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SIGNAL RECOVERY WITH CONSTRAINED
MONOTONE NONLINEAR EQUATIONS

THROUGH AN EFFECTIVE THREE-TERM
CONJUGATE GRADIENT METHOD∗
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and Futong Li1

Abstract In this paper, we introduce a three-term conjugate gradient-type
projection method for solving constrained monotone nonlinear equations. In
this method, we firstly undertake the transformation of the relative matrices
proposed by Yao and Ning. Secondly, we obtain the new relative matrices
involving two parameters. Subsequently, we construct a relationship for the
two parameters via the quasi-Newton equation and obtain the parameters by
simplifying maximum eigenvalue of the new relative matrices. Finally, com-
bining the three-term conjugate gradient method with projection technique,
we establish an efficient three-term conjugate gradient-type projection algo-
rithm. Meanwhile, we also give some theoretical analysis about the global
convergence and R-linear convergence of the proposed algorithm under quite
reasonable technical assumptions. Performance comparisons show that our
proposed method is competitive and efficient for solving large-scale nonlinear
monotone equations with convex constraints. Furthermore, the presented al-
gorithm is also applied to recovery of a sparse signal in compressive sensing,
and obtain practical, efficient and competitive performance in comparing with
state-of-the-art algorithms.
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1. Introduction
In this paper, we aim at finding the numerical solutions of the following system of
nonlinear equations:

F (x) = 0, x ∈ Ω, (1.1)
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where Ω is a non-empty closed convex set in Rn, and F : Rn → Rn is continuous
and monotone. Here, monotone means that

⟨F (x)− F (y), x− y⟩ ≥ 0, ∀x, y ∈ Rn.

Most state-of-the-art solvers are built on conjugate gradient(CG)-based meth-
ods to solve (1.1)(Refs. [4–7, 13–16, 19, 20]). Due to low storage requirement and
simplicity, some of these methods have been successfully applied to recovery of a
sparse signal problem(Refs. [4, 5, 7, 13, 19]), and seem to have the potential to deal
with image restoration [20].

Recently, Gao et.al. [4] introduced a three-term CG-type projection method
involving signal parameter to deal with (1.1). Furthermore, the method is applied
to decode a sparse signal in compressed sensing. Some numerical results reported
that the proposed method attained better performance than its competitors.But,
due to the search direction in [4] dissatisfied with quasi-Newton equation, it may
lead to bad numerical results in practice.

In order to overcome the above drawbacks, the CG methods involving dou-
ble parameters for solving unconstrained optimization problems are proposed(Refs.
[1, 8, 18]). As far as we know, three-term CG method with double parameters
are only used to solve unconstrained optimization problems. It is interesting to
study three-term CG methods with double parameters for solving (1.1). To further
improve the effectiveness [18], by mean of [1], we propose a double parameters pro-
jection method for constrained monotone nonlinear equations with application to
compressive sensing.

The main contribution of this paper is to develop an efficient three-term CG-
type projection method for solving (1.1). As is known to us, the quasi-Newton
equation plays an important role in the CG method. The novelty of the proposed
method is that the method satisfies the quasi-Newton equation and the parameters
are obtained by simplifying the maximum eigenvalue of the relative matrices. The
detailed description are showed as follows. Firstly, we undertake the transformation
of the relative matrices obtained by Yao and Ning [18]. Secondly, based on [1], we
obtain the new relative matrices that includes double parameters. Whereafter, the
two parameters are connected by the quasi-Newton secant equation and obtained by
simplifying this maximum eigenvalue of the relative matrices. Finally, combining
the three-term CG method with projection technique, we establish a three-term
CG-type projection algorithm to solve (1.1). Some numerical results are presented
to illustrate that the proposed method is capable of providing considerable speed
advantages over methods [4]. Moreover, we also do some numerical experiments to
verify the proposed method is efficient and promising better than two algorithms it
was tested with in compressive sensing.

This paper is organized as follows. In Section 2, we present an efficient three-
term CG-type projection algorithm for solving (1.1). In Section 3, the global con-
vergence of the proposed algorithm is proved under milder conditions. In Section 4,
under appropriate assumptions, the R-linear convergence rate of this algorithm is
proved. In Section 5, computational experiments are reported to show the efficiency
of the proposed algorithm. In Section 6, we apply the proposed algorithm to deal
with sparse signal reconstruction in compressive sensing.
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2. The Proposed Algorithm
In this section, we propose an iterative update matrix(relative matrix) and obtain
the CG parameters under the Wolfe line search, then present our three-term CG
algorithm. By combining projection technique, we obtain an efficient projection
method to solve (1.1).

Due to simplicity and low storage, three-term CG methods have been widely
used for unconstrained optimization problem:

min
x∈Rn

f(x),

where f : Rn → R is continuously differentiable. The iterative formula of these
methods are computed by

xk+1 = xk + αkdk,

where αk > 0 is step-size computed by some line search and dk+1 is the search
direction determined by

dk+1 = −Qk+1gk+1, k ≥ 0 (2.1)

where Qk+1 is the iterative update matrix of dk+1, with d0 = −∇f(x0).
The updating formula for the matrix Qk+1 proposed by Yao and Ning [18] can

be expressed as the following form

Qk+1 = I +Ak+1
2 + γkA

k+1
1 ,

where Ak+1
2 =

yks
T
k −sky

T
k

sTk yk
, Ak+1

1 =
sks

T
k

sTk yk
, and γk is a positive parameter, with

sk = xk+1 − xk, yk = gk+1 − gk.
Motivated by [18], we proposed the iterative update matrix as follows

Q1
k+1 = QT

k+1 = I +Ak+1
2 + γkA

k+1
1 , (2.2)

where Ak+1
2 =

sky
T
k −yks

T
k

sTk yk
, Ak+1

1 =
sks

T
k

sTk yk
, and γk is a positive parameter.

Recently, Anderi [1] proposed the following matrix with double parameters

Qk+1 = δkI + δkA
k+1
2 + γkA

k+1
1 , (2.3)

where Ak+1
2 = − sky

T
k +yks

T
k

sTk yk
, Ak+1

1 =
sks

T
k

sTk yk
, δk and γk are positive parameters.

Combining (2.2) with (2.3), we proposed the following iterative update matrix

Qk+1 = δkI + δkA
k+1
2 + γkA

k+1
1 , (2.4)

where Ak+1
2 =

sky
T
k −yks

T
k

sTk yk
, Ak+1

1 =
sks

T
k

sTk yk
, δk and γk are positive parameters.

By quasi-Newton equation, we obtain the relationship between two parameters
as follows:

Qk+1yk =

(
δkI + δk

sky
T
k − yks

T
k

sTk yk
+ γk

sks
T
k

sTk yk

)
yk

= δkyk + δk
sk∥yk∥2 − yks

T
k yk

sTk yk
+ γk

sTk yk
sTk yk

sk
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= δkyk + δk
∥yk∥2

sTk yk
sk − δkyk + γksk

= δk
∥yk∥2

sTk yk
sk + γksk

=

(
γk + δk

∥yk∥2

sTk yk

)
sk.

Then we obtain
γk = 1− δk

∥yk∥2

sTk yk
. (2.5)

By (2.4) and (2.5), we can get

Qk+1 = δkI + δk
sky

T
k − yks

T
k

sTk yk
+

(
1− δk

∥yk∥2

sTk yk

)
sks

T
k

sTk yk

= δk

(
I +

sky
T
k − yks

T
k

sTk yk
+

(
1

δk
− ∥yk∥2

sTk yk

)
sks

T
k

sTk yk

)
= δkBk+1,

(2.6)

where Bk+1 = I +
sky

T
k −yks

T
k

sTk yk
+
(
θk − ∥yk∥2

sTk yk

)
sks

T
k

sTk yk
, with θk = 1

δk
.

Theorem 2.1. The matrix Bk+1 in (2.6) is nonsingular, and its eigenvalues consist
of 1 ((n− 2) multiplicity),

λ+
k+1 = 1 +

a

2
+

1

2

√
a2 − 4

∥sk∥2∥yk∥2
(sTk yk)

2
+ 4,

and

λ−
k+1 = 1 +

a

2
− 1

2

√
a2 − 4

∥sk∥2∥yk∥2
(sTk yk)

2
+ 4,

with a =
(
θk − ∥yk∥2

sTk yk

)
∥sk∥2

sTk yk
.

Proof. By the Wolfe line search condition, we have that sTk yk > 0, which implies
that yk, sk are nonzero vectors. Let V be the vector space spanned by {sk, yk} and
V ⊥ is the orthogonal complement of the vector space V . Obviously, dim(V ) ≤ 2
and dim(V ⊥) ≥ n− 2. Thus, there exists a set of mutually orthogonal unit vectors
{ui

k} ⊂ V ⊥ such that

sTk u
i
k = yTk u

i
k = 0, i = 1, 2, . . . , n− 2.

Combining the definition of Bk+1, we know

Bk+1u
i
k = ui

k, i = 1, 2, . . . , n− 2.

Therefore, Bk+1 has (n − 2) eigenvalues, 1, corresponding to the eigenvectors
{ui

k}
n−2
i=1 .

Now, we are interested to find the rest eigenvalues of Bk+1, denoted by λ+
k+1

and λ−
k+1, respectively.
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By the formula of algebra (see [10]):

det(I + pqT + uvT ) = (1 + qT p)(1 + vTu)− (pT v)(qTu),

where
p =

sk
sTk yk

, q = yk, u =

(
θk − ∥yk∥2

sTk yk

)
sk

sTk yk
− yk

sTk yk
, v = sk,

it is easily derived that

det(Bk+1) = θk
∥sk∥2

sTk yk
.

So, Bk+1 is a nonsingular matrix and we have

λ+
k+1λ

−
k+1 = θk

∥sk∥2

sTk yk
. (2.7)

By a direct computation, we have

tr(Bk+1) = n+

(
θk − ∥yk∥2

sTk yk

)
∥sk∥2

sTk yk
.

Thus, we obtain

λ+
k+1 + λ−

k+1 + n− 2 = n+

(
θk − ∥yk∥2

sTk yk

)
∥sk∥2

sTk yk
,

and further
λ+
k+1 + λ−

k+1 = 2 +

(
θk − ∥yk∥2

sTk yk

)
∥sk∥2

sTk yk
. (2.8)

By (2.7) and (2.8), we construct the following quadratic equation:

λ2 −
(
2 +

(
θk − ∥yk∥2

sTk yk

)
∥sk∥2

sTk yk

)
λ+ θk

∥sk∥2

sTk yk
= 0.

By a straightforward computation, we get

λ+
k+1 = 1 +

a

2
+

1

2

√
a2 − 4

∥sk∥2∥yk∥2
(sTk yk)

2
+ 4, (2.9)

λ−
k+1 = 1 +

a

2
− 1

2

√
a2 − 4

∥sk∥2∥yk∥2
(sTk yk)

2
+ 4.

Last, it is easy to prove that λ−
k+1 ≥ 1, and so λ+

k+1 ≥ λ−
k+1 ≥ 1(by (2.12) below).

The proof is complete.
In fact, by the formula of λ+

k+1, θk must satisfy

θk ≥ ∥yk∥2

sTk yk
+

2

∥sk∥2
√

∥sk∥2∥yk∥2 − (sTk yk)
2 (2.10)

or

0 < θk ≤ ∥yk∥2

sTk yk
− 2

∥sk∥2
√
∥sk∥2∥yk∥2 − (sTk yk)

2. (2.11)
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To remove the radical of (2.9), we match this formula into a complete square
formula. Then, by (2.5) and (2.10), it is easy to obtain

θk =
2∥yk∥2

sTk yk
, δk =

sTk yk
2∥yk∥2

, γk =
1

2
. (2.12)

By (2.1), (2.4) and (2.12), we obtain the search direction as follows:

dk+1 = − sTk yk
2∥yk∥2

gk+1 −
gTk+1yk

2∥yk∥2
sk +

gTk+1sk

2∥yk∥2
yk −

gTk+1sk

2sTk yk
sk. (2.13)

We now present our projection algorithm to deal with (1.1) by combining (2.13)
with the projection technology proposed by Solodov and Svaiter [11], and the search
direction dk is computed by

dk+1 = − sTk ȳk
2∥ȳk∥2

Fk+1 −
FT
k+1ȳk

2∥ȳk∥2
sk +

FT
k+1sk

2∥ȳk∥2
ȳk −

FT
k+1sk

2sTk ȳk
sk, (2.14)

where ȳk = Fk+1 − Fk + rsk, sk = xk+1 − xk,with r > 0 a constant.
The proposed algorithm is summarized as follows.

Algorithm 2.1.
Step 0: Given an initial point x0 ∈ Ω ⊂ Rn, and 0 < ρ < 1, 0 < σ < 1, r > 0,
ξ > 0, and ε > 0. Set k = 0.
Step 1: Let ||Fk|| ≤ ε, stop. Otherwise go to step 2.
Step 2: Computing dk: If k = 0, then dk = −Fk. Otherwise, dk+1 is computed by
(2.14).
Step 3: Set zk = xk + αkdk, and compute αk = ξρm in which m is the smallest
nonnegative integer such that

− F (zk)
T dk ≥ σαk||dk||2. (2.15)

Step 4: If zk ∈ Ω and F (zk) = 0, then xk+1 = zk, stop. Otherwise, the next
iterative point xk+1:

xk+1 = PΩ[xk − ξkF (zk)], (2.16)
where

ξk =
F (zk)

T (xk − zk)

||F (zk)||2
.

Step 5: Compute ȳk = Fk+1 −Fk + rsk, sk = xk+1 − xk, set k := k+1, go to step
1.
Remark 2.2. It can be proved that there always exists a nonnegative integer m
which satisfies the inequality (2.15). In fact, if the inequality (2.15) does not hold
for any nonnegative integer i, namely,

−F (xk + ξρidk)
T dk < σξρi∥dk∥2.

By the continuity of F , ρ ∈ (0, 1), and letting i → ∞, we obtain

− F (xk)
T dk ≤ 0. (2.17)

However, by Lemma 3.2 below, we have

−F (xk)
T dk ≥ c∥F (xk)∥2 > 0,

which contradicts (2.17).
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3. Convergence property
In this section, we discuss the convergence of Algorithm 2.1. We need the two
assumptions as follows:
(H1) The solution set of (1.1), denoted by Ω∗, is nonempty and closed.
(H2) The mapping F is Lipschitz continuous on Rn; that is, there exists constant

L > 0 such that
||F (x)− F (y)|| ≤ L||x− y||, ∀x, y ∈ Rn.

We give the following lemmas to prove the convergence of Algorithm 2.1.
Lemma 3.1. Suppose that assumptions (H1) − (H2) hold, and let {xk} and {zk}
be the sequences generated by Algorithm 2.1. Then we have

r∥sk∥2 ≤ sTk ȳk ≤ (L+ r)∥sk∥2. (3.1)
The detailed proof is similar to Lemma 3.1 which originates from [1]. Thus, we
omit the proof here.

Remark 3.1. By Cauchy-Schwarz inequality and (3.1), we have
r∥sk∥2 ≤ sTk ȳk ≤ ∥sk∥∥ȳk∥,

then we have
r∥sk∥ ≤ ∥ȳk∥. (3.2)

By the definition of ȳk, Cauchy-Schwarz inequality and (H2), we have
∥ȳk∥ ≤ ∥Fk+1 − Fk∥+ r∥sk∥ ≤ L∥xk+1 − xk∥+ r∥sk∥ ≤ (L+ r)∥sk∥. (3.3)

By (3.2) and (3.3), we have
r∥sk∥ ≤ ∥ȳk∥ ≤ (L+ r)∥sk∥. (3.4)

Combining (3.1) with (3.4), we obtain
r

(L+ r)2
≤ sTk ȳk

∥ȳk∥2
≤ L+ r

r2
. (3.5)

Lemma 3.2. Suppose that assumptions (H1) − (H2) hold, and let {xk} and {zk}
be the sequences generated by Algorithm 2.1. Then we have

FT
k+1dk+1 ≤ −c∥Fk+1∥2,

with c = min{1, r
2(L+r)2 }.

Proof. By (2.14) and (3.5), we have

FT
k+1dk+1 = FT

k+1

(
− sTk ȳk
2∥ȳk∥2

Fk+1 −
FT
k+1ȳk

2∥ȳk∥2
sk +

FT
k+1sk

2∥ȳk∥2
ȳk −

FT
k+1sk

2sTk ȳk
sk

)

= − sTk ȳk
2∥ȳk∥2

∥Fk+1∥2 −
FT
k+1ȳkF

T
k+1sk

2∥ȳk∥2
+

FT
k+1ȳkF

T
k+1sk

2∥ȳk∥2
−

(FT
k+1sk)

2

2sTk ȳk

≤ − sTk ȳk
2∥ȳk∥2

∥Fk+1∥2

≤ − r

2(L+ r)2
∥Fk+1∥2,
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with c = min{1, r
2(L+r)2 }. We complete the proof.

Lemma 3.3. Suppose that assumptions (H1) − (H2) hold, and let {xk} and {zk}
be the sequences generated by Algorithm 2.1. Then we have

αk ≥ min ρ

{
1,

c||Fk||2

(L+ σ)||dk||2

}
.

The detailed proof is similar to Lemma 3.1 which originates from [1]. Thus, we
omit the proof here.

Lemma 3.4. Suppose that assumptions (H1) − (H2) hold. Let dk be the search
direction determined by Algorithm 2.1. Then we have

∥dk+1∥ ≤ A∥Fk+1∥, αk ≥ B,

where

A = max

{
L+ r

2r2
+

1

r
+

1

2r
, 1

}
,

B = min ρ

{
1,

c

(L+ σ)A2

}
.

Proof. By (2.14),(3.1) and (3.4), then we have

∥dk+1∥ ≤ sTk ȳk
2∥ȳk∥2

∥Fk+1∥+
∥sk∥
2∥ȳk∥

∥Fk+1∥+
∥sk∥
2∥ȳk∥

∥Fk+1∥+
∥sk∥2

2sTk ȳk
∥Fk+1∥

≤ (L+ r)∥sk∥2

2∥ȳk∥2
∥Fk+1∥+

∥sk∥
∥ȳk∥

∥Fk+1∥+
∥sk∥2

2sTk ȳk
∥Fk+1∥

≤ L+ r

2r2
∥Fk+1∥+

1

r
∥Fk+1∥+

1

2r
∥Fk+1∥.

Let A = max
{

L+r
2r2 + 1

r + 1
2r , 1

}
. By this inequality and Lemma 3.3 we obtain

the second inequality. The proof is complete.

Remark 3.2. By the boundedness of {xk} (by Lemma 3.5 below) and (H2), there
exists a constant ζ > 0 such that ∥Fk∥ ≤ ζ, ∀k ≥ 0. By Lemma 3.4, we have
∥dk∥ ≤ A∥Fk∥ ≤ Aζ, ∀k ≥ 0. Thus {∥dk∥} is bounded. The following result shows
the global convergence of Algorithm 2.1.

Lemma 3.5. Suppose that assumptions (H1) − (H2) hold, and let {xk} and {zk}
be the sequences generated by Algorithm 2.1. ∀x∗ ∈ Ω∗. Then we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − xk∥2.

In particular, the sequence {xk} is bounded and

lim
k→∞

∥xk+1 − xk∥ = 0.

Furthermore,
lim
k→∞

αk∥dk∥ = 0.
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The detailed proof is similar to Lemma 3.5 which originates from [1]. Thus, we
omit the proof here.

Theorem 3.1. Suppose that assumptions (H1) − (H2) hold, and let {xk} be the
sequence generated by Algorithm 2.1. Then we have

lim
k→∞

||Fk|| = 0.

The detailed proof is similar to Theorem 3.1 which originates from [1]. Thus, we
omit the proof here.

4. R-linear convergence rate
In order to prove the R-linear convergence rate of Algorithm 2.1, an extra assump-
tion should be added:

(H3) For any x∗ ∈ Ω∗, there exist positive constants µ and δ and µ ∈ (0, 1) such
that

µdist(x,Ω∗) ≤ ||F (x)||, ∀x ∈ N(x∗, δ),

where dist(x,Ω∗) denotes the distance from x to the solution set Ω∗, and

N(x∗, δ) = {x ∈ Rn||x− x∗|| ≤ δ}. (4.1)

The following result gives the R-linear convergence rate of Algorithm 2.1.
Theorem 4.1. Suppose assumptions (H1) − (H3) hold. Let {xk} be the sequence
generated by Algorithm 2.1.Then, the sequence {dist(xk,Ω

∗)} is Q-linearly conver-
gent to 0 and the sequence {xk} is R-linear convergent to x̄ ∈ Ω∗.

The detailed proof is similar to Theorem 4.1 which originates from [1]. Thus,
we omit the proof here.

5. Numerical results
In this section, we present some numerical results to show the performance of our
algorithm. Because of our method involving the relative matrices, the methods
(A1(Algorithm 2.1a) [4] and A2(Algorithm 2.1b) [4]) proposed by [1] also involves
it. Therefore, we compare them in terms of NI, NF, and CPU time, where “NI”
and “NF” represent the iterative number, and the iterative number of function
value, respectively.The parameters of compared algorithms are taken from [1]. We
choose the parameters for the line search employed as σ = 10−4, r = 1, ξ = 1,
ρ = 0.4. The terminate conditions for three algorithms are obtained by [4]. The
coding environment for the algorithms are Matlab R2017a and run on a PC with
2.30 GHZ CPU processor and RAM 8.00 GB.

The tested problems are as follows:

Problem 5.1. The problem is taken from [6]. The mapping F is taken as F (x) =
(f1(x), f2(x), · · · , fn(x))T , where

f1(x) = x1 − exp cos((x1 + x2)/2),

fi(x) = xi − exp cos((xi−1 + xi + xi+1)/i), i = 2, 3, · · · , n− 1,
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fn(x) = xn − exp cos((xn−1 + xn)/n),

and Ω = Rn
+.

Table 1. The experiment results of Problem 5.1 for three algorithms

A1 A2 Algorithm 2.1
IP Dim NI/NF/CPU/FV NI/NF/CPU/FV NI/NF/CPU/FV
X1 20000 27/17/0.10/4.79e-6 27/17/0.09/4.79e-6 27/2/0.07/6.60e-6

80000 27/16/0.38/7.30e-6 27/16/0.36/7.30e-6 28/2/0.34/5.66e-6
100000 28/17/0.49/2.88e-6 28/17/0.50/2.88e-6 28/2/0.46/6.06e-6

X2 20000 29/19/0.10/8.94e-6 29/19/0.09/8.94e-6 27/2/0.09/6.14e-6
80000 32/21/0.46/4.17e-6 32/21/0.43/4.17e-6 27/2/0.34/9.46e-6
100000 33/22/0.59/3.23e-6 33/22/0.62/3.23e-6 28/2/0.43/5.62e-6

X3 20000 31/20/0.11/2.64e-6 31/20/0.10/2.64e-6 27/2/0.08/7.11e-6
80000 32/20/0.48/1.30e-6 32/20/0.47/1.30e-6 28/2/0.36/6.07e-6
100000 31/19/0.53/3.92e-6 31/19/0.58/3.92e-6 28/2/0.45/6.51e-6

X4 20000 28/18/0.11/6.36e-6 28/18/0.12/6.36e-6 27/2/0.08/7.78e-6
80000 29/17/0.38/6.01e-6 29/17/0.36/6.01e-6 28/2/0.31/6.67e-6
100000 30/18/0.61/3.12e-6 30/18/0.57/3.12e-6 28/2/0.44/7.15e-6

X5 20000 29/18/0.10/7.13e-6 29/18/0.13/7.13e-6 27/2/0.09/8.79e-6
80000 31/19/0.46/4.92e-6 31/19/0.58/4.92e-6 28/2/0.35/7.54e-6
100000 31/19/0.60/3.66e-6 31/19/0.66/3.66e-6 28/2/0.46/8.09e-6

X6 20000 32/21/0.13/4.31e-6 32/21/0.14/4.31e-6 27/2/0.11/6.93e-6
80000 31/19/0.43/3.25e-6 31/19/0.54/3.25e-6 28/2/0.57/5.92e-6
100000 31/19/0.65/4.42e-6 31/19/0.59/4.42e-6 28/2/0.43/6.35e-6

X7 20000 33/21/0.13/3.92e-6 33/21/0.13/3.92e-6 30/2/0.09/8.04e-6
80000 33/20/0.50/1.85e-6 33/20/0.50/1.85e-6 31/2/0.38/6.91e-6
100000 33/19/0.61/4.15e-6 33/19/0.59/4.15e-6 31/2/0.48/7.40e-6

Problem 5.2. The problem is from [4]. The mapping F is taken as F (x) =
(f1(x), f2(x), · · · , fn(x))T , where

f1(x) = x1(2x
2
1 + 2x2

2)− 1,

fi(x) = xi(x
2
i−1 + 2x2

i + x2
i+1)− 1, i = 2, 3, · · · , n− 1,

fn(x) = xn(2x
2
n−1 + 2x2

n)− 1,

and Ω = Rn
+.

Problem 5.3. The problem is from [12]. Let Ω = Rn
+ and the mapping F be

F (x) = (f1(x), f2(x), · · · , fn(x))T , where where fi(x) = expxi − 1, i = 1, 2, · · · , n,
and Ω = Rn

+.
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Table 2. The experiment results of Problem 5.2 for three algorithms

A1 A2 Algorithm 2.1
Dim IP NI/NF/CPU/FV NI/NF/CPU/FV NI/NF/CPU/FV
5000 X1 14/26/0.02/2.59e-6 14/26/0.02/2.59e-6 12/4/0.02/1.96e-6

X2 14/24/0.02/4.32e-6 14/24/0.02/4.32e-6 11/4/0.02/4.32e-6
X3 15/31/0.01/3.68e-6 15/31/0.01/3.60e-6 18/8/0.02/2.92e-6
X4 14/25/0.01/7.04e-6 14/25/0.01/7.04e-6 11/5/0.02/4.59e-6
X5 32/57/0.02/6.02e-6 31/55/0.01/8.33e-6 20/4/0.01/4.62e-6

20000 X1 15/27/0.03/2.71e-6 15/27/0.04/2.71e-6 12/4/0.03/3.91e-6
X2 14/24/0.03/8.65e-6 14/24/0.03/8.65e-6 11/4/0.02/8.63e-6
X3 15/31/0.02/7.20e-6 15/31/0.02/7.20e-6 18/8/0.03/5.83e-6
X4 13/21/0.03/3.30e-6 13/21/0.02/3.30e-6 11/5/0.02/9.17e-6
X5 33/59/0.05/5.78e-6 32/57/0.04/7.92e-6 20/4/0.02/9.24e-6

30000 X1 15/27/0.04/3.32e-6 15/27/0.05/3.32e-6 12/4/0.03/4.79e-6
X2 15/26/0.04/2.52e-6 15/26/0.04/2.52e-6 12/4/0.03/1.83e-6
X3 15/31/0.05/8.82e-6 15/31/0.04/8.82e-6 18/8/0.04/7.15e-6
X4 13/21/0.04/4.04e-6 13/21/0.04/4.04e-6 12/5/0.03/1.95e-6
X5 39/69/0.09/7.51e-6 37/65/0.08/7.21e-6 21/4/0.04/4.64e-6

100000 X1 15/27/0.09/6.06e-6 15/27/0.11/6.06e-6 12/4/0.07/8.75e-6
X2 15/24/0.09/3.67e-6 15/24/0.10/3.67e-6 12/4/0.07/3.35e-6
X3 16/33/0.12/6.99e-6 16/33/0.13/6.99e-6 19/8/0.11/2.26e-6
X4 13/21/0.09/7.37e-6 13/21/0.09/7.37e-6 12/5/0.07/3.56e-6
X5 44/77/0.29/6.79e-6 40/69/0.25/7.37e-6 21/4/0.10/8.48e-6

Problem 5.4. The problem is from [21]. The mapping F is taken as F (x) =
(f1(x), f2(x), · · · , fn(x))T , where

f1(x) = 2x1 − x2 + expx1 − 1,

fi(x) = −xi−1 + 2xi − xi+1 + expxi − 1, i = 2, 3, · · · , n− 1,

fn(x) = −xn−1 + 2xn + expxn − 1,

and Ω = Rn
+.

For testing Problem 5.1, the initial point are showed as follows:

X1 = (1, 1, · · · , 1)T , X2 = (
1

n
,
2

n
, · · · , 1)T , X3=(

1

2
,
1

22
, · · · , 1

2n
)T ,

X4=(1− 1

n
, 1− 2

n
, · · · , 0)T , X5=(1,

1

2
, · · · , 1

n
)T , X6=(0, 0, · · · , 0)T ,

X7=(10, 10, · · · , 10)T .

The detailed results are listed in Table 1.
For testing Problem 5.2, the initial point are showed as follows:

X1=(1, 1, · · · , 1)T , X2 = (0, 0, · · · , 0)T , X3 = (10, 10, · · · , 10)T ,
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Table 3. The experiment results of Problem 5.3 for three algorithms

A1 A2 Algorithm 2.1
IP Dim NI/NF/CPU/FV NI/NF/CPU/FV NI/NF/CPU/FV
X1 5000 21/22/0.03/8.78e-6 21/22/0.02/8.78e-6 17/2/0.01/5.51e-6

30000 21/22/0.05/8.78e-6 21/22/0.05/8.78e-6 17/2/0.04/5.51e-6
80000 21/22/0.10/8.78e-6 21/22/0.10/8.78e-6 17/2/0.07/5.51e-6
100000 21/22/0.12/8.78e-6 21/22/0.13/8.78e-6 17/2/0.08/5.51e-6

X2 5000 22/23/0.01/8.69e-6 22/23/0.02/8.69e-6 19/2/0.02/5.16e-6
30000 22/23/0.06/8.69e-6 22/23/0.05/8.69e-6 19/2/0.04/5.16e-6
80000 22/23/0.11/8.69e-6 22/23/0.12/8.69e-6 19/2/0.09/5.16e-6
100000 22/23/0.15/8.69e-6 22/23/0.14/8.69e-6 19/2/0.11/5.16e-6

X3 5000 28/25/0.03/8.07e-6 28/25/0.02/8.07e-6 23/2/0.01/8.11e-6
30000 28/24/0.07/9.49e-6 28/24/0.07/9.49e-6 25/2/0.05/5.05e-6
80000 29/25/0.16/9.30e-6 29/25/0.17/9.30e-6 25/2/0.13/8.25e-6
100000 28/23/0.19/6.08e-6 28/23/0.20/6.08e-6 25/2/0.16/9.22e-6

X4 5000 26/25/0.02/8.39e-6 26/25/0.02/8.39e-6 22/2/0.02/5.28e-6
30000 26/24/0.06/9.51e-6 26/24/0.05/9.51e-6 23/2/0.05/6.46e-6
80000 27/25/0.14/9.31e-6 27/25/0.16/9.31e-6 24/2/0.11/5.28e-6
100000 25/22/0.18/9.56e-6 25/22/0.17/9.56e-6 24/2/0.14/5.90e-6

X5 5000 34/42/0.02/6.51e-6 34/42/0.03/6.51e-6 31/10/0.02/6.94e-6
30000 36/41/0.10/9.23e-6 36/41/0.09/9.23e-6 32/10/0.08/8.50e-6
80000 23/25/0.16/7.02e-6 23/25/0.16/7.02e-6 33/10/0.18/6.94e-6
100000 23/25/0.18/7.84e-6 23/25/0.20/7.84e-6 33/10/0.21/7.76e-6

X6 5000 30/29/0.02/6.95e-6 30/29/0.02/6.95e-6 22/2/0.01/6.46e-6
30000 31/27/0.06/8.82e-6 31/27/0.06/8.82e-6 23/2/0.06/7.92e-6
80000 32/27/0.18/6.85e-6 32/27/0.18/6.85e-5 24/2/0.11/6.46e-6
100000 32/27/0.23/7.65e-6 32/27/0.21/7.65e-6 24/2/0.16/7.23e-6

X4 = (
1

3
,
1

3
, · · · , 1

3
)T , X5 = (−1

4
,
1

4
, · · · , (−1)i

1

4
)T .

The detailed results are listed in Table 2.
For testing Problem 5.3, the initial point are showed as follows:

X1 = (
1

2
,
1

22
, · · · , 1

2n
)T , X2 = (1,

1

2
, · · · , 1

n
)T , X3 = (

1

n
,
2

n
, · · · , 1)T ,

X4 = (−1

4
,
1

4
, · · · , (−1)i

1

4
)T , X5 = (10, 10, · · · , 10)T , X6 = (

1

3
,
1

3
, · · · , 1

3
)T .

The detailed results are showed in Table 3.
For testing Problem 5.4, the dimension of X is 20000, and the initial points are

showed as follows:

X1 = (
1

3
,
1

3
, · · · , 1

3
)T , X2 = (

1

n
,
2

n
, · · · , 1)T , X3 = (

1

2
,
1

22
, · · · , 1

2n
)T ,
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X4 = (−1

4
,
1

4
, · · · , (−1)i

1

4
)T , X5 = (1,

1

2
, · · · , 1

n
)T , X6 = (1, 1, · · · , 1)T ,

X7 = (1− 1

n
, 1− 2

n
, · · · , 0)T , X8 = (

1

n
,
1

n
, · · · , 1

n
)T , X9 = (

1

5
,
1

5
, · · · , 1

5
)T ,

X10 = (10, 10, · · · , 10)T , X11 = (
1

3
,
1

32
, · · · , 1

3n
)T , X12 = (1,

1

22
, · · · , 1

n2
)T ,

X13 = (0.1, 0.1, · · · , 0.1)T , X14 = (
1

n
− 1,

2

n
− 1, · · · , 0)T , X15 = (5, 5, · · · , 5)T .

The detailed results are showed in Table 4.

Table 4. The experiment results of Problem 5.4 for three algorithms

A1 A2 Algorithm 2.1
IP NI/NF/CPU/FV NI/NF/CPU/FV NI/NF/CPU/FV
X1 137/204/0.33/9.33e-6 137/204/0.33/9.33e-6 46/2/0.07/7.64e-6
X2 131/214/0.32/8.42e-6 132/215/0.31/8.89e-6 43/3/0.08/4.82e-6
X3 74/120/0.12/8.23e-6 74/120/0.13/8.23e-6 22/3/0.05/5.69e-6
X4 67/118/0.20/9.57e-6 67/118/0.19/9.57e-6 33/3/0.08/8.60e-6
X5 78/131/0.18/8.81e-6 78/131/0.15/8.81e-6 28/3/0.04/6.92e-6
X6 107/202/0.28/9.35e-6 132/228/0.30/8.92e-6 49/3/0.09/6.22e-6
X7 131/214/0.29/8.43e-6 132/215/0.29/8.94e-6 43/3/0.06/5.16e-6
X8 51/76/0.12/9.78e-6 5151/76/0.11/9.78e-6 18/2/0.04/7.09e-6
X9 134/197/0.36/9.89e-6 134/197/0.27/9.89e-6 40/2/0.06/7.12e-6
X10 149/256/0.35/8.55e-6 149/256/0.36/8.55e-6 53/10/0.08/6.71e-6
X11 54/95/0.09/8.69e-6 54/95/0.09/8.69e-6 22/3/0.04/6.20e-6
X12 56/98/0.10/9.92e-6 56/98/0.09/9.92e-6 25/3/0.03/6.90e-6
X13 128/190/0.29/8.60e-6 128/190/0.28/8.60e-6 38/2/0.05/3.74e-6
X14 48/88/0.12/9.01e-6 48/88/0.10/9.01e-6 32/2/0.06/5.86e-6
X15 133/215/0.31/8.26e-6 132/212/0.27/8.20e-6 44/6/0.08/3.08e-6

In Table 5, the initial points are generated by the command rand (0,1) in Matlab
for Problem 5.1-5.4.

In Tables 1-5, “Dim” represents the problem dimension, and “IP” represents the
initial points. “P” represents the testing problem,“FV” represents the final value of
||Fk||. From Tables 1-5, we can see that our algorithm outperforms the compared
algorithms above mentioned in term of “NI”, “NF”, “CPU” for testing problems.
For Problem 5.1 and Problem 5.3, the reported results in Table 1 and 3 showed
that our algorithm is insensitive to the initial points and dimensions. For Problem
5.2, the reported results in Table 2 illustrated that our algorithm is sensitive to
the initial points and insensitive to the dimensions. For Problem 5.4, the reported
results in Table 4 that our algorithm is sensitive to the initial points. From Tables
1-5, we noticed that our algorithm is far better than compared algorithms in terms
of NF, and so we didn’t draw the performance curve proposed by Dolan and Morè [3]
of NF. Then, we obtain Figures 1 and 2. We can see from Figures 1 and 2 that our
algorithm is more competitive with compared algorithms in term of CPU and NI.
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Table 5. The experiment results of Problem 5.1-5.4 for three algorithms

A1 A2 Algorithm 2.1
P Dim NI/NF/CPU/FV NI/NF/CPU/FV NI/NF/CPU/FV
5.1 20000 27/17/0.09/4.50e-6 27/17/0.10/5.39e-6 27/2/0.07/8.24e-6

28/18/0.11/9.73e-6 28/18/0.10/4.14e-6 27/2/0.08/8.22e-6
80000 32/21/0.52/3.94e-6 32/20/0.40/7.10e-6 28/2/0.29/6.51e-6

30/19/0.39/4.69e-6 31/20/0.49/6.87e-6 28/2/0.30/7.05e-6
100000 33/21/0.54/1.83e-6 32/20/0.60/5.49e-6 28/2/0.46/6.88e-6

32/20/0.51/2.20e-6 31/19/0.47/5.84e-6 28/2/0.38/7.68e-6
5.2 20000 26/48/0.04/8.08e-6 25/45/0.05/6.26e-6 28/4/0.03/7.25e-6

27/51/0.04/8.93e-6 24/42/0.04/3.73e-6 28/4/0.02/8.79e-6
80000 35/55/0.15/6.77e-6 36/57/0.18/7.90e-6 29/4/0.09/8.65e-6

36/57/0.18/5.05e-6 35/55/0.15/8.84e-6 29/4/0.09/9.24e-6
100000 36/57/0.23/7.83e-6 36/57/0.20/4.60e-6 29/4/0.14/9.53e-6

37/59/0.21/4.66e-6 35/55/0.19/9.82e-6 30/4/0.11/5.58e-6
5.3 20000 28/24/0.04/7.77e-6 28/24/0.04/7.73e-6 24/2/0.04/8.19e-6

28/24/0.04/7.81e-6 28/24/0.04/7.71e-6 24/2/0.04/8.16e-6
80000 29/25/0.16/9.30e-6 29/25/0.17/9.32e-6 25/2/0.13/8.24e-6

29/25/0.17/9.28e-6 29/25/0.18/9.33e-6 25/2/0.14/8.23e-6
100000 28/23/0.20/6.11e-6 28/23/0.20/6.05e-6 25/2/0.16/9.20e-6

28/23/0.19/6.10e-6 28/23/0.19/6.09e-6 25/2/0.15/9.22e-6
5.4 20000 128/198/0.28/9.89e-6 125/196/0.29/8.24e-6 47/3/0.08/5.18e-6

132/203/0.30/8.14e-6 136/207/0.31/8.28e-6 42/3/0.06/6.38e-6
80000 134/199/1.05/9.84e-6 132/199/1.00/8.28e-6 43/4/0.28/9.22e-6

137/205/1.04/8.50e-6 136/204/1.22/8.54e-6 46/3/0.24/7.39e-6
100000 137/204/1.25/9.14e-6 135/202/1.30/9.23e-6 46/3/0.34/7.11e-6

133/197/1.22/8.34e-6 139/206/1.30/9.39e-6 44/3/0.28/8.70e-6

6. Applications in Compressive Sensing
In this section, compared with A1 [4] and A2 [4], we apply our algorithm for dealing
with a typical compressive sensing scenario in terms of MSE, NI and CPU time.

6.1. Compressive Sensing
Compressive sensing is a signal recovery technique for efficiently reconstructing a
sparse signal. It has been proved that this technique can effectively recover a sparse
signal from some sampling measurements whose number can be dramatically less
than the original signal, by solving the underdetermined linear systems.

Following [2], we consider the problem of recovering an unknown vector x0 ∈ Rn

from incomplete and contaminated observations:

b = Ax0 + e, (6.1)

where b ∈ Rk is the observed data, A ∈ Rk×n(k << n), and e ∈ Rk is an error term.
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Figure 1. Performance profiles of three algorithms with respect to the CPU time.
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Figure 2. Performance profiles of three algorithms with respect to the number of iteration.

(k << n) means that the number of sampling measurements can be dramatically
less than the original signal.

A regularization technique is used for overcoming the ill-conditioned nature of
matrix A in (6.1) when trying to recover the original signal x0 from noiseless ob-
servations b = Ax or noisy observations b = Ax + e. Therefore, to find the sparse
solutions x0 of (6.1) is to solve the following convex unconstrained optimization
problem:

min
x∈Rn

τ∥x∥1 +
1

2
∥b−Ax∥22, (6.2)

where τ > 0 is a parameter, ∥ν∥1 and ∥ν∥2 denote the l1-norm and l2-norm of
ν ∈ Rn, respectively.

Problem (6.2) can be transformed as a convex quadratic program problem, which
has been done in [4,5,7,13,19,20]. Splitting x ∈ Rn into positive and negative parts,
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we have
x = u− v, u ≥ 0, v ≥ 0, (6.3)

where ui = max{0, xi} and vi = max{−xi, 0} with i ∈ {1, 2, . . . , n}. By l1-norm,
the ∥x∥1 can be rewritten as

∥x∥1 = eTnu+ eTnv, (6.4)

where en = (1, 1, . . . , 1)T ∈ Rn.
Combining (6.3) and (6.4), Problem (6.2) can be rewritten as the bound-constrained

quadratic program as follows:

min
u,v

1

2
∥b−A(u− v)∥22 + τeTnu+ τeTnv, (6.5)

with u ≥ 0, v ≥ 0.
With the help of l2-norm defined by scalar product, Problem (6.5) can be rewrit-

ten in following form:
min
z≥0

1

2
zTHz + cT z, (6.6)

where

z =

u
v

 , c =

 τen −AT b

τen +AT b

 , H =

 ATA −ATA

−ATA ATA

 .

It is obvious that matrix H is positive semi-definite. So, Problem (6.6) is a
convex quadratic program problem. It was proved in [17] that z is a solution of
Problem (6.6) if and only if z is a solution of the equations:

F (z) = min{z,Hz + c} = 0, z ≥ 0, (6.7)

where the function F is vector valued, and the “min” is defined as componentwise
minimum.

From [9, Lemma 3] and [17, Lemma 2.2], we know that F : R2n → R2n is
Lipschitz continuous and monotone. Hence, Equation (6.7) can be effectively solved
by the proposed algorithms.

6.2. Numerical results
In this section, the parameters of our algorithm are chosen as: σ = 1×10−4, ρ = 0.6,
r = 1, ξ = 10. The parameters of A1 and A2 are taken from [4].

In our experiments, the main goal is to recover a sparse signal of size n from
k sampling measurements with Gaussian noise, in which the number of samples is
dramatically smaller than the size of the original signal. The quality of restoration
is measured by the mean of squared error (MSE):

MSE =
1

n
∥x0 − x∗∥2,

where x0 is the original signal and x∗ is the restored signal.
We select n = 212 and k = 210 for the present experiments. The original signal

x0 contains 28 randomly nonzero elements. The random matrix A is the Gaussian
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matrix generated by the commend rand(n, k) in Matlab. The measurements b is
obtained by

b = Ax0 + e,

where e is Gaussian noise with N(0, 10−4). In order to compare three algorithms
in relatively fair condition, we run the three codes from the same initial points and
use the same continuation technique for the selection of the parameter τ in (6.8).
The iteration starts with z0 = (u0, v0)

T with u0 = v0 = AT b, and the termination
condition is defined as

∥f(xk)− f(xk−1)∥
∥f(xk−1)∥

< 10−5,

where
f(x) = τ∥x∥1 +

1

2
∥b−Ax∥22 (6.8)

is the objective function.
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Figure 3. From top to bottom: the original signal, the measurements, and the reconstructed signals by
three algorithms.

Fig. 3 shows the original sparse signal x0, the measurements b, and the recon-
structed signal x∗ by three algorithms. Furthermore, to illustrate the performance
of three algorithms, we draw four figures to show their change trends of MSE(Fig.
4) and objective function values(Fig. 5) in terms of iteration number and CPU time
(in second), respectively. From Figures 3-5, we can observe that the original sig-
nal was reconstructed almost exactly from the measurements by three algorithms,
while our algorithm require less iteration numbers and CPU time than the other
algorithms. But, we could notice the MSE value of our algorithm is a little bigger
than the others.

For a fair comparison, we also did extra ten experiments where ten original
signals x0 were randomly generated and the results are shown in Table 6. Table
6 shows that our algorithm requires less iteration numbers and CPU time(s) than
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Figure 4. Plots of MSE versus iteration and time.
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Figure 5. Plots of objective function value versus iteration and time.

others for any of the ten original signals, but the MSE value of our algorithm is a
little bigger than the others.

7. Concluding remarks

In this paper, we developed a three-term CG-type projection method for dealing
with monotone nonlinear equations with convex constraints. The novelty of the
proposed method is that the method satisfies the quasi-Newton equation, and the
parameters are obtained by simplifying the maximum eigenvalue of the relative
matrices. We establish the global convergence and R-linear convergence are ob-
tained under mild assumptions. Furthermore, our algorithm can be also used for
dealing with compressive sensing efficiently. However there is an important issue
worth studying in the future research, the issue is how to improve the parameters
to obtain better the numerical performance of MSE value.
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Table 6. Ten experiment results for three algorithms

A1 A2 Algorithm 2.1
MSE/NI/CPU MSE/NI/CPU MSE/NI/CPU
1.19e-3/156/5.02 1.19e-3/116/3.66 9.87e-3/108/3.53
8.03e-4/186/6.03 8.10e-4/148/4.39 9.27e-3/118/3.72
7.31e-4/175/5.28 7.31e-4/136/4.16 6.00e-3/129/4.02
4.32e-4/182/5.63 4.32e-4/142/4.22 7.46e-3/127/3.89
6.60e-4/179/5.70 6.60e-4/139/4.80 9.64e-3/122/3.91
1.19e-3/184/5.84 1.19e-3/144/4.66 9.96e-3/127/4.22
1.48e-4/195/6.11 1.58e-4/151/4.75 7.88e-3/121/4.14
3.36e-4/197/5.98 3.91e-4/139/4.14 5.59e-3/129/4.08
5.68e-4/188/5.45 5.68e-4/147/4.44 9.22e-3/114/3.56
1.86e-4/213/6.48 2.13e-4/171/5.27 8.95e-3/124/4.23
5.70e-4/166/5.67 6.31e-4/119/3.50 7.56e-3/110/3.20
1.49e-3/159/4.78 1.25e-3/148/4.81 9.13e-3/119/3.80

Average 6.92e-4/181.7/5.66 6.85e-4/141.7/4.40 8.38e-3/120.7/3.86

References
[1] N. Andrei, A double parameter scaled BFGS method for unconstrained optimiza-

tion, J. Comput. Appl. Math., 2018, 332, 26–44.
[2] E. J. Candes, J. K. Romberg and T. Tao, Stable signal recovery from incomplete

and inaccurate measurements, Pure Appl. Math., 2006, 59, 1207–1223.
[3] E. D. Dolan and J. J. Morè, Benchmarking Optimization Sofeware with perfor-

mance profiles, Math. Program, 2002, 91, 201–213.
[4] P. Gao, C. He and Y. Liu, An adaptive family of projection methods for con-

strained monotone nonlinear equations with applications, Appl. Math. Comput.,
2019, 359, 1–16.

[5] P. Gao, T. Wang, X. Liu and Y. Wu, An effificient three-term conjugate gradient-
based algorithm involving spectral quotient for solving convex constrained mono-
tone nonlinear equations with applications, Comput. Appl. Math., 2022. Doi:
10.1007/s40314-022-01796-4.

[6] P. Gao and C. He, An efficient three-term conjugate gradient method
for nonlinear monotone equations with convex constraints, Calcolo, 2018.
Doi:10.1007/s10092-018-0291-2.

[7] A. S. Haliu, A. Majumder, M. Y. Waziri and K. Ahmed, Signal recovery with
convex constrained nonlinear monotone equations through conjugate gradient hy-
brid approach, Math. Comput. Simulat., 2021, 187, 520–539.

[8] J. Liu, Z. Lu, J. Xu, S. Wu and Z. Tu, An efficient projection-based algorithm
without Lipschitz continuity for large-scale nonlinear pseudo-monotone equations,
J. Comput. Appl. Math., 2022, 403, 113822.

[9] J. Pang, inext newton methods for the nonlinear complementary problem, Math.
Program, 1986, 36, 54–71.



Signal recovery with constrained monotone nonlinear equations 2025

[10] W. Sun and X. Yuan, Optimization Theory and methods, Nonlinear Program,
Springer Science+business Media, New York, 2005.

[11] M. V. Solodov and B. F. Svaiter, Reformulation: nonsmooth, piecewise smooth,
semismooth and smoothing methods, In: Fukushima, M., Qi, L.(eds.) A globally
convergent inexact Newton method for systems of monotone equations, Dor-
drecht: Kluwer Academic Publishers, 1998, 355–369.

[12] C. Wang, Y. Wang and C. Xu, A projection method for a system of nonlinear
monotone equations with convex constraints, Math. Methods Oper. Res., 2007,
66, 33–46.

[13] M. Y. Waziri, K. Ahmed, A. S. Halilu and J. Sabi’u, Two new Hager-Zhang
iterative schemes with improved parameter choices for monotone nonlinear sys-
tems and their applications in compressed sensing, Rairo-Oper. Res., 2021. Doi:
10.1051/ro/2021190.

[14] M. Y. Waziri, K. Ahmed and J. Sabi’u, A family of Hager-Zhang conjugate gra-
dient methods for system of monotone nonlinear equations, Appl. Math. Comput.,
2019, 361, 645–660.

[15] M. Y. Waziri, K. Ahmed and J. Sabi’u, A Dai-Liao conjugate gradient method
via modified secant equation for system of nonlinear equations, Arab. J. Math.,
2020, 9, 443–457.

[16] M. Y. Waziri, K. Ahmed and J. Sabi’u, Descent Perry conjugate gradient
methods for systems of monotone nonlinear equations, Numer. Algorithems, 2020,
85, 763–785.

[17] Y. Xiao, Q. Wang and Q. Hu, Non-smooth equations based method for l1-
norm problems with applications to compressed sensing, Nonlinear Anal., 2011,
74, 3570–3577.

[18] S. Yao and L. Ning, An adaptive three-term conjugate gradient method based
on self-scaling memoryless BFGS matrix, J. Comput. Appl. Math., 2018, 332,
72–85.

[19] J. Yin, J. Jian and X. Jiang, A hybrid three-term conjugate gradient projection
method for constrained nonlinear monotone equations with applications, Numer.
Algorithms, 2021, 88, 389–418.

[20] J. Yin, J. Jian and X. Jiang, A generalized hybrid CGPM-based algorithm
for solving large-scale convex constrained equations with applications to image
restoration, J. Comput. Appl. Math., 2021, 391, 113423.

[21] W. Zhou and D. Li, A globally convergent BFGS method for nonlinear mono-
tone equations without any merit functions, Math. Comput., 2008, 77, 2231–2240.


	Introduction
	The Proposed Algorithm
	Convergence property
	R-linear convergence rate
	Numerical results
	Applications in Compressive Sensing
	Compressive Sensing
	Numerical results

	Concluding remarks

