diffusion systems,

Math. Comp. Sim., 2022, 194, 505-522.

[4] J. Biazar, M. Eslami, A new homotopy perturbation method for solving systems
of partial differential equations, Comput. Math. Appl, 2011, 62, 225-234.

[5] J. Biazar, M. Eslami, A new Homotopy perturbation method for solving systems
of partial differential equations, Computers and Mathematics with Applications,
2011, 62(1), 225-234.

[6] S. Bekiros, S. Soradi-Zeid, J. Mou, A. Yousefpour, E. Zambrano-Serrano, H.
Jahanshahi, Laguerre Wavelet Approach for a Two-Dimensional Time—Space
Fractional Schr’odinger Equation, Entropy, 2022, 24, 1105.

[7] M. El-Gamel, W. Adel, M. S. El-Azab, Two Very Accurate and Efficient Methods
for Solving Time-Dependent Problems, Applied Mathematics, 2018, 9(11), 1270-
1280.

[8] M. Erfanian, H. Zeidabadi, O. Baghani, Solving an inverse problem for a time-
fractional advection-diffusion equation with variable coefficients by rationalized
Haar wavelet method, J Comp. Science, 2022, 64, 101869.

[9] S. Kumbinarasaiah, A new approach for the numerical solution for nonlinear
Klein—Gordon equation, SeMA, 2020, 77, 435-456.

[10] M. Kumar, S. Pandit, A composite numerical scheme for the numerical simula-
tion of coupled Burgers equation, Comput. Phys. Commun., 2014, 185, 809-817.



1908 S. Kumbinarasaiah, Mustafa Inc, H. Rezazadeh & J. C. Umavathi

[11] T. Liu, Porosity reconstruction based on Biot elastic model of porous media by
homotopy perturbation method, Chaos, Soliton and Fractals, 2022, 158, 112007.

[12] S. Liao, On the homotopy analysis method for nonlinear problems, Applied
Mathematics and Computation, 2004, 147, 499-513.

[13] S. Liao, Comparison between the homotopy analysis method and homotopy
perturbation method, Applied Mathematics and Computation, 2005, 169, 1186—
1194.

[14] T. Liu, A wavelet multiscale-homotopy method for the parameter identifica-
tion problem of partial differential equations, Computers and Mathematics with
Applications, 2016, 17, 1519 -1523.

[15] T. Liu, Reconstruction of a permeability field with the wavelet multiscale-
homotopy method for a nonlinear convection-diffusion equation, Applied Math-
ematics and Computation, 2016, 275, 432-437.

[16] T. Liu, A multigrid-homotopy method for nonlinear inverse problems, Comput-
ers and Mathematics with Applications, 2020, 79, 1706-1717.

[17] T. Liu, A wavelet multiscale method for the inverse problem of a nonlinear con-
vectiondiffusion equation, Journal of Computational and Applied Mathematics,
2018, 330, 165-176.

[18] M. Matinfar, M. Saeidy, B. Gharahsuflu, A new homotopy analysis method for
finding the exact solution of systems of partial differential equations, Selcuk J.
Appl. Math., 2012, 13, 41-56.

[19] A. Patra, S. S. Ray, Numerical simulation based on Haar wavelet operational
method to solve neutron point kinetics equation involving sinusoidal and pulse
reactivity, Ann. Nucl. Energy, 2014, 73, 408-412.

[20] A. Patra, S. S. Ray, Two-dimensional Haar wavelet collocation method for the
solution of stationary neutron transport equation in a homogeneous isotropic
medium, Ann. Nucl. Energy, 2014, 70, 30-35.

[21] S. S. Ray, A. K. Gupta, Comparative analysis of variational iteration method
and Haar wavelet method for the numerical solutions of Burgers-Huxley and
Huzley equations, J. Math. Chem., 2014, 52, 1066—1080.

[22] S. S. Ray, A. K. Gupta, On the solution of Burgers-Huzley and Huzley equation
using wavelet collocation method, Comput. Model. Eng. Sci., 2013, 91, 409-424.

[23] S. C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matriz
of integration for the numerical solution of nonlinear singular initial value prob-
lems, Alexandria Engineering Journal, 2018, 57(4), 2591-2600.

[24] S. C. Shiralashetti, S. Kumbinarasaiah, Theoretical study on continuous poly-
nomial wavelet bases through wavelet series collocation method for nonlinear
Lane-Emden type equations, Applied Mathematics and Computation, 2017, 315,
591-602.

[25] S. C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets method for the nu-
merical solution of linear and nonlinear singular initial and boundary value
problems, Computational Methods for Differential Equations, 2019, 7(2), 177-
198.

[26] S. C. Shiralashetti, S. Kumbinarasaiah, Some Results on Haar Wavelets Matriz
through Linear Algebra, Wavelets and Linear Algebra, 2017, 4(2), 49-59.



A novel technique for solving (24+1)D system of nonlinear coupled PDE 1909

[27] S. C. Shiralashetti, S. Kumbinarasaiah, Cardinal B-spline wavelet based nu-
merical method for the solution of generalized Burgers-Huzley equation, Int. J.
Appl. Comput. Math., 2018. Doi: org/10.1007/s40819-018-0505-y.

[28] S. C. Shiralashetti, S. Kumbinarasaiah, Laguerre Wavelets Exact Parseval
Frame-based Numerical Method for the Solution of System of Differential Equa-
tions, Int. J. Appl. Comput. Math., 2020. https://doi.org/10.1007/s40819-020-
00848-9.

[29] Swati, M. Singh, K. Singh, An advancement approach of Haar wavelet method
and Bratu-type equations, Appl. Numerical Math., 2021, 170, 74-82.

[30] J. Shahni, R. Singh, Numerical simulation of Emden-Fowler integral equation
with Green’s function type kernel by Gegenbauer-wavelet, Taylor-wavelet and
Laguerre-wavelet collocation methods, Mathematics and Computers in Simula-
tion, 2022, 194, 430-444.

[31] H. Tariq, H. Gunerhan, H. Rezazadeh, W. Adel, A numerical approach for
the nonlinear temporal conformable fractional foam drainage equation, Asian-
European Journal of Mathematics, 2020. Doi: 10.1142/S1793557121500893.

[32] K. Yildirim, A solution method for solving systems of nonlinear PDEs, World
Appl. Sci. J., 2012, 1, 1527-1532.



	Introduction
	Laguerre wavelets
	Theorem on convergence analysis
	Method of solution
	Numerical Results
	Conclusion

