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SMALLEST EIGENVALUES AND THE
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VALUE PROBLEM OF NONLINEAR
FRACTIONAL DIFFERENTIAL SYSTEMS∗
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Abstract In this paper, we first discuss the existence of smallest eigenvalues
of fractional boundary value problems. Then we consider the existence of at
least one positive solution for a class of nonlinear boundary value problem of
fractional differential system. Compared with the existing methods, our analy-
sis relies on the fixed point index theorem in a Cartesian product of two cones.
We further construct two special operators to compute straightforwardly the
fixed point index in a suitable cone. Finally, we present an illustrative example
to support our main result.
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1. Introduction
Nonlinear fractional differential equations play an important role in differential
equations and have wide applications in many fields, such as mathematical physics,
engineering, economics, hydrology, and other fields (for instance, see [1, 2, 8, 9, 16,
18, 19]). Smallest eigenvalues and comparison of smallest eigenvalues for fractional
boundary value problems are concerned by some researchers in recent years(for in-
stance, see [6, 12, 14]). In these papers, the theory of u0-positive operators with
respect to a cone in a Banach space is generally applied to boundary value problem
of several kinds of fractional linear differential equations. Meanwhile, the existence
of solutions for a coupled system of nonlinear fractional differential equations is
a fundamental problem, and the nature of the Green’s function and fixed point
theory (the cone expansion or compression fixed point theorem, Leggett-Williams
fixed point theorem and Leray-Schauder fixed point theorem) are commonly em-
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ployed to deal with the problem. The key to these methods is to establish a suitable
cone which is often constrained by the nature of Green’s function and conditions
of nonlinear terms. Nonlinear terms in a coupled system with same features have
received much attention in literature, see [3–5, 7, 10, 11, 13, 17, 20–26, 28], and the
references therein. For example, [24] discusses the (n − 1, 1)-type integral bound-
ary value problem for coupled systems of nonlinear fractional differential equations
when nonlinear terms in two equations are continuous and semipositone. [22] in-
vestigate the existence of positive solutions for a system of nonlinear fractional
differential equations with sign-changing nonlinearities. When nonlinear terms in
two equations are superlinear, [26] consider the existence of positive solutions to a
singular semipositone boundary value problem of nonlinear fractional differential
equations . However, only a very limited body of literature has discussed what may
happen when the nonlinear term of one equation is sublinear and nonlinear term of
the other equation is superlinear.

On the basis of the above work, we first get the existence of smallest eigenvalues
and compare smallest eigenvalues for the fractional boundary value problems

Dα
0+u+ λ1p(t)u = 0, (1.1)

Dβ
0+u+ λ2q(t)u = 0, (1.2)

and satisfy

u(0) + u′(0) = 0, u(1) + u′(1) = 0, (1.3)

where 0 < t < 1, 1 < α, β ⩽ 2, λ1, λ2 are real numbers, Dα
0+ and Dβ

0+ are the
standard Caputo derivatives, I = [0, 1],R+ = [0,+∞), p, q ∈ C(I,R+) that don’t
vanish identically on any nondegenerate compact subinterval of [0,1]. In this paper,
the theory of u0-positive operators with respect to a cone in a Banach space is
adopted.

Secondly, we consider the existence of positive solutions to the boundary value
problem of nonlinear fractional differential systems:

Dα
0+u(t) = f1(t, u(t)) + h1(u(t), v(t)),

Dβ
0+v(t) = f2(t, v(t)) + h2(u(t), v(t)),

u(0) + u′(0) = 0, u(1) + u′(1) = 0,

v(0) + v′(0) = 0, v(1) + v′(1) = 0,

(1.4)

where 0 < t < 1, 1 < α, β ⩽ 2 are real numbers, Dα
0+ and Dβ

0+ are the standard
Caputo derivatives, fi ∈ C(I ×R+,R+), hi ∈ C(R+ ×R+,R+)(i = 1, 2). The equa-
tions of (1.4) are derived from the furnace reheating model and various viscoelastic
models. The single boundary value problem in (1.4) has also been studied, for ex-
ample, in the literature [23, 27]. In fact, this kind of boundary value problem first
appeared in the study of integer order boundary value problems, and the fractional
order is a generalization of the integer order. To the best of our knowledge, there
is very little known about the existence of solutions for the system (1.4).

Motivated by [25] and [5], we first extend the method in [5] to the nonlinear
differential systems while a second-order ordinary differential system is considered.
Furthermore, we construct a suitable cone and two special operators to obtain the
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existence results of solutions for the system (1.4) by applying the fixed point index
theorem. It is noted that the nonlinear terms in the system (1.4) are different from
those in [25] and the challenge is to verify that there are no fixed points on the
boundary for the Cartesian product of two cones.

The paper is organized as follows. In section 2, we consider the smallest eigen-
values for the fractional boundary value problems and a simple comparison is made.
In section 3, we deduce the new properties of the Green function and the existence
of positive solutions of problem (1.4) is established. Finally, an example is given to
illustrate the main result.

2. Smallest eigenvalues of the fractional boundary
value problem

Definition 2.1 ( [16]). For a function f(t) given in the interval [0,+∞) the ex-
pression

Dα
0+f(t) =

1

Γ(n− α)
(
d

dt
)n

∫ t

0

f(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of number α, is called the Riemann-
Liouvilles fractional derivative of order α.

Let B be a Banach space on R. A closed nonemty subset P of B is a cone. P
is said to be solid if the interior P o of P is nonempty. A cone P is reproducing if
B = P − P , i.e., given w ∈ B, there exist u, v ∈ P such that w = u− v. [15] proves
that every solid cone is reproducing.

Cones generate a natural partial ordering on a real Banach space. Let P be a
cone in a Banach space B. If u, v ∈ B, u ≤ v with respect to P if v − u ∈ P . If
both M,N : B → B are bounded linear operators, M ≤ N with respect to P if
Mu ≤ Nu for all u ∈ P . A bounded linear operator M : B → B is u0-positive with
respect to P if there exists u0 ∈ P \ {0}, there exist k1(u) > 0 and k2(u) > 0 such
that k1u0 ≤ Mu ≤ k2u0 with respect to P .

For (1.1), (1.2) and (1.3), the solution of (1.1) and (1.3) is equivalent to

u(t) = λ1

∫ 1

0

G1(t, s)p(s)u(s)ds,

where

G1(t, s) =


(1− s)α−1(1− t) + (t− s)α−1

Γ(α)
+

(1− s)α−2(1− t)

Γ(α− 1)
, 0 ⩽ s ⩽ t ⩽ 1,

(1− s)α−1(1− t)

Γ(α)
+

(1− s)α−2(1− t)

Γ(α− 1)
, 0 ⩽ t ⩽ s ⩽ 1.

Similarly, the solution of (1.2) and (1.3) is equivalent to

u(t) = λ2

∫ 1

0

G2(t, s)q(s)u(s)ds,
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where

G2(t, s) =


(1− s)β−1(1− t) + (t− s)β−1

Γ(β)
+

(1− s)β−2(1− t)

Γ(β − 1)
, 0 ⩽ s ⩽ t ⩽ 1,

(1− s)β−1(1− t)

Γ(β)
+

(1− s)β−2(1− t)

Γ(β − 1)
, 0 ⩽ t ⩽ s ⩽ 1.

Define the Banach space

B = {u ∈ C1[0, 1] : u(0) + u′(0) = 0, u(1) + u′(1) = 0},

with the norm ∥u∥ = ∥u∥0 + ∥u′∥0, where

∥u∥0 = max
t∈[0,1]

|u(t)|, ∥u′∥0 = max
t∈[0,1]

|u′(t)|.

Next, we define the linear operators

Mu(t) =

∫ 1

0

G1(t, s)p(s)u(s)ds,

and

Nu(t) =

∫ 1

0

G2(t, s)q(s)u(s)ds.

Define the cone of B as

P = {u ∈ B : u(t) ≥ 0, t ∈ [0, 1]}.

Lemma 2.1. The cone P is solid in B and reproducing.

The proof method is similar to lemma 3.2 of [6]. The proof is omitted here.

Lemma 2.2. The bounded linear operators M and N are u0-positive with respect
to P .

Proof. Define

Ω = {u ∈ B : u(t) > 0, t ∈ [0, 1), u′(1) < 0}.

Firstly, we prove Ω ⊂ P o. Let u ∈ Ω, then u(0) > 0. Meanwhile, there
exists ε1 > 0 such that u(0) > ε1. Since u ∈ C[0, 1], there exists δ1 > 0 such that
u(t) > ε1, t ∈ [0, δ1). And u′(1) < 0, then there exists ε2 > 0 such that u′(1)+ε2 < 0.
Since u′ ∈ C[0, 1], there exists δ2 > 0 such that u′(t) + ε2 < 0, t ∈ (δ2, 1]. Therefore

u(t) = u(1)−
∫ 1

t

u′(s)ds ≥ u(1) + ε2(1− t), t ∈ (δ2, 1].

There also exists ε3 > 0 such that u(t) > ε3, t ∈ [δ1, δ2].
Set ε = 1

2{ε1, ε2, ε3} and U = {v ∈ B : ∥u−v∥ < ε}, then |v(t)−u(t)| < ε, |v′(t)−
u′(t)| < ε, v ∈ U . And u(t) > ε1 ≥ 2ε, t ∈ [0, δ1) and u(t) > ε3 ≥ 2ε, t ∈ [δ1, δ2],
then

v(t) > u(t)− ε ≥ ε, t ∈ [0, δ2].
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For t ∈ (δ2, 1], we get

v(t)− u(t) = v(1)− u(1)−
∫ 1

t

(v′(s)− u′(s))ds ≥ v(1)− u(1)− ε(1− t).

Then

v(t) ≥ u(t) + v(1)− u(1)− ε(1− t)

≥ u(1) + ε2(1− t) + v(1)− u(1)− ε(1− t)

≥ ε(1− t) + v(1) > 0.

So v(t) > 0, t ∈ [0, 1). And

v′(1) ≤ u′(1) + ε < −ε2 + ε < −ε < 0.

Therefore v ∈ Ω ⊂ P . Then we have Ω ⊂ P o.
Secondly, we prove M : P \ {0} → Ω. Let u ∈ P \ {0}. So there exists a

compact interval [a, b] ⊂ [0, 1] such that u(t) > 0, p(t) > 0 for t ∈ [a, b]. For
G1(t, s) > 0, t, s ∈ (0, 1], we have

Mu(t) =

∫ 1

0

G1(t, s)p(s)u(s)ds

≥
∫ b

a

G1(t, s)p(s)u(s)ds

> 0.

Then from

(Mu)′(t) = −
∫ 1

0

[
(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)
]p(s)u(s)ds

+

∫ t

0

(α− 1)(t− s)α−2

Γ(α)
p(s)u(s)ds,

we can get

(Mu)′(1) = −
∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds ≤ −

∫ b

a

(1− s)α−1

Γ(α)
p(s)u(s)ds < 0.

So, M : P \ {0} → Ω ⊂ P o.
Finally, we choose u0 ∈ P \ {0} and let u ∈ P \ {0}. So Mu ∈ Ω ⊂ P o.

Hence we can choose sufficiently small k1 > 0 and sufficiently large k2 > 0 so that
Mu−k1u0 ∈ P o, u0− 1

k2
Mu ∈ P o. So we get k1u0 ≤ Mu ≤ k2u0 with respect to P .

Thus the bounded linear operators M is u0-positive with respect to P . Meanwhile,
we can prove the bounded linear operators N is u0-positive with respect to P at
the same way.

Theorem 2.1. The operators M,N : P → P are compact.

Proof. Clearly M : P → P.
Next, we prove that M is a compact operator. Let L > 0, K = {u ∈ P : ∥u∥ ≤

L}, Then

|Mu(t)| = |
∫ 1

0

[
(1− s)α−1(1− t)

Γ(α)
+

(1− s)α−2(1− t)

Γ(α− 1)
]p(s)u(s)ds
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+

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds|

≤ ∥p∥0L|
∫ 1

0

[
(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)
]ds|+ ∥p∥0L|

∫ t

0

(t− s)α−1

Γ(α)
ds|

= ∥p∥0L(
2

Γ(α+ 1)
+

1

Γ(α)
).

|(Mu)′(t)| = | −
∫ 1

0

[
(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)
]p(s)u(s)ds

+

∫ t

0

(t− s)α−2

Γ(α− 1)
p(s)u(s)ds|

≤ ∥p∥0L(
1

Γ(α+ 1)
+

2

αΓ(α)
).

So M is uniformly bounded.
Let ∥u∥ ≤ L, ∀ε > 0, there exists δ < ε

∥p∥0L
3α+3

Γ(α+1)

(0 < δ < 1) and δ <

( ε
∥p∥0L

3α+3
Γ(α+1)

)
1
α (δ > 1) for 0 ≤ t1 < t2 ≤ 1, |t1 − t2| < δ so that

|Mu(t1)−Mu(t2)|

= |
∫ 1

0

[
(1− s)α−1(1− t1)

Γ(α)
+

(1− s)α−2(1− t1)

Γ(α− 1)
]p(s)u(s)ds

+

∫ t1

0

(t1 − s)α−1

Γ(α)
p(s)u(s)ds−

∫ 1

0

[
(1− s)α−1(1− t2)

Γ(α)

+
(1− s)α−2(1− t2)

Γ(α− 1)
]p(s)u(s)ds−

∫ t2

0

(t2 − s)α−1

Γ(α)
p(s)u(s)ds|

≤ ∥p∥0L|(t2 − t1)

∫ 1

0

[
(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)
]ds|

+∥p∥0L|
∫ t1

0

(t1 − s)α−1 − (t2 − s)α−1

Γ(α)
ds−

∫ t2

t1

(t2 − s)α−1

Γ(α)
ds|

≤ ∥p∥0Lδ(
1

Γ(α+ 1)
+

1

Γ(α)
)

+∥p∥0L|
tα1

Γ(α+ 1)
− tα2 − (t2 − t1)

α

Γ(α+ 1)
+

(t2 − t1)
α

Γ(α+ 1)
|

≤ ∥p∥0Lδ
α+ 1

Γ(α+ 1)
+ ∥p∥0L

2δα

Γ(α+ 1)
< ε.

|(Mu)′(t1)− (Mu)′(t2)|

≤ ∥p∥0L|
∫ t1

0

(t1 − s)α−2 − (t2 − s)α−2

Γ(α− 1)
ds−

∫ t2

t1

(t2 − s)α−2

Γ(α− 1)
ds|

= ∥p∥0L|
tα−1
1

Γ(α)
− tα−1

2 − (t2 − t1)
α−1

Γ(α)
+

(t2 − t1)
α−1

Γ(α)
|

≤ ∥p∥0L
2δα

Γ(α)
< ε.



2080 C. Guo, J. Guo, S. Kang & H. Li

So M is equicontinuous. In the same way we can show that N is also compact.
The following two results can be proved by using the method of [28].

Theorem 2.2. B,P , M and N are defined above. Then M (and N) has an
eigenvalue that is simple, positive and larger than the absolute value of any other
eigenvalue, with an essentially unique eigenvector that can be chosen to be in P o\{0}.

Theorem 2.3. B,P , M and N are defined above. Let p(t) ≤ q(t) on [0, 1]. Λ1,Λ2

are the eigenvalues of M and N , corresponding to an essentially unique eigenvector
u1, u2 ∈ P o. Then Λ1 ≤ Λ2, and Λ1 = Λ2 if and only if p(t) = q(t) on [0, 1].

The following theorem can be proved by Theorem 2.2 and Theorem 2.3.

Theorem 2.4. Assume the hypothesis of Theorem 2.3. Then there exist smallest
positive eigenvalue λ1 and λ2 of (1.1),(1.3) and (1.2),(1.3), respectively, each of
which is simple and less than the absolute value of any other eigenvalue for corre-
sponding problem, and eigenvectors corresponding to λ1 and λ2 may be chosen to
belong to P o.

3. The existence of nonlinear fractional differential
systems

In this section, we construct a cone which is the Cartesian product of two cones
and change the problem into the fixed point problem in the constructed cone. We
first give some necessary definitions and preliminary results as following.

It is well known that C[0, 1] is a Banach space with the norm given by ∥u∥ =
maxt∈[0,1] |u(t)|. Let C+[0, 1] = {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]}, K = {u ∈
C+[0, 1] : u(t) ≥ 1

8∥u∥, t ∈ [ 14 ,
3
4 ]}.

Lemma 3.1 ( [23]). Let f(t) ∈ C+[0, 1] be a given function. Then the boundary
value problem Dα

0+u(t) = f(t), 0 < t < 1,

u(0) + u′(0) = 0, u(1) + u′(1) = 0
(3.1)

has a unique solution

u(t) =

∫ 1

0

G1(t, s)f(s)ds,

here G1(t, s) is the Green function of boundary value problem (3.1). (G1, G2) is
called the Green’s function of the boundary value problem (1.4).

Lemma 3.2 ( [23]). Let f(t) ∈ C[0, 1] be a given function. Then function G1(t, s)
has the following properties:

(i) G1(t, s) ∈ C([0, 1]× [0, 1]), and G1(t, s) > 0 for t, s ∈ (0, 1);
(ii) There exists a positive function γ ∈ C(0, 1) such that

min
1/4≤t≤3/4

G1(t, s) ≥ γ(s)H(s)

max
0≤t≤1

G1(t, s) ⩽ H(s), s ∈ (0, 1),
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where

H(s) =
2(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)
,

γ(s) =
1

4

(1− s)α−1 + (α− 1)(1− s)α−2

2(1− s)α−1 + (α− 1)(1− s)α−2
.

Remark 3.1 ( [23]). Clearly, From the expression of γ(s), we see that γ(s) ≥ 1
8 .

Define operator A : C[0, 1] → C[0, 1] by

(Au)(t) =

∫ 1

0

G1(t, s)u(s)ds.

Clearly, A is a completely continuous linear operator and A(K) ⊂ K. By Theorem
2.4, we know that A has a positive first eigenvalue λ1.

For λ ∈ [0, 1], u, v ∈ C+[0, 1], we define the mappings Av(λ, ·), Bu(λ, ·) : C+[0, 1] →
C+[0, 1] and Tλ(·, ·) : C+[0, 1]× C+[0, 1] → C+[0, 1]× C+[0, 1] by

Av(λ, u)(t) =

∫ 1

0

G1(t, s)[(1− λ)u2(s) + λ(f1(t, u(t)) + h1(u(t), v(t)))]ds,

Bu(λ, v)(t) =

∫ 1

0

G2(t, s)[(1− λ)
√

v(s) + λ(f2(t, v(t)) + h2(u(t), v(t)))]ds,

and

Tλ(u, v)(t) = (Av(λ, u)(t), Bu(λ, v)(t)).

It is clear that the existence of a positive solution of system (1.4) is equivalent
to the existence of a nontrivial fixed point of T1 in K ×K.

Lemma 3.3. Tλ : K ×K → K ×K is completely continuous.

Proof. For (u, v) ∈ K×K, we show that Tλ(u, v) ∈ K×K,i.e., Av(λ, u) ∈ K×K
and Bu(λ, v) ∈ K ×K. By Lemma 3.2 and Remark 3.1, we have

Av(λ, u)(t) =

∫ 1

0

G1(t, s)[(1− λ)u2(s) + λ(f(v(s)))]ds

≥
∫ 1

0

γ(s)H(s)[(1− λ)u2(s) + λ(f(v(s)))]ds

≥ 1

8

∫ 1

0

H(s)[(1− λ)u2(s) + λ(f(v(s)))]ds

≥ 1

8
∥Av(λ, u)∥, t ∈ [

1

4
,
3

4
].

Similarly,

Bu(λ, v) ≥
1

8
∥Bu(λ, v)∥, t ∈ [

1

4
,
3

4
].

Consequently Av(λ, u) ∈ K and Bu(λ, v) ∈ K, thus Tλ(K×K) ∈ K×K. Obviously,
Tλ : K ×K → K ×K is completely continuous.
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Remark 3.2 ( [5]). In fact, denoting T (λ, u, v)(t) ∈ K, thus T ([0, 1]×K ×K) is
a compact set by the Arzelà-Ascoli theorem.

Lemma 3.4. Let X is a retract of real Banach space E. For every bounded open
set U ⊂ X, suppose A : U → X is completely continuous and has no fixed point
on ∂U , then there exists an integer i(A,U,X)(called the fixed point index of A with
respect to X in U) that satisfies the following conditions

(i) Normalization: if A : U → U is a constant operator, then i(A,U,X) = 1;
(ii) Decomposition: if U1, U2 are disjoint subsets and open (with respect to X),

and A has no fixed point on ∂U \ (U1 ∪ U2), then

i(A,U,X) = i(A,U1, X) + i(A,U2, X);

(iii) Homotopy invariance: if H : [0, 1]× U → X is completely continuous and
there has H(t, x) ̸= x, for (t, x) ∈ [0, 1] × ∂U , then i(H(t, ·), U,X) has nothing to
do with t;

(iv) Retention: if Y is a retract of X, A(U) ⊂ Y , then

i(A,U,X) = i(A,U ∩ Y, Y );

(v) Excision property: let V (with respect to X) be an open set, V ⊂ U and A
has no fixed point on ∂U \ V , then

i(A,U,X) = i(A, V,X);

(vi) Solution property: if i(A,U,X) ̸= 0, then A has at least a fixed point on U .

From the Dugundji theorem, we know that every non-empty convex closed set
of real Banach space E is a retract of E. Therefore, any cones of E are retracts of
E.

Let P ⊂ E be a closed convex cone in Banach space E. For r > 0, let Pr = {u ∈
P : ∥u∥ < r}, ∂Pr = {u ∈ P : ∥u∥ = r}; then ∂Pr is the boundary of Pr in P .

Lemma 3.5 ( [8, 28]). Let A : P → P be completely continuous. We have:
(i) if ∥Au∥ > ∥u∥, ∀u ∈ ∂Pr, then i(A,Pr, P ) = 0;
(ii) if ∥Au∥ < ∥u∥, ∀u ∈ ∂Pr, then i(A,Pr, P ) = 1.

Lemma 3.6 ( [5]). Let E be a Banach space and let Ki ⊂ E(i = 1, 2) be a closed
convex cone in E. For ri > 0(i = 1, 2), denote Kri = {u ∈ Ki : ∥u∥ < ri}, ∂Kri =
{u ∈ Ki : ∥u∥ = ri}. Suppose Ai : Ki → Ki is completely continuous. If ui ̸= Aiui,
for ui ∈ ∂Kri , then

i(A,Kr1 ×Kr2 ,K1 ×K2) = i(A,Kr1 ,K1) · i(A,Kr2 ,K2),

where A(u, v) = (A1u,A2v),∀(u, v) ∈ K1 ×K2.

3.1. The proof of main result
Theorem 3.1. Suppose fi ∈ C(I×R+,R+), hi ∈ C(R+×R+,R+)(i = 1, 2) satisfy
the conditions:

(H1) lim sup
u→0+

max
t∈I

f1(t, u)

u
< λ1 < lim inf

u→+∞
min
t∈I

f1(t, u)

u
;

(H2) lim sup
v→∞+

max
t∈I

f2(t, v)

v
< λ1 < lim inf

v→0+
min
t∈I

f2(t, v)

v
;
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(H3) lim
u→0+

h1(u, v)

u
= 0, uniformly with respect to v ∈ R+;

(H4) lim
v→+∞

h2(u, v)

v
= 0, uniformly with respect to u ∈ R+, and lim

u→+∞
h2(u, v) =

0, uniformly with respect to v ∈ [0, Q], ∀Q > 0. Then system (1.4) has at least one
positive solution.

Proof. From the definition of Av(λ, u)(t), we have

Av(0, u)(t) =

∫ 1

0

G1(t, s)u
2(s)ds.

Then for every u ∈ K, we have that

∥Av(0, u)∥ ≤
∫ 1

0

M(s)u2(s)ds ≤
∫ 1

0

M(s)ds∥u∥2.

Set r0 = (
∫ 1

0
M(s)ds)−1, then for r ∈ (0, r0) and u ∈ ∂Kr, it follows ∥Av(0, u)| <

∥u∥. By Lemma 3.5, we have

i(Av(0, ·),Kr,K) = 1, ∀r ∈ (0, r0). (3.2)

On the other hand, for every u ∈ K, we have

∥Av(0, u)∥ ≥ Av(0, u)(
1

2
) =

∫ 1

0

G1(
1

2
, s)u2(s)ds

≥ 1

8

∫ 3
4

1
4

M(s)u2(s)ds

≥ 1

512

∫ 3
4

1
4

M(s)ds∥u∥2.

Set R0 = ( 1
512

∫ 3
4
1
4

M(s)ds)−1(> r0), if R > R0, then

∥Av(0, u)∥ ≥ 1

R0
∥u∥2 =

∥u∥
R0

∥u∥ =
R

R0
∥u∥ > ∥u∥, ∀u ∈ ∂KR.

By Lemma 3.5, we have

i(Av(0, ·),KR,K) = 0, ∀R > R0. (3.3)

Similarly, we have

∥Bu(0, v)∥ ≤
∫ 1

0

M(s)ds
√
∥v∥, ∥Bu(0, v)∥ ≥ 1

16
√
2

∫ 3
4

1
4

M(s)ds
√
∥v∥.

Set R0 = (
∫ 1

0
M(s)ds)2, r0 = 1

16
√
2
(
∫ 3

4
1
4

M(s)ds)2, then for 0 < r0 < R0 < +∞.

For r1 ∈ (0, r0), R1 > R0, it is clear that

∥Bu(0, v)∥ > ∥v∥, ∀v ∈ ∂Kr1 , ∥Bu(0, v)∥ < ∥v∥, ∀ v ∈ ∂KR1
.
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Thus by Lemma 3.5, we have

i(Bu(0, ·),Kr1 ,K) = 0, ∀r1 ∈ (0, r0), (3.4)
i(Bu(0, ·),KR1

,K) = 1, ∀R1 > R0. (3.5)

By Lemma 3.4, Lemma 3.6 and (3.2)-(3.5), we have

i(T0, (KR \Kr)× (KR1
\Kr1),K ×K)

=i(Av(0, ·),KR \Kr,K) · i(Bu(0, ·),KR1
\Kr1 ,K)

=− 1.

(3.6)

Finally, we show that

i(Tλ, (KR2
\Kr2)× (KR3

\Kr3),K ×K)

= i(T0, (KR2
\Kr2)× (KR3

\Kr3),K ×K),

where r2 ∈ (0, r0), R2 > R0, r3 ∈ (0, r0) and R3 > R0 will be determined later.
By Lemma 3.2, Lemma 3.4 and Remark 3.1, we will verify that

(u, v) ̸= Tλ(u, v), (u, v) ∈ ∂[(KR2 \Kr2)× (KR3 \Kr3)]. (3.7)

Now we show that it is valid.

(i) We can prove that (u, v) ̸= Tλ(u, v) for all λ ∈ [0, 1] and (u, v) ∈ ∂Kr2 ×K.
In fact, if there exist λ0 ∈ [0, 1] and (u0, v0) ∈ ∂Kr2 ×K, such that (u0, v0) =
Tλ0

(u0, v0), then (u0, v0) satisfies the following equationDα
0+u0(t) = (1− λ0)u

2
0(t) + λ0f1(t, u0(t)) + λ0h1(u0(t), v0(t)),

u0(0) + u′
0(0) = 0, u0(1) + u′

0(1) = 0.
(3.8)

By (H1) and (H3), we choose ε ∈ (0, λ1

2 ) and 0 < r2 < min{r0, λ1 − ε} such
that

f1(t, u) ≤ (λ1 − 2ε)u, for 0 < t < 1 0 < u ≤ r2, (3.9)
h1(u, v) ≤ εu, for 0 < u ≤ r2, v ∈ R+. (3.10)

Hence, by (3.8)-(3.10), we get

u0(t) =

∫ 1

0

G1(t, s)[(1− λ0)u
2
0(s) + λ0f1(s, u0(s)) + λ0h1(u0(s), v0(s))]ds

⩽
∫ 1

0

G1(t, s)[(1− λ0)u
2
0(s) + λ0(λ1 − 2ε)u0(s) + λ0εu0(s)]ds

⩽
∫ 1

0

G1(t, s)[(1− λ0)r2u0(s) + λ0(λ1 − ε)u0(s)]ds

⩽
∫ 1

0

G1(t, s)(λ1 − ε)u0(s)ds

= (λ1 − ε)Au0(t), t ∈ [0, 1].

Moreover, u0⩽ (λ1−ε)nAnu0⩽ (λ1−ε)n∥An∥∥u0∥. Thus r(A)= lim
n→∞

n
√

∥An∥≥
1

λ1 − ε
>

1

λ1
, which is a contradiction.
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(ii) By conditions (H1) and (H3), we have ε >
1−λ1

64

∫ 3
4
1
4

M(s)ds

1
64

∫ 3
4
1
4

M(s)ds
, when 0 < λ1 <

64∫ 3
4
1
4

M(s)ds
(or else ε > 0, when λ1 ⩾ 64∫ 3

4
1
4

M(s)ds
) and N > 0 such that

f1(t, u) ⩾ (λ1 + ε)u, t ∈ I, u ⩾ N.

Let C = (λ1 + ε)2 +maxt∈I,0⩽u⩽N f1(t, u), it is obvious that

f1(t, u) ⩾ (λ1 + ε)u− C, ∀t ∈ I, u ⩾ 0,

u2 ⩾ (λ1 + ε)u− (λ1 + ε)2 ⩾ (λ1 + ε)u− C, ∀u ⩾ 0.

If there exist λ0 ∈ I and (u0, v0) ∈ ∂K ×K such that (u0, v0) = Tλ0
(u0, v0),

then (u0, v0) satisfies (3.8). Then we can show that

u0(t) =

∫ 1

0

G1(t, s)[(1− λ0)u
2
0(s) + λ0f1(s, u0(s)) + λ0h1(u0(s), v0(s))]ds

⩾ 1

8

∫ 3
4

1
4

M(s)[(λ1 + ε)u0(s)− C]ds

⩾ 1

8

∫ 3
4

1
4

M(s)[(λ1 + ε)
1

8
∥u0∥ − C]ds, t ∈ I.

Hence, we have

∥u0∥ ⩽
c
8

∫ 3
4
1
4

M(s)ds

1
64

∫ 3
4
1
4

M(s)(λ1 + ε)ds− 1
≜ R.

Taking R2 > max{R0, R}, (u, v) ̸= Tλ(u, v) for any (u, v) ∈ ∂KR2 ×K, λ ∈ I.

(iii) By conditions (H2) and (H4), there exist ε > 0 and 0 < η < 1
(λ1+ε)2 such that

f2(t, v) ⩾ (λ1 + ε)v, 0 ⩽ v ⩽ η. (3.11)

By 0 < η < 1
(λ1+ε)2 , it is not difficult to show that

√
v ⩾ (λ1 + ε)v, 0 ⩽ v ⩽ η. (3.12)

Taking 0 < r3 < min(r0, η), by (3.11)-(3.12) and the proof in the same way
as (i), we have (u, v) ̸= Tλ(u, v) for any (u, v) ∈ ∂K ×Kr3 , λ ∈ I.

(iv) By conditions (H2) and (H4), there exist ε∈(λ1
∫ 1
0 M(s)ds−1∫ 1
0 M(s)ds

, λ1
2
), when 1∫ 1

0M(s)ds
<

λ1<
2∫ 1

0 M(s)ds
(or else ε ∈ (0, λ1

2 )) and N > 0 such that

f2(t, v) ⩽ (λ1 − 2ε)v, h2(u, v) ⩽ εv, ∀t ∈ I, u ∈ R+, v ⩾ N.

Let C = 1
λ1−ε +maxt∈I,u∈R+,0⩽v⩽N (f2(t, v)+h2(u, v)), then it is not difficult

to get that

f2(t, v) + h2(u, v) ⩽ (λ1 − ε)v + C, ∀t ∈ I, u ∈ R+, v ⩾ 0,
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and
√
v ⩽ (λ1 − ε)v + C, v ⩾ 0.

If there have λ0 ∈ I and (u0, v0) ∈ K × ∂K such that (u0, v0) = Tλ0
(u0, v0),

then

v0(t) =

∫ 1

0

G2(t, s)[(1− λ0)
√

v0(s) + λ0(f2(s, u0(s)) + h2(u0(s), v0(s)))]ds

⩽
∫ 1

0

M(s)[(λ1 − ε)v0(s) + C]ds

⩽
∫ 1

0

M(s)[(λ1 − ε)∥v0∥+ C]ds, t ∈ I.

Hence, we have

∥v0∥ ⩽
C
∫ 1

0
M(s)ds

1− (λ1 − ε)
∫ 1

0
M(s)ds

≜ R′.

Taking R3 > max{R0, R′}, (u, v) ̸= Tλ(u, v) for any (u, v) ∈ K×∂KR3 , λ ∈ I.
In this way, through the above four steps it is not difficult to get (3.7). By
Remark 3.2 and the homotopy invariance of fixed point index and (3.6), we
obtain

i(T1, (KR2 \Kr2)× (KR3 \Kr3),K ×K) = −1.

Hence, T1 has a fixed point in (KR2
\Kr2)× (KR3

\Kr3), and system (1.4) has
at least one positive solution namely.

3.2. An example
Example 3.1. To illustrate the usefulness of the above result, we discuss the fol-
lowing system

D
3
2

0+u(t) = (2 + t)u(t) sinu(t) + u3(t) cos v(t), 0 < t < 1,

D
3
2

0+v(t) = (1 + t)v
1
2 (t) + v

1
3 (t)

exp(u(t)) ,

u(0) + u′(0) = 0, u(1) + u′(1) = 0,

v(0) + v′(0) = 0, v(1) + v′(1) = 0,

(3.13)

Let f1(t, u) = (2 + t)u sinu, f2(t, v) = (1 + t)v
1
2 , h1(u, v) = u3 cos v, h2(u, v) =

v
1
3

exp(u) . Obviously, fi, hi(i = 1, 2) satisfy the conditions of Theorem 3.1. Therefore,
system (3.13) has at least one positive solution.
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