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STABILITY AND EXISTENCE OF SOLUTIONS
FOR A COUPLED SYSTEM OF FRACTIONAL
DIFFERENTIAL EQUATIONS*

Jun Qian'?, Youhui Su"f, Xiaoling Han®>' and Yongzhen Yun'

Abstract In this paper, we study a coupled system of Caputo type fractional
differential equations with integral boundary conditions. By Leray-Schauder
alternative theorem, the existence of solutions for the factional differential
system are obtained. The Hyers-Ulam stability of solutions is discussed and
sufficient conditions for the stability are developed. The main results are well
illustrated with examples and numerical simulation graphs. The interesting
point of this article is that it not only gives approximate graphs of solution by
using the iterative methods, but also verifies the Hyers-Ulam stability of the
coupling system by numerical simulation.
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1. Introduction

In recent years, fractional differential equations have attracted much attention be-
cause of their wide application in many fields, including fractal theory, potential
theory, biology, chemistry and diffusion [1,3-7,21,35]. For example, fractional
diffusion differential operators have been used to describe the diffusion in fractal
geometric media [21]. Considering that fractional differential equations can be ap-
plied to various practical problems, the study of fractional differential systems has
important value and significance. Fractional differential systems are more suitable
for describing the physical phenomena possessing memory and genetic characteris-
tics. Such as distributed-order dynamical systems [16], synchronization of coupled
fractional-order chaotic systems [11,12].

Solvability and stability are important research directions in the theory of frac-
tional differential systems. The Hyers-Ulam stability of differential equations is
the criterion for the existence of exact solutions near the approximate solutions of
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differential equations. There are a lot of theoretical research results on the stability
of fractional differential equations [2,9,13,18,19,29,34].

Bashir Ahmad [2] studied a coupled system of nonlinear fractional differential
equations

Dex(t) = f(t,z(t),y(t), DVy(t)), t € [0,T], I<a <2, 0<vy<1,
DBy(t) = g(t,z(t), D°x(t),y(t)), t € [0,T], 1< <2, 0<§<1,

with coupled nonlocal and integral boundary conditions of the form
T
20) = ko). [ (s) = matw. 0 € 0.7),

mm=¢@xA £(s) = pay (&), € € 0,71,

where D?, i = o, 3,7, 6 are Caputo fractional derivatives, p;, jup are real constants,
and f,g,h,¢ are given continuous functions. The existence of solutions for the
coupled system of nonlinear fractional differential equations with coupled nonlocal
and integral boundary conditions are obtained via contraction mapping principle
and Leray-Schauder alternative theorem.

In [19], the authors discussed a new coupled system of fractional differential
equations with derivative boundary conditions

Dox(t) = f(t,z(t),y(t), t€[0,T]), 1 < <2,
DPy(t) = g(t,x(t),y(t)), t € [0,T]), 1 < B <2,
2(0) = 0,2z(T) = ny'(p), p € [0,T],
y(0) = 0,y(T) = ¢a'(n), p € [0,T],

where D D?# are usual Caputo fractional derivatives, (,n are real constants,
and f,g € C([0,T] x R?,R). Based upon Leray-Schauder; s alternative and con-
traction mapping principle, the authors established the existence and uniqueness of
solutions for the new coupled system dependent on two constants, and proved that
the equations are Hyers-Ulam stable under some conditions.

In the literature mentioned above, although some authors have well studied
solutions of differential equations using fixed point theorem [10, 2528, 30, 31, 33],
numerical simulation have been rarely studied for the solutions of coupled systems
as well as Hyers-Ulam stablility [20, 24, 32]. Therefore, it is worth studying to
draw the approximate graphs of the solution and verify the stability of the system
by numerical simulation. So the current paper studies a new coupled system of
fractional differential equations and consider the boundary value problem for the
system with integral boundary conditions. Namely, we investigate the following
problem:

cDx(t) = f(t,z(t),y(t), 2" (t),y'(t), t€[0,T], 1 <a<?2,

(1.1)
“DPy(t) = g(t, x(t),y(t), ='(t),y'(t)), te[0,T], 1<B<2,
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with coupled integral boundary conditions, respectively, given by

o(T) =1 / y(r)dr, y(T) =6 / £(r)dr, 2(0) = y(0) = 0,

where ¢D* ¢ D? are Caputo fractional derivative, 1, § are real constants and énT? —
4 # 0. f,g € C([0,1] x R*, R) are given continuous functions. We obtain the
result that there is at least one solution through the Leray-Schauder alternative
theorem, and prove that the fractional differential equations are Hyers-Ulam stable
by definition. In addition, two examples are given to prove the conclusion. It is
worth noting that the approximate graphs of the solutions are given by iterative
method, and the stability of the equations is verified by numerical simulation.

The outline of this paper is as follows. In Section 2, we present some definitions
from fractional calculus and present an auxiliary lemma. Then in Section 3, the ex-
istence of solutions for the coupled system of nonlinear fractional differential equa-
tions with coupled integral boundary conditions are obtained by Leray-Schauder
alternative theorem. Section 4 discusses the Hyers-Ulam stability of solutions and
presents sufficient conditions for the stability. Some examples and numerical simu-
lations are given in the last section.

2. Preliminaries
In this section, we will present some preliminary concepts of fractional calculus and
an auxiliary lemma which will be used in this paper later.

Definition 2.1 ( [22]). The Riemann-Liouville fractional integral of order o > 0 of
a function f : (0,4+00) — R is given by

1 ! a—1
T / (t— )21 f(s)ds

provided that the right side is pointwise defined on (0, +00).

I°f(t) =

Definition 2.2 ( [17]). The Caputo fractional derivative of order o > 0 of a func-
tion f: (0,400) — R is given by

DS(0) = s [ (o s
provided that the right side is pointwise defined on (0,400), where n = [a] +
1, [@] denotes the integer part of «.
Lemma 2.1. Let u,v € C([0,T],R) then the unique solution for the problem
‘D(t) =u(t), t€[0,T], 1<a<2,
“Diy(t) = u(t), te[0,T], 1<F<2,

T T
/ T)dr, y(T) = 5/0 z(1)dr, (0) =y(0) =0

4tn T
x(t) TAF / Yu(s)ds — W/o (T — 5)Pv(s)ds
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277t T B 51 B 27’](% T » au s

+M(5)/0 (T — 5)°u(s)ds AaI‘(a)/O (T —5)%u(s)ds  (2.2)
L ' — 3 aflu $)ds
Fig €9 tuteas

and

T T
y(t):%t) /O (T — 5)°Lu(s)ds — —M /O (T — 5)%v(s)ds

AT (a ABT(B)
4t T Bt bt r _ ®ufe)ds
+W/o (T —s)" " v(s)ds ATaF(a)/O (T — s)%u(s)ds (2.3)
L t — ) u(s)ds
e A O

where A = onT? — 4 # 0.

Proof. The general solution of the system (2.1) can be written as
I .
z(t)=at+b+ —— / (t —$)*  u(s)ds, (2.4)
I'(a) Jo

yt) =ct+d+ ﬁ /0 (t — 5)°~u(s)ds, (2.5)

where a, b, ¢, d are unknown arbitrary constants.
Using the conditions z(0) = y(0) = 0 given by (2.1), we get b=d =0, so

1 ’ a—1
z(T) = aT + Ta)/o (T — 8)* “u(s)ds, (2.6)
=c —1 ' — )8 tu(s)ds
y(T) =T+ F(ﬂ),/o (T —s) (s)ds. (2.7)

Considering another boundary conditions

oT)=n [ yan, y@=s / " s(rya,

we get
T T
xz(T) = n/ <c7‘ + ﬁ/o (r— S)B_lv(s)ds> dr, (2.8)
1 T
_ 5/ ( + oy /0 (r— s)a—lu(s)ds> dr. (2.9)
By calculating the equation (2.6) and (2.8), we obtain

—74 ' — 5)* Ly(s)ds — ! — )P 1y S
‘Tma)/o(T) (s)d TMF(B)O< )P lu(s)d

2n [T b1 261
+Ar(5)/0 (T =) uls)ds = T pa /0 ds,
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_ 20 ! _g)a—1 — 20 ! — 5)P1(s)ds
c—AF(a)/O(T $)°~Lu(s)ds MF(B)/O(T 1P~1y(s)d

4 ! _g)p-1 7745 ! — 5)%(s)ds
+ATF(5)/0 (T — s)" " u(s)ds ATaF(a)/O (T — s)*v(s)ds.

Substituting the values of a and ¢ in (2.4), we obtain the solution (2.2) and (2.3).
This completes the proof. O

3. Main results

In this section, let E = {z: z € C([0,T]), =’ € C'([0,T])} be the space respectively

equipped with the norm ||z|| = sup |z| + sup |z/|. Consequently, the product
t€[0,T] t€[0,T]
space (E x E, ||-]]) is a Banach space endowed with the norm ||(z,y)|| = ||z||+||y]| for

any (z,y) € E x E.
In view of Lemma 2.1, define an operator T: E x E — E X E as

T(:C,y)(t) = (Tl(x,y)(t)7T2(x,y)(t)),

where

Ti(e.9)(0) = 7577 |, (T = 9 (5, 2(), (5)s 2 (51,1 (5))ds
T | C(T 905, 2(5),0(5), 2 (5), o' (5))ds
o | C(T = 9 gl 2(5),y(s), 2 (5), 4/ (9)ds
o [ 81 (600,01 5
w5 (1= ) (s, 2(5), y(5), 2 (5), o' (),

Ta(e)(®) = 5p07 | C (T = 9 (5,20, (5), 2 (51, (5))ds
ol [T 90t (6), 00691, )
3717 | (T = 9 gl 2(5),y(s), 2/ (5), 4/ (9)ds
s [ 9715006000, 0) 0t
57 (£ — )7 gls,5(),9(5), (), (5))ds.

For computational convenience, we set

AT T 2|n||8|T+2

K1 = 1R[aTte) T al(@) T (a+ 1)[Afal(a)’
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o, = AT ATt

2T JAIBL(B)  [AIB(B+1)T(B)’

Ko — 471 Tt 2|n||6|T+1

P 7 Alal(a) | T(a) ' (a+1)Alal(a)’
Aln|T? 2|n|T"

K4 =18+ D1 (e) T TABT()’

o AdTer N 4|87+

"7 ]AJaT(a) T [Ala(a + DI (a)

I 2|n||8|TA+2 N 418 N 58

T (B+DIAIBT(B)  |AIBT(B) T BT(B)’

.- s 4)6|T

* T JAlal(a) | |Ala(a+ DI(a)’

L, — 2|n||6| TP+ 4TP-Y Al

+ + .
(B+DIAIBL(B)  [A[BT(B)  T(B)
Some assumptions need to be listed to complete our results.

(H1) f,9:C(]0,T] x R* = R) are continuous functions.
(H2) There exist real constants m; > 0(i = 1,2, 3,4), such that, for any z; € R,

|f(t, 21, 22, @3, 24)| < Mo + ma|21] + ma|za| + malws| + malzl.
(H3) There exist real constants n;, > 0(i = 1, 2,3,4), such that, for any z; € R,
|9(t, w1, 2, w3, 24)| < no + nalar| + nalza| + ngles| + nafs|.

(H4) max{(K1 + K3+ L1+ Lg)m,» + (Kg + K4+ Loy + L4)nz} < 1.

1<i<4

Next we present the Leray-Schauder alternative theorem and obtain the main
results on the existence of solutions to the fractional differential equations by the
theorem.

Lemma 3.1 ([14]). Let F : E— E be a completely continuous operator. Let E(F) =
{z € E:x=M\F(x)} for some 0 < A < 1. Then either the set E(F') is unbounded
or F' has at least one fized point.

Lemma 3.2. Assume that (H1) to (H4) hold. Then the operator T is completely
continuous.

Proof. In view of the continuity of the function f, g, the operator T is continuous.
Let B C Ex FE be a bounded set. Then there exists positive constants A, Ao such
that

|f(s,2(s),y(5), 2 (5), 5 (8))] < A1y (s, 2(s),y(s), 2 (5),5/(5))] < Aa.
For ¢t € [0,T], (x,y) € B, we have

4t T a— ’ ’
Ty (z, y)(1)] < W/@ (T — s)* 7 f(s,2(5), y(s),2 (), 9/ (5))ds

& ' — ) 8als. z(s s). 2/ (s). v/ (s s
CTa L a0 () ()
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1 ' a—1 ’ ,
+m/0 (t — )27 f(s,2(s),y(s), 2 (s),y'(s))|ds

200t (T 8 ate a(s) uls). 2 (). of ()
+|AIF(5)/O(T )" g (s, 2 (s),y(s), 2'(s), 4/ (5))1d

2lldle [Ty e o
+|A|aI‘(a)/o (T = )| f(s,2(s),y(s),2"(5), 4/ (5))|ds
At (T e athlde (T

L ' _ Na—1 2”77“)\215 T Y
+F(a)/0(t s) d8+|A|F(,B)/O (T —s)"""ds

axnlldle (T .
o) J, "4
AINTY T 20 p||o]T
~ JAlal'(a)  al(a)  (a+1)Aal(a)
2/ A TP+ Aln| A TEH
|AIBL(B) " [AIB(B+ )I(B)’

this yields

AT T 2|n||6|T+2
T1 (2, y)(t)] < (|Aar(a) + ol () * (a+ 1>|A|Ofr(a)) .

<2|77|T5Jrl A|n| TP+ >
2

AIBT(3) T 1ABGB OB )
< KA1 + Koo,

It follows from (2.2) that

/ 4 4 a—1 / /
1 (2, y) (1) < TIAIF(a)/o (T =) f(s,2(5),y(s),2'(s),y'(s))|ds

4|77| g _SB s.x(s s). 2 (s). v (s s
il [ = 5 g9 0(5). (9, ()

a—1

iy | 0 () (s)a0). o/ ()

b [ oo, (60,0060, s
|A2||le(g ) OT( $)*1f(s,2(s),y(s),2'(s), ¥/ (s))lds

= T|§|)\F1 /0 — )" lds + Té'@?zﬁ / — 5)Pds
Y a—l / - |2AH|77F|A2 /T S
lmgw s

AN T 1 )\ Ta—1 2/\1|n||5|TQ+1
~ |Alal(a) © Tla)  (a+1)[Aal(a)
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Don|T? 2Xafn|T”
|AIB(B+1T(B)  |A|BT(B)’

this yields

|Ti (2, y)(t)] < (wap(a) T(a)  (a+ 1)|Alal(

4|8 2|8 )A
* (IAB(ﬁ+ @) [ABre) )
< K3\ + Ky)o.

aTe"! Tl o[y||é|Te ! )
A1
@)

Hence
Ty (z,y)| = S T (,y)(t)] + sup T} (z,y)(t)]
< (K1 + K3)M + (Ko + Ky)Xg.
Similarly
2|6‘Toz+1 4|5|T0¢+1
201 = (S * ot + )
( 2|n||§|TP+2 N 47" N T8 )A
(B+1)]AIBT(B)  [AlBT(B) * BT(B))
< Lid + Lo,
and
, 215|7 A[5|T
o0 = (s * e+ 177
( 2|77H5|Tﬁ+1 N 4781 +Tﬁl>)\
(B+D]AIBT() " |A|BT(B) T T(B) )
< LgAy + Lg)s.
Hence

[To(z,y)|| = sup |To(z,y)(t)| + sup |T3(z,y)(t)]
te(0,T] t€(0,T]

< (L1 4 L3)Ai + (L2 + La)o.

In consequence, we get

1T (2, )| = 1T (2, )| + [ T2 (2, )

< (Khv+ K3+ L1+ La)\i + (Ko + Ka+ Lo + La) Xo.

Thus, from the above inequalities, it follows that the operator T is uniformly

bounded.

Now it will prove that T is equicontinuous. Let t1,ts € [0,T] with ¢; < t2, we

have

Th (z,y)(t1) — Th(z,y)(t2)]
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Alts —t1) [T o1 o
SFIAT J, (2" (0,000,000 5Dl

At —t)[nl /
" TIAJBT(8) / = 5)7lg(s,2(s),y(s), 7' (s), 4/ (5))|ds

2tz — 1) — )2 Yg(s, z(s),y(s),2'(s), vy (s))|ds
NG /O(T )" g(s,2(s), y(s), #'(s), 4/ (s))|d

# 2O [ =91l 9 6Dl
: / (t2 - S)a_lf(svm(s)vy(s)vx/(s),y/(S))dS
0

0
- / (b — 9)* (s, 2(5), y(s), ' (5), 4/ (5))ds

4(t2 — t1)>\1 /T 1 to —t1 )\2‘77| / ,3
<—=_—r = T —s)* ds + T — s)7ds
TIAT(a) J, (T-9) T\A|BF

2l —t)de [T sery 2|n||6|<t2 t)As s
T TAN) /O(T ) s+ = A el (@) /O(T )*d

1 ! al _ (¢ —s)o7t s,2(s),y(s),2'(s),y'(s))|ds
+@/O ((t2 — 5) (t1 =) 1) | f(s,2(5), y(s),2"(5), 9/ (5))|d
1 t2 a—1 / /
+ (o) /tl (ta — )" f(s,2(5), y(s), 2 (s),4'(s))|ds
4(t27t1))\1Ta71 4(t27t1>)\2|’l7‘Tﬁ 2|’I’}|(t27t1)>\2Tﬂ+2‘7]H5|(f27tl)A1Ta+1
|Alal(a) |AIB(B+1)T(B) |ABT(B) (a+ D[Alal(a)
L " _sa—l_ _sa—l s L 2 _Sa—l S
g, (9 g s |
to—1t1 4)\1Ta_1 4)\2|’I]‘Tﬂ 2|T]|)\2Tﬁ 2|T]||5|)\1Tw"_1 A1 o« a
< R A e ) T & D

Then

|T1/(.T,y)(t1) - Tll(x’y)(t2)|

a—1 t2 a—2 / /
g | = (9,900, (9). 4 ()

/ (b — 5)* 2 F (s, 2(5), y(s), 2 (5), 4/ (5))ds

<

~—

[}

a—1
I'(«)

<

/O ((t2— )% — (0 — 9)°72) | (s, 2(s), y(s). 2 (), (5))ds

a—1

R —
A

| = 9 (). (0) 0 0). 0

t2< )
1(a—1) h — )2 (4, —)2) ds A(a—1)
I(a) V ((t2=s) = (t1=s) ”‘* I(a)

<

ta
/ (ty — 5)* 2ds
ty

S5 =17,

(@)

<
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Similarly, we obtain
T2 (2, y)(t1) — To(z, y)(t2)]
<t2—t1< 416\ M\ T 21|\ T 2[n|[d| A TAH! 4A2Tﬂ1>
= TAT \ala+ DT(@) " al(a) ' (B+DALE)  AL(B)

A2 8 .8
JFm(tz —t7),

and

/ / )\2 —1 —1
Th(ar ) (0) = T )(e2)| < F (67" = 7).

Therefore, when t; — t1, the right-hand side of the above inequality approach
to zero. So the operator T is equicontinuous. It follows from the virtue of the
Arzela-Ascoli theorem that the operator T is completely continuous. O

Theorem 3.1. Assume that (H1) to (H4) hold. Then the problem (1.1) has at least
one solution.

Proof. We will show that the set Z = {(z,y) € E x E : (z,y) = hT(x,y), 0 <
h <1} is bounded.
For t € [0,T], let (x,y) € Z and (z,y) = hT(z,y), we get

z(t) = hT1(z,y)(t), y(t) = hlz(z,y)(t).
Then

[2(8)] < [Ta(z, y)(®)]

< i [ 975620, s
+T|A4|tgyr|(m/OT(T_8)6|g(37x(s)7y(s),x’(s)7y’(S))IdS
oo | (¢ = 9115209, 405, ' (6), 4 ()1 ds
+|A2|Igl(; ) / C (1= 5P Mgl 2(s), y(5), (), o/ ()l
+|Z|Z[Hr5(|2) /OT(T—s)a|f(s,x(s),y(8),9€/(3)7y/(s))ds

< (mo +malz(t)] + mal2’(8)] + msly(t)] + maly' (1))

7# ' — )% s L t —5)% s
X<T|A|r<a>/o(T s g [ -

ollalt [T
+tarl J, @ ”)

+(no +nalz(t)| + nala’ ()] + naly(t| + naly’ ()])

atlgl (" 2t " ~
(it [ @ e i ) @ -ora)
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( are 1 2In||8|T+2 )
~ \JAlal(a)  aol'(a)  (a+ 1)|Alal(a)
(mo + ma|z(t)] + mala’(t)] + masly(t)| + maly' (t)])
<277|>\2Tﬁ+1 n Al A TP+ )
[AIBT(B)  |AIB(B+ 1)I(B)
(no + n1lz(t)] + nala’(t)| + naly(t)] + naly'(t)])
< Ki(mo +malz(t)] +malz’ (t)] + ms|y(t)] + maly'(t)])
+Ka(no + |z (t)] + nal2’ (8)] + nsly ()] + naly' (1)),

and

2" ()] < |T1 (2, 9)(t)]
4 ’ a—1 ’ ’
< AT J, 0 7 e 2(6), )./, ()l

% ’ — \Ba(s. 2(s s). 2/ (s). 4 (s o
o [ 0 a9 5(5) ), ()

a—1
I'(a)

2p /T s 2l u(s). (). o (s))ds
IAIF(,B)/O(T )P Hg(s, x(s), y(s), 7' (s),y'(s))|d

T A&—W”U@d%ﬂ%f@wﬁmw

+

2mlls] [T e o
+|A|af(a)/0 (T = ) (s,2(5),y(s), 2 (s), ' (s))ds

< (mo + malz(t)] + mal2’(8)] + msly(t)] + maly' (£)])

4)\1 T _s a—1 s )\1(0[— 1) K —s a—2 s
X(ﬂNNMA(T sk 2 [ o

ol [T e
ey y 7 >d>

+(no + nalz(t)] + nal2’(£)] + naly(t] + naly'(£)))

2[|nl[A2 ’ _ 5)P14s 4|n|A2 g _ 5)Bds
XQNN@A(T st il J, @0

< (mo + mla(t)] + mala’ (1) + maly(t)] + maly'(1)])
< AT el gpy||s|Tet! >
[Alal(e) (@) (a+1[Alal(@)
+(n0 +na |z (0)| + n2|2’ (8)] + nsly(B)] + naly’ ()])

4Jn|T° 2|18
XQAW@+anYWAwmm)
< Ky(mo + ma|o(t)] + mala’ (1)) + maly(t)] + maly/ ()]
+K4(no + nilz(t)] + nalz’ (t)]| + nsly(t)| + naly' (t)]).

Consequently, we have

2]l = sup |2(t)] + sup [2'(¢)]
te[0,T)

te[0,T]
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< (K1 + K3)(mo + ma|z| + me|2’| + msly| + maly'|)
+ (K2 + Kq)(no + nilz| + nola’| + nsly| + naly'l),

and

sup |y(t)| + sup [y (1)l

t€[0,T] te[0,T]
(L1 + L3)(mo + ma|z| + mo|z’| + msly| + maly’])
+(La 4 La)(no + na|z| 4+ nal2'| + n3ly| + naly']),

lyl

IN

this means that

llzll + llyll < (K1 + K3+ Ly + Lg)mo + (K2 + K4 + La + Ly)ng
+((K1+ Ks+ Ly + L3)my + (Ko + K4 + Lo + Ly)ny) ||
+((K1 + K3+ L1 + Lg)ma + (K2 + K4 + Lo + La)no)|2’|
+((K1 4+ K3 + L1 + L3)ms + (K2 + K4 4+ Lo + Ly)na)|y|
+((K1 + K3 + Ly + Lz)my + (Ko + Ky + Lo + La)na)|y/|
< (K1 + K3+ L1+ L3)mo + (Ko + K4 + Lo + Ly)ng

izl + pllyll,

together with ||(z,v)|| = ||z| + |ly||, we have

(Ki 4 K3 + Ly + Lz)mo + (K + Ky + Lo + Ly)no

I—p
where p = 1rr<1?<>i{(K1 + K3+ L1+ L3)m; + (Ko + K4 + Ly + Ly)n;}. This shows

Iz, y)ll <

)

that Z is bounded. Lemma 3.1 applies and this proves that 7" has at least one fixed
point. This implies that the boundary value problem (1.1) has at least one solution
on [0,T]. O

4. Hyers-Ulam Stability

Definition 4.1 ( [15,23]). Let T* : E — E. F is a Banach space. The operator
equation

T u=u,u € F, (4.1)
is Hyers-Ulam stable if for the given inequality,
lu(t) — T*u(t)| < e,t € [0,T). (4.2)

There is N* > 0 such that for any u of the equation (4.2). We can find the solution
@ satisfing (4.1) such that the following is the case,

lu(t) —a(t)] < N'e,t € [0,T].

Now, let us consider two operators T; : E — FE, i € {1,2}. Based on Definition
4.1, the coupled system

(4.3)
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is Hyers-Ulam stable if for the given inequality:
z(t) — Tha(t)| <e,t €|0,T],
[o(t) = Tia(t)| < 1, € 0.7) w
|y(t) - TQy(t)| S 523t € [OaT}

There are two constants N1, No > 0 such that for each solution (z,y) of the in-
equality (4.4), there exists a unique solution (%, ¢) exists for the system (4.3) with
|z(t) — &(t)| < Nieq,t € (0,7,
|y(t) - g(t)l < Naeg,t € [OvT]

Remark 4.1. There are two function M (t), Mz(t) which depend on 2 and y and

satisfy
[M(t)] < e,

|Ma(t)] < €2,

CDai‘(t) - f(t>i(t)a?)(t),ff(t)aﬂl(t)) = Ml(t)7 te [O7T]7

cDﬁg(t) - g(tv :i(t)a g;/(t), 'j/(t)v g,(t)) = MQ(t)v te [07 T]
Theorem 4.1. Assume f,g: C([0,T] xR* — R) are continuous functions and exist
real constants Q1 > 0,Q2 > 0 such that, for all x; € R,i = 1,2,3,4, the following

and

inequalities are true
‘f(tﬁfla3727553a554)_f(t7y17il/27y3ay4)|

H5:
< Quilyr —z1|+]y2 — 22| +|ys —w3|+|ys —24]);
H6:  [g(t,x1, 72,73, 74) —g(t, Y1, Y2, Y3, Ya)|
< Qa2(ly1 — 21|+ |y2 — 22| +[ys — 23|+ |ya —z4l);
H7:  (Ky+ K3+ L+ Ly)Q1 + (Ka + Ky + Ly + Ly)Q2 < 1.

(HT7) hold. Then the solution of the boundary value prob-

Assume that (H5) to
lem (1.1) is Hyers-Ulam stable.
In view of condition and Remark 4.1, we have the following equations:

Proof.
/(t)) = Ml(t)a te [O’T]a
)

‘DE(t) = f(t,2(1),5(t), 2(1),9
— = MZ(t)a te [OaT]a (45)

gt &), 9(£), (1), 9 (¢)

“DPy(t)
o) = [ §yin, §@)=5 [ alrdr, 50 = 30) =0,
0 0
T2(2,9)(t) — 2(1)]
B L J /| Y P <

L ' — s a—1 s 2‘77|t T _ s B—1 s
e [ =0 s+ s [ =
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2llot [T e S
ARG | =9Il

4tey T a1 4t|n|eq T 5
= TAr<a>/o (T2 d”mwr(ﬁ)/o (T = #)"ds

¢ T T
£1 a1, 2llnlle2t g1, 2e1nlldt o
+7F(a)/0(t—s) d8+|A|F(ﬂ)/O (T—s) d8+7\A|aF(a)/O (T — s)%ds

4t€1Ta 4t|’l7‘€2T5+1 51T0‘ 2|’I7|€2Tﬁt 2€1|77||(5|Ta+1t

~ Tl|Alal(e) — TIA[B(B+1)E(B) — ol(a)  [A[BT(B)  (a+ 1)|Alal(e)
S Klé‘l + Kgé‘g.

By assumption (H4) and (H5), we have

[t 2(t), ' (1), y (1), y' (1)l
< 1f( (), 2" (), y(), y' (1) — f(£,0,0,0,0) +[(t,0,0,0,0)|
< Q)] + 2" @) + ly(®)] + 1y"@)]) + | £(£,0,0,0,0)],

and

t)) — f(¢,0,0,0,0)| + |g(t,0,0,0,0)]
< Qa([z()] + 2" ()] + [y(®)| + ¥/ (1)) + |g(t,0,0,0,0)],

which lead to

|lz(t) — (1)
=T (z,y) — T1(2,9) + Ta(2,9) — 2(t)|
< |Ti(z,y) — Ti(2,9)| + |Ta (2, §) — 22(t)]
4t T o R o A o
= T|A|r<a>/ (T —s)*ds@Qu(le — 3|+ o' = &' + |y = 9l + Iy = '])
4t|n| T R S ) o
+W/O (T—s)ﬁdSQz(\x—ﬂ—i—\x — &+ ly—gl+ 1y -]

]. /t —1 N ! ~/ ~ ! A~/
ter | (t=5)""dsQu(|lz — 2|+ [z =2+ |y =gl + v = 7))
I‘(a) 0

2|77|t /T B8—1 A / A ~ ! A~/
+ T —s5)""dsQa(|lz — 2|+ 2" =2 |+ ly—9|+ |y =7
Al ) @9 (e = 2]+ o’ = '] + |y — 9] + 1y’ — 9]

2|77||5|15/ . b R ;o
T — 5)*d — — - -
+Aaf(a) ; (T'—=8)*dsQq(|lz — 2|+ [ =3[+ |y =9l + [y = ¥|)
+K1€1+K2€2

( AT T° 2In||5|T+?

S+ ot e ) @l - @)l

2[n| A TA+! 4| AT A+ ) o
— K K
< ABTE) T 1A + i) ) @) = B0+ Kk + Kos
< K Qil[(w,y) — (2,9) || + K2Qol[(w,y) — (2,9) || + Kie1 + Kaeo
= (K1Q1 + K2Q2)|[(z,y) — (2,9)|| + Kie1 + Kaea,
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and similarly

ITL(2,9)(t) — &' (1))

T T
< a0 0l + s [ s
L_l ' — s a—2 s 2|77| r _s B—1 s
i, €0l + m [ - s anl
T

deq T a—1 4lnles r 8
<7¥MH&LA(T_S) d**ﬂAmrwa(T‘s>*

~1 t 2 r
+(Oé )61 / (t— 8)a_2d8+ ||77H€2 / (T— S)B_lds
0 0

['(«) |AIL(B)
2¢e1|n||d| /T
ERE e T — $)%ds
Aar(@) Jo 7%
de Tt g T 2e1|n||d|T+1 deg|n|T? 2eq|n|T?

~|Alel(a)  T(a)  (a+D[Alel(a)  [A[BB+DI(B)  |A|BL(B)
< Kzey + Kyeo,

which lead to
|2’ (t) — &' (t)]
=|T\(z,y) — T1(2,9) + T{(&,9) — 2'(¢)|

S |T1/(x’y) - Tll(i"g)l + |T1/(§3a A) - A/(t)|
4 T B R . . .
< m/o (T — )" 'dsQ(|z — 2|+ [2' — &'+ |y — 9| + [y — §])
e A dsQae — 5+ 10— ]+ y — 31+ 1y — )
o — 1 ¢ a—2 N 12 N ~ / ~/
‘*‘m O(f—s) dsQi(|lx — 2| + |o" = 2"+ ly =gl + |y = ')
T T AT e pa)
A J, T ds@ulle =+ o =&y =g+l =4
2L 7 syedsQula = a1 + I = &1+ ly— 1+ 1y~ )
‘A‘ar(a) ) 1 x X X y—y Yy Yy

+Kse1 + Kyeo
4Tt Tt 2|T]H6‘TO‘+1
B <|A|04F(Oé) I(a)  (a+1)|AleI(a)
B B
(|2A|n||213(7;3) + |A|;(|Z|)+\2§F(B)) Q2l[(z1,31) — (w2, 92)|| + K3e1 + Kaeo
< Ks@Qull(z,y) — (2, 9)| + KaQ2[(z,y) — (2, 9)|| + Kze1 + Kaez
= (K3Q1 + KiQ2)|(z,y) — (2,9)|| + Kze1 + Kaea.

)Qm@hmwwuwg|

Similarly,
ly(®) = ()] < (L1Q1 + La@Q2) (2, y) — (&, 9)|| + (Laer + Loea),
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ly' () = 9’ (0)] < (LsQ1 + LaQ2) | (2, y) — (2, 9)]| + (Lser + Laea).

From the above certificate it follows that

(2, y) = (&, 9)[| < (K14 Kz + L1 + L3)Q1[[(z,y) — (£,9)|
+(K2 + Ky + Lo + L4)Q2[(z, y) — (2,9) ||
+(K1+4+ K3+ Ly + L3)ey + (Ko + Ky + Ly + Ly)es.
ACCOI‘diDg to conditions QO:(KI +K3+L1+L3)Q1+(K2+K4+L2—|—L4)Q2 <1, we
get
(K1 + K3+ Ly + Ls)er + (Ko + Ky + Lo+ La)es

z, - j7A S
I(zy) - @9l 1— (K1 + K3+ Ly + L3)Q1 + (Ko + Ky + Lo + L4)Q2)
< Nie1 + Naea,

where
N, = Ky + K3+ L1+ L3
1— (K1 +Ks+ Ly + L3)Q1 + (K2 + Ky + Lo + L4)Q2)’
N, — Ko+ Ky+ Lo+ Ly .
1— (K1 + Kz + L1 + L3)Q1 + (K2 + Ka + Lo + L4)Q2)
Therefore, the boundary value problem (1.1) is Hyers-Ulam stable. O

5. Numerical simulation

In this section, the two examples are provided to show the flexibility of these cri-
teria. In addition, the approximate graphs of solutions are presented by using the
iterative methods, and the Hyers-Ulam stability of the coupling system is verified
by numerical simulation.

Example 5.1. Consider the following system of coupled fractional differential
equations

1 1 lz(2)] + |y(t)] + 2" ()| + |y’ ()]
‘D t) = t 1
elt) =gt 30 + 3012 » 1€[0,1],
end oy 1 lz(t)] + |y(t)] + 2" ()| + |y’ ()]
D3y =g * 60 + 6012 » 1€[0.1], (5-1)

T T
2(1) = / y(r)dr, y(1) =2 / #(r)dr, 2(0) = y(0) = 0,

_ 4 _5 _ _ _
wherea =3, f=3,T=1,7n=3, 6=2.
From the inequalities

(20,9001, (0),/ () = g5y + PO WO O WD)

P+ 551 (0)] + 551" ()] + 551/ (0]

IA
|
+
|

1 [z + ly@)] + 2" ()] + [y’ (1)]
60 + 60t2




2042 J. Qian, Y. Su, X. Han & Y. Yun

1 1 1., 1,
< 5+ gl O] + g lO1+ Sl @]+ Sl (),
Wehavem0:m1:m2:m3:m4:%, n0:n1:n2:n3:n4:6—10, on =
0.8345. Thus, all conditions of Theorem 3.1 are satisfied. Therefore, there exists at
least one solution of problem (5.1) on [0, 1].

Related iterative mimulation methods reference to [8,26]. The iterative method
indeed is the successive iterative method for finding the fixed point of operator T'. we
know the operator T' is contraction and the iterative method converges with the rate
of geometric progression. In the iteration process, the x,_1 obtained is substituted
into the z,, and z,, gradually converges to the final approximate solution x*.

The iterative sequences of solutions of fractional differential equations are defined
by formula (2.2) and (2.3). The simulated iterative process curve and approximate
solution of fractional differential equations (5.1) are given by simple iterative method
and numerical simulation. For the convenience of calculation, let 2(0) = y(0) = 0.
The iteration sequences are as follows,

a [ 1 1 |20 (8) [+ |yn (s)] + |25, (5)] + |yn(s)]
=2 [ n QI P
11 r(g)/o S <30+s2+ 30 + 3052 ’
12t (1 s 1 |2 (8) [+ [yn (8) [+ 27, ()| +|yn ()]
_ 1_ n n d
5p(g)/0( 9)? <6O+52+ 60 + 6052 ’
2t (! 2 1 |20 (8) [+ |yn (s)] + |25, (5)] + |yn(s)]
+r(;)/0 (1=9)* (60+32+ 60 + 60 ’
1 / /
o / 1ot (1 2+\xn(8)| + Iyn(5)|+|xn2(5)| lyn ()N
21“(7) 30+ s 30 + 305
RNV )l (G
F( 3O+32 30 + 30s2 ’
2t 1 |20 (8)] + [yn (8)] + |27, ()] + |y (s)]
Yna(t) = r(% )? <30+s2 30 + 3052 ’
18t 5 1 |20 (8) [+ [yn (8) [+ |27, () |+ |y7 ()]
- 1— E n n d
5r(§)/0( 8)% (60+32+ 60 -+ 6052 s
2t ! 2 1 |20 (8)] + [yn (8)] + |23 (5)] + lyn (s
= | (1= n
+r(g)/o( 5)? (60+52+ 60+ 6057
1
3 /(178)% ( L lea()l+ lyn(s)] 4l ()] + lyn (s )
T3/ 30+ 52 30 + 30s2
1o (1 |20 (8)] + [yn (s)] + |25 (8)] + lyn (s
— | (t—s)3 n ds,
+r(§)/0( 5)? <6O+52+ 60 + 6052 ’
, 2 /1 1 1 |20 (8)] + [yn (8)] + |27, ()] + |yn (s)]
=2 [~ d
()= gy J O g T 30 + 302 i
18 ! a0 1 |20 (8) [+ [y (8) [+ 27, (8)] + |yn (3)]
_ 1—35)7 n z d
5r(g)/0 (1=s) (60+32+ 60 -+ 602 s
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3 [ 2 1 |Zn (8)] + [yn(s)] + [25,(5)] + 95 (5)]
1—9)3 n d
+r(g)/o( ) (60+52 * 60 + 6052 °
1
1 n n
[ () (6) + ]
2T(3).Jo 30+s2 30 4 30s2

[ (S)Hyn () [l (5)] + lyn (s |>

30 + 3052

y;z—&-l (t) =

2 ! 1 1 ‘.13
1— )3
F(g)/o (1=2) <3O+s2 -

|z (s

n ()] + [Yn ()] + [27.(5)] + [y ()]
30 + 3052 )ds

18 /1(1—5)33‘) L
50(2)Jo 60+ 52

)|+ 1yn ()[4 |27, ()] + |yn(s)|
60 + 6052 )ds

42 /1(1 )§< LI
— -5
L(3) Jo 60 + s

[0 ()] + lyn(s)] + |, ()] + Iy;(8)|>ds
60 + 6052

_r(gg)/ol(l -9 (3041rs2 *

|20 (8)] + [yn(s)] + |25, (8)] + |y (5)]
30 + 3052 )ds

t
b2 /(tfs)*% L
3T(3) 60+ s2

s+ (Y,

60 + 6052

After several iterations, the approximate solution of fractional differential equa-

tions (5.1) can be obtained by using the nu

merical simulation. The absolute errors

for the iterative method to problem (5.1) are shown in Table 1, which demonstrates
the applicability of the iterative method. E(n) is the error between each iteration
and the previous iteration. Figure 1 and Figure 3 show the 10-iteration process of

the solution x(t),

y(t) of the equation. Figure 2 and Figure 4 show the 20-iteration

process of the solution z(t),y(¢) of the equation.

Table 1. The absolute errors in Example 5.1

E(n) for x,(t)

E(n) for yn(t)

E(n) for x,,(t)

E(n) for y,(t)

© 00 N O Otk W N3

SR
o .

3.2888139608e-02
1.2888350941e-02
5.0305867537e-03
1.9557818768e-03
7.5909844990e-04
2.9449158144e-04
1.1424018376e-04
4.4317165208e-05
1.7192221440e-05

3.7564895465e-08

9.1047973005e-03
3.9088210835¢-03
1.5762105991e-03
6.1635524997e-04
2.3912247866e-04
9.2684321853e-05
3.5938546041e-05
1.3939666044e-05
5.4075457600e-06

7.4539699555¢-09

8.5757601317e-02
1.5689159005e-02
6.2301029147e-03
2.4385422622e-03
9.4825485923e-04
3.6797753973e-04
1.4273857438e-04
5.5368969528e-05
2.1479001296e-05

4.5751245646e-08

4.0383372232e-02
1.5875059068e-02
6.2133360329¢-03
2.4199576778e-03
9.3992363819e-04
3.6471049156e-04
1.4148281585e-04
5.4884891015e-05
2.1291665969e-05

5.7316489753e-08
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0.25
0.2
0.15
=
0.1
0.05
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
. .ot t
Figure 1. 10-iteration process of z(t) Figure 2. 20-iteration process of z(t)
0.06 0.06
0.04 0.04
£ 0.02 £ 0.02
0 F 0 F
0.02 ‘ ‘ ‘ ‘ . 002 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t
Figure 3. 10-iteration process of y(t) . 20-i i
equations

t
Figure 4. 20-iteration process of y(t)

Example 5.2. Consider the following system of coupled fractional differential
4 1 | (t)] ly(t)] |2 ()] ly'(t)] )
cD3g(t) = + + + ,telo,1],
0= g5 (T oo T T ) €0
1 |2(t)] ly(t)] |2’ (t)] ly'(t)]
°D3
Syt )= 30+12 <1+|x(t)| + 1+ |y(t)] + 1+ |2/(¢)] +
T T
2(1)=10 [ y(r)dr, () =6 [ a(r)dr, 2(0) =y(0)
0 0

, t€ 10,1},

) €0

= 207

_4 pg_5 _ _

wherea =3, =3, T=1,7n=10, 6 =6
From the inequalities

(5.2)
‘ (t 1’1 t)’y

( ), y1 () — f(t x2(t), y2(t), 25(t), ya (1))
‘ le 2l ly2(t)]
25 + t2 1+|x1 1w T4 L+ ()

)l Ixz()\ I 10| I 1) )'
L[] T+[ah@) T+ @] 1+ [wh)]
(lz1 — 22| + |2} — 23] + |y1 — ya| + ¥} — val)
and

|27 (t)]

1
2

‘g(ta xl(t)’ Y1 (t)v g

(), 51 (1)) — g(t, ma(t), ya(t), x5(t), y5(t))|
:’ 1 (le(t) o za(®)] i |y1(t)]
304+t2 \1+|z1(8)] 1+ |z2(2)]
|21 ()] |25 ()]
@ T

2101
T+ [y(t)] 1+ |y2(t)]
W, (8)
T+ 0]

_ @) )'
L+lyi(®)] 1+ [ya(t)]




Stability and existence of solutions for a coupled system of. .. 2045

1
< 30 (J1 = @2 + |2} — 25 + |y — val + |y1 — v2l) ,

we have Q1 = 2%, Q2 = %, Qo = 0.3401. Thus, all conditions of Theorem 4.1 are
satisfied. Therefore, the problem (5.2) is Hyers-Ulam stable on [0, 1].

Next, the stability of the coupled system is proved by graphs, that is, the fol-
lowing inequality is verified,

E(e1,€2) = N1e1 + Noga — ||(z1,91) — (x2,92)]| > 0.

Let 1,69 € [0,1], t € [0,1]. The approximation to the left of the inequality is
represented by graphs. Figure 5, Figure 6 and Figure 7 are sectional views of the
equation E(e1,e9) with respect to €1, e9,¢. It can be seen from the image that the
inequality is true. Therefore, the problem (5.2) is Hyers-Ulam stable.

Figure 7. Approximate value of E(e1,e2)
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