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BOUNDARY LAYER-PRESERVING METHODS
FOR A CLASS OF NONLINEAR SINGULAR

PERTURBATION BOUNDARY VALUE
PROBLEMS∗

Xin Li1 and Fazhan Geng1,†

Abstract The aim of this paper is to develop a new uniformly convergent nu-
merical approach for nonlinear singularly perturbed boundary value problems
(BVPs). The method combines the advantages of the variation-of-constants
formula and the reproducing kernel function approximation. It can preserve
the boundary layer structure of the solution to the considered singular pertur-
bation problems. In addition, compared with some existing numerical tech-
niques, the present method has no restriction on the choice of nodes. Three
numerical experiments are implemented and the numerical results indicate our
new technique is quite promising.

Keywords Reproducing kernel method, boundary layers, nonlinear singu-
larly perturbed problems.
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1. Introduction
The main theme of this paper is to solve the singularly perturbed problems (SPPs)
as follows:  εy′′(x) + γy′(x) = f(x, y(x)), x ∈ [0, 1],

y(0) = α0, y(1) = α1,
(1.1)

where 0 < ε ≪ 1 and γ is a positive constant. For the solution of (1.1), it is known
that there is a left boundary layer at the point x = 0.

SPPs arise in several fields such as fluid mechanics, biological sciences and chem-
ical reactions. Solutions of SPPs have boundary or interior layers, in which the
derivatives of the solutions grow without bound as ε → 0. As we all know, the
standard numerical methods usually result in disappointed numerical solutions to
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SPPs. It is a challenging work to find efficient numerical schemes for SPPs. In
the last decade, there have been many effective numerical methods for SPPs (see,
e.g. [15–18,20–24]).

Reproducing kernel Hilbert space(RKHS) theory is an essential approach in
numerical analysis. By employing the RKHS theory, Cui and Geng [7] proposed
a approach to solve systems of ordinary differential equations BVPs and it can be
extended to numerically dealing with general operator equations. Cui and Lin [6]
discussed the nonlinear numerical analysis in RKHS. Over the last decades, the
related theory has been used to solve the fractional order integral and differential
equations, singular integral equations, fuzzy differential equations, and so on (see,
e.g. [1–5,8–14,19,25,27]).

In this paper, by combining the RKHS theory and the variation-of-constants
formula, we will present a boundary layer-preserving technique for solving the non-
linear singular perturbation BVPs.

This paper is organized as follows. As background reading, we summarize RKHS
theory in Section 2. In Section 3, we develp boundary layer-preserving technique
for singular perturbation BVPs (1.1). Numerical experiments are undertaken in
Section 4. The conclusion is given in the last section.

2. Preliminaries to RKHS theory

For the definition and properties of the RKHS and reproducing kernel function
(RKF), please refer to [6]. Following we provide the Sobolev RKHS, which will be
used in the next section.

Definition 2.1. Let Hm[0, 1] be the Sobolev function space, which consists of
functions w(t) defined on [0, 1]. The m-th order derivative of w(t) is absolutely
continuous and w(m)(t) ∈ L2[0, 1]. The inner product on Hm[0, 1] is

(w1, w2)m =

m−1∑
k=0

w
(k)
1 (0)w

(k)
2 (0) +

∫ 1

0

w
(m)
1 (t)w

(m)
2 (t)dt.

Theorem 2.1. Space Hm[0, 1] is an RKHS with RKF

Km(x, s) =

 ξ(x, s), s ≤ x,

ξ(s, x), s > x,

where ξ(x, s) =
m−1∑
i=0

( s
i

i! + (−1)m−1−i s2m−1−i

(2m−1−i)! )
xi

i! .

The detailed contents of the theorem can be referred to the reference [7].

3. Boundary layer-preserving method for (1.1)

(1.1) can be written as y′′(x) + ωy′(x) = F (x, y(x)), x ∈ [0, 1],

y(0) = α0, y(1) = α1,
(3.1)
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where ω = 1
ε and F (x, y) = f(x,y)

ε .

Theorem 3.1. If f(x, y) is continuous, then the solution of (3.1) satisfies

y(x) =α0(1−
1− e−ωx

1− e−ω
) + α1(

1− e−ωx

1− e−ω
) +

1

ω

∫ x

0

(1− e−ω(x−t))F (t, y(t))dt

− (
1− e−ωx

1− e−ω
)
1

ω

∫ 1

0

(1− e−ω(1−t))F (t, y(t))dt. (3.2)

Putting g(t) = F (t, u(t)), H(x) = 1−e−ωx

1−e−ω and G(x) = 1
ω

∫ x

0
(1− e−ω(x−t))g(t)dt,

(3.2) reduces to

y(x) = α0(1−H(x)) + α1H(x)−H(x)G(1) +G(x). (3.3)

In (3.3), the most important issue is how to deal with the integral G(x). We
will propose a new method for handling the integral G(x) based on the RKF ap-
proximation.

We approximate g(t) appearing in the integral G(x) by an RKF interpolation,
which is a kind of piecewise polynomials. Then, the corresponding moments can
be computed explicitly. Moreover, the powerful interpolation can avoid the Runge
phenomenon of equidistant-node polynomial interpolations.

Given a finite set X = {x1, x2, . . . , xN} ⊆ I = [0, 1]. For each g(x) ∈ Hm,

the interpolation function is represented by gN (x) =
N∑
i=1

βiK
m(x, xi), where βi are

coefficients to be determined.

Theorem 3.2. The interpolation linear system

N∑
i=1

βiK
m(xj , xi) = g(xj), 1 ≤ j ≤ N

with kernel matrix
A = (Km(xj , xi))

N
j,i=1

is solvable [26].

Theorem 3.3. If the kernel function Km(x, y) is strictly positive definite, then A
is nonsingular [26].

Theorem 3.4. If g(x) ∈ C2m[0, 1] and gN is the obtained interpolation function in
RKHS Hm[0, 1], then [19]

∥ gN (x)− g(x) ∥= max
x∈[a,b]

| g(x)− gN (x) |≤ d1 h
2m, (3.4)

where d1 > 0 is a real number and h = max
1≤i≤N−1

| xi − xi+1 |.

It follows from replacing g(t) by gN (t) in G(x) that

GN (x) =
1

ω

∫ x

0

(1− e−ω(x−t))gN (t)dt

=
1

ω

N∑
i=1

βi

∫ x

0

(1− e−ω(x−t))Km(t, xi)dt
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=
1

ω

N∑
i=1

βiµi(x) (3.5)

where µi =
∫ x

0
(1− e−ω(x−t))Km(t, xi)dt can be calculated explicitly. GN (x) can be

used for the approximation of G(x).
Replacing G(x) by GN (x) in (3.3), we have the approximate solution to (3.1)

yN (x) = α0(1−H(x)) + α1H(x)−H(x)GN (1) +GN (x). (3.6)

Theorem 3.5. If g(x) ∈ C2m[0, 1] and GN is the approximate solution obtained in
RKHS Hm[0, 1], then

∥ G(x)−GN (x) ∥≤ d1
h2m

ω
.

Proof. It follows from Theorem 3.4 that

∥ gN (x)− g(x) ∥≤ d1 h
2m.

We then have

| G(x)−GN (x) | = | 1ω
∫ x

0
(1− e−ω(x−t))(g(t)− gN (t))dt|

≤ 1
ω

∫ x

0
| (1− e−ω(x−t)) || (g(t)− gN (t)) | dt

≤ d1
h2m

ω ,

which means that ∥ G(x)−GN (x) ∥≤ d1
h2m

ω . The proof is complete.

Theorem 3.6. Let d > 0 be a constant. If g(x) ∈ C2m[0, 1] and GN is approximated
in RKHS Hm[0, 1], then we have

∥ y(x)− yN (x) ∥≤ d
h2m

ω
.

Proof. The application of Theorem 3.5 yields

∥ GN (x)−G(x) ∥≤ d1
h2m

ω
,

and hence

∥ y(x)− yN (x) ∥ =∥ H(x)(G(1)−GN (1)) + (G(x)−GN (x)) ∥

≤| (H(x) + 1)d1
h2m

ω |

≤ d h2m

ω ,

where d = 2 d1. This completes the proof.
If f(x, y) is dependent on y, the approximation to solution of (3.1) is is estab-

lished by using the iterative approach.
We select a proper initial approximation y0(x):

y0(x) = α0(1−H(x)) + α1H(x).
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We construct the following iterative procedure:

yk+1(x) =y0(x)−H(x)

∫ 1

0

1

ω
(1− e−ω(1−t))F (t, yk(t))dt

+

∫ x

0

1

ω
(1− e−ω(x−t))F (t, yk(t))dt, k ≥ 0. (3.7)

Putting gk(t) = F (t, yk(t)), (k = 0, 1, 2 · · · ) and Gk(x) =
∫ x

0
1
ω (1− e−ω(x−t))gk(t)dt,

(3.7) reduces to

yk+1(x) = y0(x)−H(x)Gk(1) +Gk(x), k ≥ 0. (3.8)

Using the RKF interpolation method stated above, the approximation of g0(t) is
given by

g0,N (t) =

N∑
i=1

β0,iK
m(t, xi),

where β0,i are determined by the functions values g0(xi) for i = 1, 2, . . . , N .
Then the approximation of integral G0(x) can be obtained

G0,N (x) =
1

ω

∫ x

0

(1− e−ω(x−t))g0,N (t)dt

=
1

ω

N∑
i=1

β0,i

∫ x

0

(1− e−ω(x−t))Km(t, xi)dt

=
1

ω

N∑
i=1

β0,iµi(x), (3.9)

where µi =
∫ x

0
(1− e−ω(x−t))Km(t, xi)dt can be calculated explicitly.

Combining (3.8) and (3.9), we obtain the approximation to y1(x)

y1,N (x) = y0(x)−H(x)G0,N (1) +G0,N (x). (3.10)

Let gk(t) = F (t, yk,N (t)) and Gk(x) =
∫ x

0
1
ω (1− e−ω(x−t))gk(t)dt for k ≥ 1.

Likewise, we have the approximation to Gk(x)

Gk,N (x) =
1

ω

∫ x

0

(1− e−ω(x−t))gk,N (t)dt

=
1

ω

N∑
i=1

βk,i

∫ x

0

(1− e−ω(x−t))Km(t, xi)dt

=
1

ω

N∑
i=1

βk,iµi(x). (3.11)

Replacing Gk(x) by Gk,N (x) in (3.8), we obtain the following iterative formula

yk+1,N (x) = y0(x)−H(x)Gk,N (1) +Gk,N (x), k ≥ 1. (3.12)

We denote

λ(y)=y0(x)−H(x)

∫ 1

0

1

ω
(1−e−ω(x−t))F (t, y(t))dt+

∫ x

0

1

ω
(1− e−ω(x−t))F (t, y(t))dt.
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Clearly, yn(x) = λ(yn−1(x)). It is east to see that

∥λ(y)− λ(z)∥ ≤ 2

ω
∥ f(t, y(t))− f(t, zv(t)) ∥ .

Theorem 3.7. Suppose that ∥ f(t, µ) − f(t, ν) ∥≤ L ∥ µ − ν ∥ with Lipschitz
constant L. Let ρ = 2L

ω . If ρ < 1, then yn,N (x) converges to y(x).

Proof. In view of ∥λ(u)− λ(v)∥ ≤ ρ∥u− v∥, we have

∥yn(x)− y(x)∥ = ∥λ(yn−1)− λ(y)∥ ≤ ρ∥yn−1 − y∥ (3.13)

and

∥yn(x)− yn−1(x)∥ = ∥λ(yn−1)− λ(yn−2)∥ ≤ ρ∥yn−1 − yn−2∥. (3.14)

By (3.13) and (3.14), we find that

∥yn(x)− y(x)∥ ≤ ρ∥yn−1 − y∥

= ρ∥yn − y − (yn − yn−1)∥

≤ ρ∥yn − y∥+ ρ∥yn − yn−1∥.

(3.15)

Formula (3.15) implies that

∥yn(x)− y(x)∥ ≤ ρ

1− ρ
∥yn − yn−1∥

≤ ρn

1− ρ
∥y1 − y0∥.

(3.16)

(3.16) shows that ∥ yn(x)− y(x) ∥→ 0, n → ∞. Applying Theorem 3.6 yields

∥ y1,N (x)− y1(x) ∥→ 0, N → ∞.

Using the fact that

∥ y2,N (x)− y2(x) ∥ =∥ y2,N (x)− λ(y1,N (x)) + λ(y1,N (x))− λ(y1(x)) ∥

≤∥ y2,N (x)− λ(y1,N (x)) ∥ +ρ ∥ y1,N (x)− y1(x) ∥,
(3.17)

we obtain
∥ y2,N (x)− y2(x) ∥→ 0, N → ∞.

For n > 2, in like manner, we have

∥ yn,N (x)− yn(x) ∥→ 0, N → ∞.

Note that

∥ yn,N (x)− y(x) ∥ =∥ yn,N (x)− yn(x) + yn(x)− y(x) ∥

≤∥ yn,N (x)− yn(x) ∥ + ∥ yn(x)− y(x) ∥ .

Therefore,
∥ yn,N (x)− y(x) ∥→ 0, N → ∞, n → ∞.

This completes the proof.
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Theorem 3.8. Under the hypothesis of Theorem 3.7, if f(x, u) ∈ C2m[0, 1] and
Gk,N are approximated in RKHS Hm[0, 1], then

∥ yn,N (x)− y(x) ∥≤ c
h2m

ω
+ d ρn,

where c > 0 and d > 0 are constants.

Proof. By employing Theorem 3.7, we have

∥ yn(x)− y(x) ∥≤ ρn

1− ρ
∥y1 − y0∥ = d ρn,

where d > 0 is a constant.
According to Theorem 3.5 and (3.17), one obtains

∥ yn,N (x)− yn(x) ∥≤ c
h2m

ω
.

Hence,

∥ yn,N (x)− y(x) ∥ =∥ uy,N (x)− yn(x) + yn(x)− y(x) ∥

≤∥ yn,N (x)− yn(x) ∥ + ∥ yn(x)− y(x) ∥≤ c h2m

ω + d ρn.

4. Numerical experiments
Three experiments are illustrated to show the applicability and efficiency of the
mentioned approach. All computations associated with the experiments are per-
formed via Mathematica 11.0.

Problem 4.1. Consider the following singular perturbation BVPs from [15,16] εy′′(x) + y′(x) = 1 + 2x, x ∈ (0, 1),

y(0) = 0, y(1) = 1,
(4.1)

whose true solution is y(x) = (2ε−1) 1−e−
x
ε

1−e−
1
ε
+x(1+x−2ε). Choosing xi =

i−1
N−1 , we

employ the present approach in RKHS H3 to Problem 4.1. The obtained absolute
errors by employing the present method (PM) are compared with the methods in
[15, 16] in Table 1. The exact solution and absolute error obtained by our new
method with N = 40 for ε = 10−3 are shown in Figure 1. It is indicated from the
numerical results that our technique has very high accuracy.

Problem 4.2. Consider the following nonlinear singular perturbation BVPs from
[15,17]  εy′′(x) + 2y′(x) + ey = 0, x ∈ (0, 1),

y(0) = y(1) = 0.
(4.2)
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Table 1. Comparison of maximum absolute errors with the methods in [15,16] for Problem 4.1.

ε PM(N=16) PM(N=32) [15](N=16) [15](N=32) [16](N=16) [16](N=32)
2−12 1.27× 10−8 3.38× 10−10 4.57× 10−4 4.73× 10−4 5.81× 10−2 2.98× 10−2

2−20 1.27× 10−8 3.44× 10−10 1.78× 10−6 1.84× 10−6 5.85× 10−2 3.02× 10−2

2−25 1.27× 10−8 3.44× 10−10 5.58× 10−8 5.77× 10−8 5.85× 10−2 3.02× 10−2

2−30 1.27× 10−8 3.44× 10−10 1.74× 10−9 1.80× 10−9 5.85× 10−2 3.02× 10−2

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

0.2 0.4 0.6 0.8 1.0

2.´10
-11

4.´10
-11

6.´10
-11

8.´10
-11

Figure 1. Exact solution (left) and absolute error (right) for ε = 10−3

Its uniformly valid asymptotic solution is y(x) = ln( 2
x+1 )+ ln(2)e

−2x
ε , which is used

for numerical comparison. Choosing xi =
i−1
N−1 and iterative step number n = 10,

we employ our technique in RKHS H3 to Problem 4.2. Table 2 lists the comparison
of absolute errors with the approach in [17]. Taking N = 20 and N = 40, the
absolute error obtained for ε = 10−9 are shown in Figure 2. It is illustrated that
the the method is very promising.

Table 2. Maximum absolute errors compared with the methods in [17] for Problem 4.2.

ε PM(N=20) PM(N=40) Method in [17](N=20)
10−3 4.55× 10−7 1.91× 10−8 7.88× 10−4

10−5 4.55× 10−7 3.48× 10−8 7.90× 10−6

10−7 5.30× 10−7 3.48× 10−8 7.90× 10−8

Problem 4.3. Solve the nonlinear singular perturbation BVPs

 εy′′(x) + 4y′(x) + y2 = f(x), x ∈ (0, 1),

y(0) = 3, y(1) = 1 + e,
(4.3)

where f(x) is chosen such that the true solution of (4.3) is y(x) = e
−4x
ε + ex + 1.

Choosing xi =
i−1
N−1 and iterative step number n = 10, we apply our new method in

RKHS H3 to Problem 4.3. The obtained absolute errors are for ε = 10−5, 10−7 and
10−9 are shown in Figures 3,4. It can be observed from Figure 3 that the absolute
error is decreased as the number of nodes increases. It can be observed from Figure
4 that our technique is uniformly effective for any sufficiently small ε > 0.



1980 X. Li & F. Z. Geng

0.2 0.4 0.6 0.8 1.0

1.´10
-7

2.´10
-7

3.´10
-7

4.´10
-7

5.´10
-7

0.2 0.4 0.6 0.8 1.0

5.´10
-9

1.´10
-8

1.5´10
-8

2.´10
-8

2.5´10
-8

3.´10
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Figure 2. Absolute errors for ε = 10−9 with N = 20 (left) and N = 40 (right)
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Figure 3. Absolute errors for ε = 10−5 with N = 10 (left) and N = 20 (right)
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-7

4.´10
-7
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Figure 4. Absolute errors for ε = 10−7 (left) and ε = 10−9 (right) with N = 20

5. Conclusion

A new numerical scheme was presented for nonlinear singular perturbation BVPs.
One advantage of our technique is that there is no restriction on the choice of
nodes. Another advantage is that it can preserve the boundary layer structure of
the solution to singular perturbation BVPs. The results of three numerical tests
show that our new approach proposed in this paper has higher accuracy.
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