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AN ε-UNIFORMLY CONVERGENT METHOD
FOR SINGULARLY PERTURBED PARABOLIC

PROBLEMS EXHIBITING BOUNDARY
LAYERS
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Abstract A numerical method is proposed for singularly perturbed parabolic
convection-diffusion equation whose solution exhibits boundary layers near the
right endpoints of the domain of consideration. The method encompasses the
Crank-Nicolson scheme on a uniform mesh in temporal direction and quartic
B-spline collocation method on piecewise-uniform (i.e.,Shishkin mesh) mesh
in space directions, respectively. Through rigorous convergence analysis, the
method has shown theoretically fourth-order convergent in space direction and
second-order convergent in the time direction. We have solved two numerical
examples to prove the efficiency and robustness of the method and to validate
the theoretical results. Since the exact/analytical solution to the problem is
not known, hence we applied the double mesh principle to compute the maxi-
mum absolute errors. Additionally, some numerical simulations are displayed
to produce the conclusiveness of determining layer behaviour and their loca-
tions.

Keywords Singular perturbations, parabolic partial differential equations,
collocation method, B-splines, Crank-Nicolson method, Shishkin mesh, param-
eter-uniform convergence.
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1. Introduction
In this paper, we consider one-dimensional singularly perturbed parabolic convection-
diffusion equation (SPPCDEs) in the rectangular domain:

Lε
xY (x, τ) =

(
− ε

∂2Y

∂x2
+ a(x, τ)

∂Y

∂x
+

∂Y

∂τ
+ b(x, τ)Y

)
= F (x, τ), (1.1)

where 0 < ε ≪ 1, (x, τ) ∈ D = (0, 1) × (0, T ], D = [0, 1] × [0, T ], T is finite time,
∂D = D/D = Rx ∪ RL ∪ RR, with the conditions given as:

Y (x, 0) = g1(x), on Rx = {(x, 0) : 0 ≤ x ≤ 1},
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Y (0, τ) = g2(x), on RL = {(0, τ) : 0 ≤ τ ≤ T},
Y (1, τ) = g3(x), on RR = {(1, τ) : 1 ≤ τ ≤ T}. (1.2)

Assuming the fact that a(x, τ), b(x, τ), F (x, τ) ∈ C0(D) such as:

a(x, τ) ≥ a∗ > 0, ∀ (x, τ) ∈ D,
b(x, τ) ≥ b∗ > 0, ∀ (x, τ) ∈ D. (1.3)

The problem (1.1)-(1.3) whose solution demonstrate parabolic boundary layer of
width O(ε) in the neighbourhood of the right side of boundary as ε approaches zero
and all the characteristic curves are parallel to the right side boundary of the reduced
problem. In recent years, the study of parabolic equations with convection-diffusion
term has attracted the attention of many scholars due to its widespread application
in various disciplines, including control theory, economics, natural science, and en-
gineering, wherever, mass transport or energy particles flow in any physical system
happen because of each convection and diffusion processes. The considered prob-
lem is used to model transport problems [13], and also model the Navier–Stokes
equations having the Reynolds numbers very high [12]. Also, SPPCDEs help mod-
elling of diffusion equation within semiconductor devices [25], financial mathematics,
quantum physics, etc. In general, a singularly perturbed problem(SPP) consist a
parameter ε which is very small and multiple of the highest derivative term. The
conduct solution of considered problem is much ambiguous and shifts quite fast
in a narrow area as ε tending to very small number. The conventional numer-
ical methodologies, namely combination finite difference schemes and FEM with
piecewise polynomial basis functions using equally spaced grid comes up short to
truthfully start taking the solution, especially in the narrow zone. In reality, due
to unanticipated fluctuations caused by minor perturbation parameters, the use of
typical numerical techniques for analyzing SPPs on homogeneous grid can are not
persistent and do not yield a correct and stable solution. Due to the sift response,
it is crucial to create suitable numerical techniques that are independent of the per-
turbation parameter. This implies that procedures that have been designed should
converge consistently to the perturbation parameter.

In recent years, several scholars have laboured to develop consistently conver-
gent numerical techniques to solve SPPs, but much work has gone into solving
SPPCDEs. Farrell et al. [8], established a numerical approach and demonstrated
parameter uniform convergence using a modified mesh technique. In [22], a uni-
form convergent numerical scheme developed for solving parabolic equations with
convection–diffusion term using upwind finite difference methods. Ramos [27] pro-
posed a numerical algorithm and proved uniform convergence using exponentially
fitted method. Gupta and Kadalbajoo [10] developed parameter uniform method
using cubic B-spline and Surla and Jerkovic [35] established a computational tech-
nique using spline functions for SPP. Sakai and Usmani [32] proposed idea using
trigonometric and hyperbolic B-spline. In [23], the authors established a computa-
tional technique using spline to solve SPPs. In [17], Kumar and Kadalbajoo used
cubic B-spline and proved that a parameter-uniform method for SPDDEs. Ku-
mar [16] conceived a computational technique for resolving SPP with a temporal
delay. The numerical solution of SPPs have been discussed with non-polynomial
quadratic splines [15], trigonometric B-spline [5], Haar wavelet approach [29]. Ma-
jumdar and Natesan proposed numerical methods using composite finite difference
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method and show that an ε-uniform convergence [21]. In [6], the authors have
developed a method using upwind scheme on a nonuniform mesh for the spatial
discretization with Euler implicit method for the time discretization and proved the
uniform convergence. In [14], the authors derived method using cubic B-spline basis
function on a Shishkin mesh in spatial direction with backward Euler finite difference
scheme in the time direction and proved that the method has uniform convergence
of O((∆x)2 +∆τ). Moreover, a few studies based on nonuniform meshes and finite
differences are available to solve SPPs (see [1–4,18,19,28,31,33,36] ). Motivated by
the preceding discussion, we created a new strategy for establishing a higher order
parameter uniform numerical technique for SPPCDEs. Our primary goal is to as-
sess the proficiencies of the collocation method employing B-spline functions during
the design of a higher-order parameter-uniform method in order to offer accurate
results. We first employed the Crank-Nicolson approach in the time direction using
an equal-spaced mesh to obtain the semi-discrete problem. On the semidiscrete
problem, we used the quartic B-spline collocation method with non-uniform mesh
in the space direction so that we could achieve full discretization of the problem.
We have accomplished a relentless analysis of the method and confirmed that the
designed method is stable and uniformly convergent for any selection of grid size in
the space and time directions, respectively. It is revealed that the method provides
invariant convergence in both the parameters ∆τ and ε, and we have demonstrated
that the developed method is uniformly convergent in ε and h. Adding the results
obtained at each stage we assume that our method is uniformly convergent. To our
knowledge, this is the first study to analyse and develop a higher-order technique
for the problem under consideration. The paper is organised as pursues: In section
2, a priori assessments for the solution of the model problem and its derivatives
are provided to study the asymptotic behaviour of the exact solution. And, to get
sharper estimate, we use decomposing technique of the solution into regular and
singular components. In section 3, we present the temporal semi-discritization by
using Crank-Nicolson method on the equidistant mesh and show the uniform con-
vergence of the semidiscrete scheme. In section 4, we developed a piecewise uniform
Shishkin mesh and propose a numerical method using quartic B-spline scheme on
discretized problem. In section 5, we investigate the theoretical error assessments
and convergence analysis of the method. In section 6, the accurateness and effi-
ciency of the method has been validated by assessing two test problems through
graphs and tables. In section 7 conclusion is provided.

Note: Throughout the paper, Ck+µ(D) denotes the space of Hölder continuous
functions with exponent µ on the domain (D), where µ ∈ (0, 1), and K is a positive
generic constant. Cn,m

µ (D× [0, T ])consist all functions which are n times differenti-
able in space direction and m times differentiable in time direction. It is always in-
dependent of ε and the mesh size. All the functions f ∈ (D) are defined by ∥f∥D̄
=sup

x∈D̄
|f(x)|.

2. Continuous problem
Here, we have analyzed the analytical behaviour of the solution of (1.1)-(1.3), as
well as the bounds of derivatives of the smooth and layer components, to ensure the
uniqueness and existence of the solution Y (x, τ). We suppose that the coefficient
a(x, τ) and b(x, τ) are Hölder continuous in the both space (x) and time(τ) with
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exponent µ [20]. Suppose that Y (x, τ) is Hölder continuous with respect to exponent
µ and µ ∈ (0, 1), if for all (x, τ), (x′, τ ′) ∈ D, such that

Sµ = sup

{
|Y (x, τ)− Y (x′, τ ′)|

(|x− x′|+ |τ − τ ′|)µ/2
, (x, τ), (x′, τ ′) ∈ D

}
< ∞. (2.1)

For each, k ≥ 1, k ∈ Z+ and n,m ∈ Z+, we define the subspace Ck+µ
µ (D) of Cµ(D)

which consists of functions having Hölder continuous derivative such as:

Ck+µ
µ (D) =

{
Y :

∂n+mY

∂xn∂τm
∈ Cµ(D), with 0 ≤ n+ 2m ≤ k

}
, (2.2)

where Cµ(D) is set of all Hölder continuous functions with exponent µ. The Hölder
norm of the solution Y is given as:

∥Y ∥µ,D ≡ ∥Y ∥D + Sµ ≡ sup
(x,τ)∈D

|Y (x, τ)|+ Sµ.

Now, we imposed the condition of sufficient smoothness on coefficient of a(x, τ),
b(x, τ) ∈ Ck+µ

µ (D), and also that sufficient compatibility conditions hold among
them in order to Y (x, τ) ∈ C4,2(D× [0, T ]). Also, we suppose that the condition of
smoothness on the right hand side, boundary and initial conditions are

F (x, τ) ∈ C2+2µ,1+µ(D× [0, T ]), g2(x) ∈ C2([0, T ]),

g3(x) ∈ C2([0, T ]), and g1(x) ∈ C4(D).

The compatibility conditions at the corner points of the domain (0, 0) and (1, 0) are
given below:

g1(0) = g2(0), g1(1) = g3(0),

dg2(0)

dτ
= F (0, 0) + ε

d2g1(0)

dx2
− a(0, 0)

dg1(0)

dx
− b(0)g1(0),

dg3(0)

dτ
= F (1, 0) + ε

d2g1(1)

dx2
− a(1, 0)

dg1(1)

dx
− b(1)g1(1).

(2.3)

From equation (2.3), we guarantee the continuity conditions for the derivative in τ
up to second order. Using these compatibility conditions, we can ensure existence
of unique solution Y (x, τ) in Ck+µ(D) is written by the condition in [20] of the
given problem (1.1)-(1.3).

Lemma 2.1. (Continuous Minimum Principle). Suppose Q(x, τ) ∈ C2,1(D) and
Q(x, τ) ≥ 0, ∀ (x, τ) ∈ ∂D. Then Lε

xQ(x, τ) ≥ 0, ∀(x, τ) ∈ D implies that
Q(x, τ) ≥ 0,∀ (x, τ) ∈ D.

Proof. This lemma’s proof can be simply obtained from [26] in chapter 3.
For the stability of Lε

x an ε-uniform bound for the solution of (1.1)-(1.3) can be
constructed by the following lemma.

Lemma 2.2 (Continuous stability estimate). Let Y (x, τ) be the solution of (1.1)-
(1.3), then ∀ ε ≥ 0 the following bound holds:

∥Y ∥D ≤ ∥Y ∥∂D +
∥F∥D
a∗

.
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Proof. To illustrate the above, we describe barrier functions such as

H±(x, τ) = ∥Y ∥∂D +
∥F∥D
a∗

± Y (x, τ).

Then we have H±(x, τ)≥ 0, ∀(x, τ) ∈ ∂D. Since b(x, τ) ≥ 0 and ∥F∥ ≥ F (x, τ),
∀(x, τ) ∈ ∂D, and −b(x, τ)ν−1∥F∥ ± F (x, τ) ≥ 0. Using this inequality, we have

Lε
xH

±(x, τ) ≥ 0, ∀(x, τ) ∈ D.

Now from Lemma 2.1, we have H±(x, τ) ≥ 0, ∀(x, τ) ∈ D, which proves our
required estimate.

Lemma 2.3. Let a(x, τ) ∈ C4+µ(D), b(x, τ), F (x, τ) ∈ C4+µ,3+µ/2(D), g2 ∈
C6+µ([0, T ]), g3 ∈ C6+µ([0, T ]), µ ∈ (0, 1) and the compatibility conditions (2.3) are
satisfied. Then the equation (1.1)-(1.3) has unique solution Y (x, τ) in C6+µ,3+µ(D),
and ∥∥∥∥ ∂i+jY

∂xi∂τ j

∥∥∥∥
D
≤ Kε−i, 1 ≤ i+ 2j ≤ 6. (2.4)

Proof. The proof of this lemma can be done by using the approach given in [20]
and [34].

The bounds assumed in the above lemma are not satisfactory to get ε−uniform
error assessment. Hence, to gain more accurate bounds on the solution Y (x, τ) and
its derivatives, the solution Y (x, τ) is broken down into smooth segment R(x, τ)
and singular segment S(x, τ) determined as follows:

Theorem 2.1. Let Y (x, τ) be the solution of given problem (1.1)-(1.3). The break
up of the solution into smooth and singular component as:

Y (x, τ) = R(x, τ) + S(x, τ), ∀(x, τ) ∈ D.

Then, ∀ i, j ∈ Z+ such that 0 ≤ i+ 3j ≤ 4, the smooth component R(x, τ) satisfies∥∥∥∥ ∂i+jR

∂xi∂τ j

∥∥∥∥
D
≤ K

(
1 + ε(3−i) exp

(
−a∗(1− x)

ε

))
,

and singular component S(x, τ) satisfies∥∥∥∥ ∂i+jS

∂xi∂τ j

∥∥∥∥
D
≤ K

(
ε−i exp

(
−a∗(1− x)

ε

))
,

where a(x, τ) ≥ a∗.

Proof. Suppose that the smooth segment satisfies the following non-homogeneous
problem:

Lε
xR(x, τ) = F (x, τ), ∀(x, τ) ∈ D,

R(x, τ) = Y (x, τ), ∀(x, τ) ∈ Rx ∪ RR. (2.5)

Similarly singular segment satisfies the homogeneous problem

Lε
xS(x, τ) = 0, ∀(x, τ) ∈ D,

S(x, τ) = 0, ∀(x, τ) ∈ Rx ∪ RL,
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S(x, τ) = Y (x, τ)−R(x, τ), ∀(x, τ) ∈ RR. (2.6)

Now, we decompose the smooth segment R(x, τ) into the sum of asymptotic expan-
sion such as

R(x, τ) = R0(x, τ) + εR1(x, τ) + ε2R2(x, τ) + ε3R3(x, τ) + r(x, τ), ∀(x, τ) ∈ D,
(2.7)

where R0(x, τ) is solution of following reduced non-homogeneous hyperbolic equa-
tion such that

(
a
∂R0

∂x
− ∂R0

∂τ
− bR0

)
(x, τ) = F (x, τ), ∀(x, τ) ∈ D,

R0(x, τ) = Y (x, τ), ∀(x, τ) ∈ Rx ∪ RR.

(2.8)

Also, in similar manner R1(x, τ), R2(x, τ) and R3(x, τ) satisfies the nonhomoge-
neous hyperbolic equation such as

(
a
∂R1

∂x
− ∂R1

∂τ
− bR1

)
(x, τ) = −∂2R0

∂x2
, ∀(x, τ) ∈ D,

R1(x, τ) = 0, ∀(x, τ) ∈ Rx ∪ RR,

(2.9)


(
a
∂R2

∂x
− ∂R2

∂τ
− bR2

)
(x, τ) = −∂2R1

∂x2
, ∀(x, τ) ∈ D,

R2(x, τ) = 0, ∀(x, τ) ∈ Rx ∪ RR,

(2.10)


(
a
∂R3

∂x
− ∂R3

∂τ
− bR3

)
(x, τ) = −∂2R2

∂x2
, ∀(x, τ) ∈ D,

R3(x, τ) = 0, ∀(x, τ) ∈ Rx ∪ RR,

(2.11)

and the residual term r(x, τ) satisfies the following problem:Lε
xr(x, τ) = −ε4

∂2R3

∂x2
, ∀(x, τ) ∈ D,

r(x, τ) = 0, ∀(x, τ) ∈ ∂D,
(2.12)

and smooth segment R(x, τ) satisfies the following given problem:
Lε
xR(x, τ) = F (x, τ), ∀(x, τ) ∈ D,

R(x, τ) = Y (x, τ), ∀(x, τ) ∈ Rx ∪ RR,

R(x, τ) = R0(x, τ) + εR1(x, τ) + ε2R2(x, τ) + ε3R3(x, τ), ∀(x, τ) ∈ RL.
(2.13)

Here, R0(x, τ), R1(x, τ), R2(x, τ) and R3(x, τ) are solution of the first order hy-
perbolic equation (2.8) -(2.11) and independent of ε and its coefficients a(x, τ) and
b(x, τ) are bounded. Now using [20], ∀ i, j ∈ Z+ such that 0 ≤ i+ 2j ≤ 6, we get∥∥∥∥∂i+jR0

∂xi∂τ j

∥∥∥∥
D
≤ K,

∥∥∥∥∂i+jR1

∂xi∂τ j

∥∥∥∥
D
≤ K,

∥∥∥∥∂i+jR2

∂xi∂τ j

∥∥∥∥
D
≤ K, and

∥∥∥∥∂i+jR3

∂xi∂τ j

∥∥∥∥
D
≤ K.

(2.14)
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Since r(x, τ) is solution of the initial boundary value problem and it is similar to the
original problem (1.1), and using the Lemma 2.3 ∀ i, j ∈ Z+ such that 0 ≤ i+2j ≤ 6,
we get the following estimate: ∥∥∥∥ ∂i+jr

∂xi∂τ j

∥∥∥∥
D
≤ Kε−i. (2.15)

Now using above inequalities (2.8)-(2.13) into equation (2.7), after simplification we
get required estimates for smooth segment as∥∥∥∥ ∂i+jR

∂xi∂τ j

∥∥∥∥
D
≤ K

(
1 + ε(3−i) exp

(
−a∗(1− x)

ε

))
, for 0 ≤ i+ 2j ≤ 4. (2.16)

Now, we calculate bounds on the singular segment S(x, τ). Since, the singular
segment S(x, τ) satisfies the homogeneous initial boundary value problem (2.6).
For this we introduce two barrier function such as

H±(x, τ) = K exp(τ) exp

(
−a∗(1− x)

ε

)
± S(x, τ), ∀(x, τ) ∈ D. (2.17)

We suppose that K is sufficiently large, then we get inequalities at boundaries as

H±(x, 0) ≥ 0, ∀(x, τ) ∈ ∂D,

and
Lε
xH±(x, 0) ≥ 0, ∀(x, τ) ∈ D.

Then from the Lemma 2.1 we can say that H±(x, τ) ≥ 0 on D , and we get

∥S(x, τ)∥ ≤ K exp

(
−a∗(1− x)

ε

)
, ∀(x, τ) ∈ D, (2.18)

and from the Lemma 2.3 for 0 ≤ i+ 2j ≤ 6, we get∥∥∥∥ ∂i+jS

∂xi∂τ j

∥∥∥∥
D
≤ Kε−i∥S∥D. (2.19)

Therefore from the equations (2.18) and (2.19), we get required derivative bound
on singular component∥∥∥∥ ∂i+jS

∂xi∂τ j

∥∥∥∥
D
≤ K

(
ε−i exp

(
−a∗(1− x)

ε

))
. (2.20)

Hence from the equations (2.16) and (2.20), we can get required result.

3. Temporal Semidiscretization
In this section, we develop numerical method using Crank-Nicolson method in time.
A piecewise homogeneous grid is defined as Dn,m

= Ωn × Γm, where the mesh
Γm={τk : τk = k∆τ, k ≤ m} is a homogeneous partition in time division over
[0, T ] with homogeneous scale factor ∆τ = T

m . After splitting the time direction
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by the Crank-Nicolson technique, we obtain a system of linear ordinary differential
equations such as

− ε

2
(Y k+1

xx + Y k
xx) +

a(x, τk+1/2)

2
(Y k+1

x + Y k
x ) +

1

∆τ
(Y k+1 − Y k)

+
b(x, τk+1/2)

2
(Y k+1 + Y k) =

1

2
(F (x, τk+1) + F (x, τk)), ∀x ∈ Ωx,

Y 0(x) = Y (x, 0) = g1(x), x ∈ Ωx,

Y k+1(0) = Y (0, τk+1) = g2(τ), 0 ≤ k ≤ m,

Y k+1(1) = Y (1, τk+1) = g3(τ), 0 ≤ k ≤ m.

(3.1)

The equation (3.1) can be written in the operator form as follows:(
∆τ

2
Lε
x+I

)
Y k+1 =

(
I−∆τ

2
Lε
x

)
Y k+

∆τ

2
(F k+1+F k), ∀x ∈ Ωx, k ≥ 0, (3.2)

where Lε
x =

(
− ε ∂2

∂x2 + a(x, τk+1/2)
∂
∂x + b(x, τk+1/2)

)
I.

Lemma 3.1. Consider
∣∣∂i+kY (x,τ)

∂xi∂τk

∣∣ ≤ K on D, 0 ≤ k ≤ 3 and 0 ≤ i+ k ≤ 4, then
in the temporal direction the local truncation error estimate is given by

∥Ek+1∥∞ ≤ K(∆τ)3, 1 ≤ k ≤ m, (3.3)

where K is constant independent of mesh point.

Proof. The semidiscretization for local truncation error in the temporal direction
is described as

Ek+1 = Y (x, τk+1)− Y (x, τk+1), (3.4)
where Y (x, τk+1) is the approximate solution obtained in (3.1) over one time unit,
with the actual value being used as the initial condition, such as(

∆τ

2
Lε
x + I

)
Y (x, τk+1) =

(
I − ∆τ

2
Lε
x

)
Y (x, τk) + ∆τF k+1/2, (3.5)

and

Y k+1(0, τk+1) = g2(τk+1), Y k+1(1, τk+1) = g3(τk+1), k = 0, 1, 2, ...,m− 1. (3.6)

Now, we expand Y (x, τk+1) making use of Taylor’s series with regard to the point
(x, τk+1/2), we have

Y (x, τk+1) = Y (x, τk+1/2) +
∆τ

2
Yτ (x, τk+1/2) +

(∆τ)2

222
Yττ (x, τk+1/2)

+
(∆τ)3

236
Yτττ (x, τk+1/2) +O(∆τ)4. (3.7)

Similarly, we expand Y (x, τk) about the point (x, τk+1/2), we have

Y (x, τk) =Y (x, τk+1/2)−
∆τ

2
Yτ (x, τk+1/2) +

(∆τ)2

222
Yττ (x, τk+1/2)

− (∆τ)3

236
Yτττ (x, τk+1/2) +O(∆τ)4. (3.8)
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From equations (3.7) and (3.8), we have

Yx(x, τk+1) =Yx(x, τk+1/2) +
∆τ

2
Yxτ (x, τk+1/2) +

(∆τ)2

222
Yxττ (x, τk+1/2)

+
(∆τ)3

236
Yxτττ (x, τk+1/2) +O(∆τ)4,

(3.9)

Yx(x, τk) =Yx(x, τk+1/2)−
∆τ

2
Yxτ (x, τk+1/2) +

(∆τ)2

222
Yxττ (x, τk+1/2)

− (∆τ)3

236
Yxτττ (x, τk+1/2) +O(∆τ)4,

(3.10)

Yxx(x, τk+1) =Yxx(x, τk+1/2) +
∆τ

2
Yxxτ (x, τk+1/2) +

(∆τ)2

222
Yxxττ (x, τk+1/2)

+
(∆τ)3

236
Yxxτττ (x, τk+1/2) +O(∆τ)4,

(3.11)

Yxx(x, τk) =Yxx(x, τk+1/2)−
∆τ

2
Yxxτ (x, τk+1/2) +

(∆τ)2

222
Yxxττ (x, τk+1/2)

− (∆τ)3

236
Yxxτττ (x, τk+1/2) +O(∆τ)4.

(3.12)

Using equations (3.7) and (3.8) and after dividing by ∆τ , we have

Y (x, τk+1)− Y (x, τk)

∆τ
= Yτ (x, τk+1/2) +

(∆τ)2

226
Yτττ (x, τk+1/2) +O(∆τ)4. (3.13)

Similarly, from equations (3.9) and (3.12), we can find following relation:

Y (x, τk+1) + Y (x, τk)

2
= Y (x, τk+1/2) +

(∆τ)2

222
Yττ (x, τk+1/2) +O(∆τ)3, (3.14)

Yx(x, τk+1) + Yx(x, τk)

2
= Yx(x, τk+1/2) +

(∆τ)2

222
Yxττ (x, τk+1/2) +O(∆τ)3, (3.15)

Yxx(x, τk+1) + Yxx(x, τk)

2
= Yxx(x, τk+1/2) +

(∆τ)2

222
Yxxττ (x, τk+1/2) +O(∆τ)3.

(3.16)

Putting the values of (3.13)-(3.16) in (3.5), we get(
∆τ

2
Lε
x − I

)
Y (x, τk+1) =

(
I − ∆τ

2
Lε
x

)
Y (x, τk) + ∆τF k+1/2

+
(∆τ)3

24
Yτττ (x, τk+1/2) +O(∆τ)4. (3.17)

Subtracting equation (3.5) from (3.17), we have(
∆τ

2
Lε
x − I

)
Ek+1 =

(∆τ)3

24
Yτττ (x, τk+1/2) +O(∆τ)4. (3.18)

Since |Yτττ (x, τk+1)| ≤ K and |(Lε
x)

−1| ≤ K1, therefore we have

∥Ek+1∥ ≤ K(∆τ)3. (3.19)
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Lemma 3.2. The estimation of the global error in the time direction taken at each
different time level τk is given by

∥Ek+1∥ ≤ K(∆τ)2, 1 ≤ k ≤ m, (3.20)

where K is constant independent of mesh point.

Proof. Suppose that

∥Ek+1∥ = Y (x, τk+1)− Y k+1. (3.21)

Using equation (3.19) and Lemma 3.1, we arrive at the following global error that
result at the kth time step

∥Ek+1∥∞ = |
k∑

l=1

El|

≤ Kk(∆τ)3,

= KT (∆τ)2,

= K1(∆τ)2,

where K1 = KT . The Lemma 3.2 proof has been completed. If we consider the
implications of this equation, the process (3.1) is consistent and has 2nd order
convergent in time.

4. The spatial Semidiscretization
To discretize the spatial domain Ωx, first we divide the domain into a piecewise
uniform mesh Ωx in two subintervals Ω1 = [0, 1 − γ] and Ω2 = [1 − γ, 1] such that
Ωx = Ω1 ∪ Ω2. For n ≥ 2l, where l ≥ 2 is an integer. Make the assumption that
each subinterval has been evenly segmented into n/2 grid points. The transition
parameter γ is defined as:

γ = min
{1
2
, γ0ε log(n)

}
, γ0 ≥ 1

a∗
.

The constat γ0 is independent of the parameter ε and n. The discretization of
spatial domain into coarse region Ω1 with mesh spacing hi =

2(1−γ)
n and fine region

Ω2 with mesh spacing hi =
2γ
n is

Ωx = {0 ≡ x0, x1, x2, ..., xn/2 = 1− γ, xn/2+1, ..., xn ≡ 1},

where

xi =


2(1− γ)

n
i, if i = 0, 1, 2, 3, ...,

n

2
,

(1− γ) +
2γ

n
(i− n/2), if i =

n

2
+ 1, ..., n.

Further, the spatial step size hi =xi − xi−1, for i = 1, 2, ..., n is defined as

h =


hi =

2(1− γ)

n
, if i = 0, 1, 2, 3, ...,

n

2
,

hi = (
2γ

n
), if i =

n

2
+ 1, ..., n.
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4.1. Quartic B-spline collocation method
We suppose that L2(Ωx) be the space of all integrable functions on Ωx, and let X is
subspace of L2(Ωx). Now we define quartic B-spline for j = −2,−1, 0, 1, ..., n, n+1,
[30]

BSj(x) =
1

24h4
j



χ(x− xj−2), x ∈ [xj−2, xj−1]

χ(x− xj−2)− 5χ(x− xj−1), x ∈ [xj−1, xj ]

χ(x− xj−2)− 5χ(x− xj−1) + 10χ(x− xj), x ∈ [xj , xj+1]

χ(xj+3 − x)− 5χ(xj+2 − x), x ∈ [xj+1, xj+2]

χ(xj+3 − x), x ∈ [xj+2, xj+3]

0, otherwise,
(4.1)

where χ = x4. Let G = {BS−2, BS−1, BS0, ..., BSn, BSn+1} and let Ψ(Ωx)=Span
G. Since BSj(x) is linearly independent functions on [0, 1], thus Ψ(Ωx) is (n+ 4)-
dimensional. The values of BSj(x) and its first three derivatives BS′

j(x), BS′′
j (x),and

BS′′′
j (x) are given in the Table 1.

Table 1. The values of basis functions BSj(x), BS′
j(x), BS′′

j (x), and BS′′′
j (x) at the mesh points

xj−3 xj−2 xj−1 xj xj+1 xj+2

BSj(x) 0 1
24

11
24

11
24

1
24 0

BS′
j(x) 0 −1

6h
−3
6h

3
6h

1
6h 0

BS′′
j (x) 0 1

2h2
−1
6h2

−1
6h2

1
2h2 0

BS′′′
j (x) 0 −1

h3
3
h3

−3
h3

1
h3 0

Now we define the approximate solution BSj(x) of the analytic solution Y (x, τk+1)

in the combinations of quartic B-splines with undetermined coefficient δki at the
(k + 1)th time level as

Yh =

n+1∑
j=−2

δkjBSj(x), (4.2)

where δkj are unknown time dependent parameters and BSj(x) are quartic B-spline
functions. To solve the considered problem (1.1)-(1.3), the quartic spline function
and its derivatives need to be calculated at the nodal point xj . At all nodal points,
the solution BSj(x) given in (4.2) and its derivatives yield

Yh(xj) =
1

24
(δkj−2 + 11δkj−1 + 11δkj + δkj+1), (4.3)

Y ′
h(xj) =

1

6h
(−δkj−2 − 3δkj−1 + 3δkj + δkj+1), (4.4)

Y ′′
h (xj) =

1

2h2
(δkj−2 − δkj−1 − δkj + δkj+1), (4.5)

Y ′′′
h (xj) =

1

h3
(−δkj−2 + 3δkj−1 − 3δkj + δkj+1). (4.6)
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Equation (3.1) can be written as

−ε
∂2Y (x, τk+1)

∂x2
+a(x, τk+1/2)

∂Y (x, τk+1)

∂x
+r(x, τk+1)Y (x, τk+1)=G(x, τk),∀x∈Ωx,

Y (x, 0) = g1(x), x ∈ Ωx,

Y (0, τk+1) = g2(τk+1), 0 ≤ k ≤ m,

Y (1, τk+1) = g3(τk+1), 0 ≤ k ≤ m,
(4.7)

where Y (x, τk+1) = Y k+1(x) is solution of (4.6) , r(x, τk+1) =

(
b(x,τk+1/2)

2 +

2
∆τ

)
and G(x, τk) = ε∂2Y k(x,τk+1)

∂x2 − a(x, τk+1/2)
∂Y (x,τk)

∂x − b(x, τk+1/2)Y (x, τk) +

2
∆τ Y (x, τk) + (F (x, τk+1) +F (x, τk)). Now at the nodal points the difference equa-
tion associated with (4.7) is given as:

Lε
xYh ≡ −ε

∂2Yh(xj , τk+1)

∂x2
+ ã(xj)

∂Yh(xj , τk+1)

∂x
+ r̃(xj)Yh(xj , τk+1) = G(xj , τk),

j = 0, 1, 2, ..., n, (4.8)

and
Yh(x0, τk+1) = g2(τk+1), Yh(xn, τk+1) = g3(τk+1), (4.9)

where a(xj , τk+1/2) = ã(xj) and r(xj , τk+1/2) = r̃(xj). Using equation (4.2) into
equations (4.8)-(4.9), we get

− ε

n+1∑
i=−2

δki BS′′
i (xj) + ã(xj)

n+1∑
i=−2

δki BS′
i(xj) + r̃(xj)

n+1∑
i=−2

δki BSi(xj) = G(xj , τk),

j = 0, 1, 2, ..., n, (4.10)

and
n+1∑
i=−2

δki BSi(x0) = g2(τk+1),

n+1∑
i=−2

δki BSi(xn) = g3(τk+1). (4.11)

Putting the values of Yh(xj , τk+1), Y ′
h(xj , τk+1) and Y ′′

h (xj , τk+1) from equations
(4.3)- (4.5) into equations (4.10)-(4.11) we get linear system of equation of size
(n+ 3)× (n+ 4) as follows:(
−ε

4h2
j

− ã(xj)

12hj
+

r̃(xj)

48

)
δk+1
j−2 +

(
ε

4h2
j

− 3ã(xj)

12hj
+

11r̃(xj)

48

)
δk+1
j−1 +

(
ε

4h2
j

+
3ã(xj)

12hj

+
˜11r(xj)

48

)
δk+1
j +

(
−ε

4h2
j

+
ã(xj)

12hj
+

r̃(xj)

48

)
δk+1
j+1 = G(xj , τk),

0 ≤ j ≤ n, 0 ≤ k ≤ m, (4.12)

and boundary conditions

δk+1
−2 + 11δk+1

−1 + 11δk+1
0 + δk+1

1 = 24g2(τk+1), (4.13)
δk+1
n−2 + 11δk+1

n−1 + 11δk+1
n + δk+1

n+1 = 24g3(τk+1), (4.14)
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where

G(xj , τk) =

(
ε

4h2
j

+
ã(xj)

12hj
+

s̃(xj)

48

)
δkj−2 +

(
−ε

4h2
j

+
3ã(xj)

12hj
+

˜11s(xj)

48

)
δkj−1

+

(
−ε

4h2
j

− 3ã(xj)

12hj
+

11s̃(xj)

48

)
δkj +

(
ε

4h2
j

− ã(xj)

12hj
+

s̃(xj)

48

)
δkj+1

+ (F (x, τk+1) + F (x, τk)). (4.15)

The above system of equation (4.12) can be written as

X1(j)δ
k+1
j−2+X2(j)δ

k+1
j−1+X3(j)δ

k+1
j +X4(j)δ

k+1
j+1 = G(xj , τk), 0 ≤ j ≤ n, (4.16)

where

X1(j) =

(
−ε

4h2
j

− ã(xj)

12hj
+

r̃(xj)

48

)
, X2(j) =

(
ε

4h2
j

− 3ã(xj)

12hj
+

11r̃(xj)

48

)
,

X3(j) =

(
ε

4h2
j

+
3ã(xj)

12hj
+

˜11r(xj)

48

)
, X4(j) =

(
−ε

4h2
j

+
ã(xj)

12hj
+

r̃(xj)

48

)
.

From equations (4.12), (4.13), and (4.16), we get system of equations with n + 4
unknowns and n + 3 equations. We still need one more equation to get the one
and only solution for each time level. To accomplish this, we differentiate equation
(4.6) with respect to x and use equations (4.3)-(4.6) to approximation the solution
at x = 0.

T1(0)δ
k+1
−2 + T2(0)δ

k+1
−1 + T3(0)δ

k+1
0 + T4(0)δ

k+1
1 = G′(x0, τk), (4.17)

where

T1(0)=(e0h
3−4d0h

2+12a0h−24ϵ), T2(0)=(11e0h
3−12d0h

2−12a0h−72ϵ),

T3(0)=(11e0h
3+124d0h

2−12a0h−72ϵ), T4(0)=(e0h
3+4d0h

2+12a0h+24ϵ),

and

G′(x0, τk) =(−ẽ0h3 + 4d̃0h
2 − 12a0h+ 24ϵ) + (−11ẽ0h

3 + 12d̃0h
2 + 12a0h+ 72ϵ)

+ (−11ẽ0h
3 − 12d̃0h

2 − 12a0h− 72ϵ) + (ẽ0h
3 + 4d̃0h

2 − 12a0h

+ 24ϵ) + (F ′(x, τk+1) + F ′(x, τk)), (4.18)

where d0 = ax(0) + r(0), e0 = rx(0), d̃0 = ax(0) + sx(0), s(x) =
(

2
∆τ − b(x)

)
. The

equations (4.16)-(4.17), constitutes a linear system of equations with n+4 equations
in n+ 4 unknowns δk+1

−2 , δk+1
−1 , ..., δk+1

n−1, δ
k+1
n , δk+1

n+2.
After eliminating we get (n + 1) linear equations in (n + 1) unknowns, at the

kth time level, which can be written in the matrix form as:

PV k+1 = G, k = 0, 1, 2, 3, ...,m− 1, (4.19)

where the matrix P is given by
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M =



A1(0) A2(0) 0 0 0 · · · 0 0

A1(1) A2(1) X2(1) 0 0 · · · 0 0

0 X1(2) X2(2) X3(2) X4(2) · · · 0 0

0 0 0 0 · · · · · · 0 0

...
...

...
...

...
...

...
...

0 0 0 · · · X1(n− 1) X2(n− 1) X3(n− 1) X4(n− 1)

0 · · · 0 0 0 T 1 T 2 T 3



,

where

T 1 = X1(n+ 1)−X4(n+ 1), T 2 = X2(n+ 1)− 11X4(n+ 1),

T 3 = X3(n+ 1)− 11X4(n+ 1),

A1(0) =

(
11X1(0)−X3(0)T2(0)

X2(0)− 11X1(0)
− 11T1(0)

)
,

A2(0) =

(
X1(0)−X4(0)T2(0)

X2(0)− 11X1(0)
− T1(0)

)
,

A1(1) =

(
11X1(0)−X3(0)X1(1)

X2(0)− 11X1(0)
−X2(1)

)
,

A2(1) =

(
X1(0)−X4(0)X1(1)

X2(0)− 11X1(0)
−X3(1)

)
,

X1(j) =

(
ε

4h2
j

− ã(xj)

12hj
+

r̃(xj)

48

)
, X2(j) =

(
− ε

4h2
j

− 3ã(xj)

12hj
+

11r̃(xj)

48

)
,

X3(j) =

(
− ε

4h2
j

+
3ã(xj)

12hj
+

˜11r(xj)

48

)
, X4(j) =

(
ε

4h2
j

+
ã(xj)

12hj
+

r̃(xj)

48

)
,

j = 0, 1, 2, ..., n− 1.

The vectors V k+1 and G are given as:

V =



δk+1
0

δk+1
1

δk+1
2

...

...

δk+1
n−1

δk+1
n

δk+1
n+1



, G =



g̃(0, τk)

g̃(x1, τk)

g̃(x2, τk)

...

...

g̃(xn−1, τk)

g̃(xn, τk)

g̃(xn+1, τk)



, k = 0, 1, 2, ...,m,

g̃(0, τk) = ĝ(0, τk)− 24X1(0)g2(τk+1)−
24X1(0)(T1(0)g2(τk+1)− ĝx(x, τk))

T2(0)− 11T1(0)
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− X2(0)(ĝx(0, τk)− 24T1(0)g2(τk+1))

T2(0)− 11T1(0)
,

g̃(x1, τk) = ĝ(x1, τk)−
ĝx(0, τk)− 24T1(0)g2(τk+1)

T2(0)− 11T1(0)
,

g̃(xj , τk) = ĝ(x1, τk), j = 2, 3, 4, ..., n− 1,

g̃(xn, τk) = ĝ(xn, τk)− 24X4(n)g3(τk+1).

5. Error Analysis
Here, we discuss the error bounds for the quartic B-spline and its derivatives up
to order four. Let us consider the quartic B-spline interpolationg function Yh(x)
satisfies the following condition:

Yh(xj) = Y (xj), j = 0, 1, 2, ..., n. (5.1)

Y
(3)
h (xj) = Y (3)(xj)−

1

12
h2Y (5)(xj) +

1

240
h4Y (7)(xj) +O(h7), j = 0, 1, 2, ..., n.

(5.2)

Let Y (x) ∈ C5(Ω), then we have the following consistency relationship for any
quartic spline [9]

ΦY ′
h(xj) =

4

h

(
− Yj−2 − 3Yj−1 + 3Yj + Yj+1

)
, j = 2, 3, 4, ..., n− 1, (5.3)

ΦY ′′
h (xj) =

12

h2

(
Yj−2 − Yj−1 − Yj + Yj+1

)
, j = 2, 3, 4, ..., n− 1, (5.4)

ΦY
(3)
h (xj) =

1

h2

(
− Yj−2 + 3Yj−1 − 3Yj + Yj+1

)
, j = 2, 3, 4, ...n− 1, (5.5)

where Φ is the discrete operator defined as:

ΦYj = ϱj−2 + 11ϱj−1 + 11ϱj + ϱj+1, j = 2, 3, 4, ..., n− 1. (5.6)

Theorem 5.1. Let Yh(xj) be the quartic spline interpolant of Y (xj) and Y (x) ∈
C8(Ω), then we have

ΦY ′
h(xj) = 24Y ′

j − 12hY ′′
j + 8h2Y ′′′

j − 3h3Y
(4)
j +

6

5
h4Y

(5)
j − 11

30
h5Y

(6)
j +O(h6),

(5.7)

ΦY ′′
h (xj) = 24Y ′′

j − 12hY ′′′
j + 8h2Y

(4)
j − 3h3Y

(5)
j +

16

15
h4Y

(6)
j − 3

10
h5Y

(8)
j +O(h6),

(5.8)

ΦY ′′′
h (xj) = 24Y ′′′

j − 12hY
(4)
j + 6h2Y

(5)
j − 2h3Y

(6)
j +

3

5
h4Y

(7)
j − 3

20
h5Y

(8)
j +O(h6).

(5.9)

Proof. From equations (5.3) and (5.7) and using interpolating condition (5.1),
and expanding Y (x) in Taylor’s series, in the right side of equation (5.7) we get,

ΦY ′
h(xj) = 24Y ′

j −12hY ′′
j +8h2Y ′′′

j −3h3Y
(4)
j +

6

5
h4Y

(5)
j − 11

30
h5Y

(6)
j +O(h6). (5.10)

In similar way we can prove the remaining relations (5.8) and (5.9).
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Theorem 5.2. Let Yh(xj) be the quartic spline of Y (x) ∈ C8(Ω) and satisfies
the interpolating conditions (5.1) and (5.2). Then we have following relation for
i = 0, 1, 2, 3, ..., n,

Y ′
h(xj) = Y ′(xj) +

1

720
h4Y (5)(xj)−

1

2016
h6Y (7)(xj) +O(h8), (5.11)

Y ′′
h (xj) = Y ′′(xj)−

1

240
h4Y (6)(xj) +

1

6048
h6Y (8)(xj) +O(h8), (5.12)

Y ′′′
h (xj) = Y ′′′(xj)−

1

12
h4Y (5)(xj) +

1

240
h4Y (7)(xj) +O(h6). (5.13)

Proof. Let any function S(x) ∈ C8(Ω), we have following relation,

ΦSj = Sj−2 + 11Sj−1 + 11Sj + Sj+1, j = 2, 3, 4, ..., n− 1. (5.14)

Using Taylor’s series expansion for Sj , each term on the right side of equation (5.14),
we get

ΦSj = 24Sj − 12hS′
j + 8h2S′′

j − 3h3S′′′
j +

7

6
h4S

(4)
j − 7

20
h5S

(5)
j +O(h6). (5.15)

Since Sj = Y (3)(xj)− 1
12h

2Y (5)(xj) +
1

240h
4Y (7)(xj). From equation (5.15), we get

Φ(Y (3)(xj)−
1

12
h2Y (5)(xj) +

1

240
h4Y (7)(xj))

=24Y ′′′
j − 12hY

(4)
j + 6h2Y

(5)
j − 2h3Y

(6)
j +

3

5
h4Y

(7)
j − 3

20
h5Y

(8)
j . (5.16)

From equations (5.16) and (5.10), we get

Φ(Y ′′′
hj − Y ′′′

j +
h2

12
Y

(5)
j − h4

240
Y

(5)
j ) = O(h6). (5.17)

Now, we set qj = Y ′′′
hj − Y ′′′

j + h2

12Y
(5)
j − h4

240Y
(5)
j and interpoloting condition (5.2),

we have
Φqj = O(h6), j = 2, 3, 4, ..., n− 1, (5.18)

and q0 = q1 = qn = 0. Therefore from equation (5.17) and (5.18), we can get

Y ′′′
hj = Y ′′′

j +
h2

12
Y

(5)
j − h4

240
Y

(5)
j +O(h6). (5.19)

Now, we consider the consistency relation of quartic B-spline for j = 1, 2, 3, ..., n−1,
we have

Y ′′′
hj =

1

h2
(Yhj−1 − 2Yhj + Yhj+1)−

h

24
(Y

(3)
hj+1 − Y

(3)
hj−1). (5.20)

Now, using equations (5.1) and (5.13) in equation (5.20), we get

Y ′′′
hj =

1

h2
(Yj−1 − 2Yj + Yj+1)−

1

h2
[(Y ′′′

j+1 −
1

12
h2Y

(5)
j+1 +

1

240
h4Y

(7)
j+1)

− (Y ′′′
j−1 −

1

12
h2Y

(5)
j−1 +

1

240
h4Y

(7)
j−1)], j = 2, 3, 4, ..., n− 1. (5.21)
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Now, expanding each Yj±1 by Taylor’s series about xj , we get

Y ′′
hj = Y ′′(xj)−

1

240
h4Y (6)(xj) +

1

6048
h6Y (8)(xj) +O(h8), j = 1, 2, 3, ..., n− 1.

(5.22)
Now, we prove the consistency relation for j = 0, n, we have

Y ′′
hj = Y ′′

hj+1 −
h

2
(Y ′′′

hj − Y ′′′
hj+1), j = 0, (5.23)

Y ′′
hj = Y ′′

hj−1 −
h

2
(Y ′′′

hj + Y ′′′
hj−1), j = n. (5.24)

Putting equations (5.13) and (5.22) in (5.23) and (5.24) and expanding each term
by Taylor’s series about xj , we get complete proof of equation (5.23). For the last
relation, we use following consistency relation of quartic spline for j = 1, 2, 3, ..., n.

Y ′
hj =

h2

24
(Y ′′′

hj−2+5Y ′′′
hj−1+2Y ′′′

hj )+
h

12
(Y ′′

hj−2+Y ′′
hj−1+Y ′′

hj)+
1

h
(Y ′

hj−Y ′
hj−1), (5.25)

for j = 0, n. we get

Y ′
hj = Y ′

hj+2 −
h3

3
(Y ′′′

hj + 4Y ′′′
hj+1 + 2Y ′′′

hj+2). (5.26)

Now using equation (5.1) in equation (5.25) and (5.26) ,we get

Y ′
hj =

h2

24
(Y ′′′

j−2 + 5Y ′′′
j−1 + 2Y ′′′

j ) +
h

12
(Y ′′

j−2 + Y ′′
j−1 + Y ′′

j ) +
1

h
(Y ′

j − Y ′
j−1),

j = 1, 2, 3, . . . , n, (5.27)

Y ′
j = Y ′

j+2 −
h3

3
(Y ′′′

j + 4Y ′′′
j+1 + 2Y ′′′

j+2), j = 0, n. (5.28)

Expanding each term in the right side using Taylor’s series about xj , we get

Y ′
h(xj) = Y ′(xj) +

1

720
h4Y (5)(xj)−

1

2016
h6Y (7)(xj) +O(h8). (5.29)

In similar fashion, we prove the equation (5.13).
Now the truncation error is defined as e(x) = Y (x)− Yh(x) can be obtained by

using Taylor series expansion for e(xj + θh) as

e(xj + θh) =
−(10θ2 − θ)

720
h5Y (5)(xj)−

(5θ4 − θ2)

720
h6Y (6)(xj)

+
(7θ2 − 5θ)

720
h7Y (7)(xj) +O(h8), 0 ≤ θ ≤ 1. (5.30)

5.1. Stability Analysis
Here, we discuss the stability of the proposed numerical method (4.19) by means of
Von-Neumann technique.

Theorem 5.3. The proposed numerical method (4.19) is unconditionally stable.
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Proof. To demonstrate the stability of the proposed numerical method, we sup-
pose that F (x, τ) = 0. We suppose that

ωk
j = ξkeijσh, (5.31)

where i =
√
−1, ξ is the amplitude and σ wave number of the error. Putting

equation (5.31) in the equation (4.12), we have

ξk+1eijσh
(
e−2iσh

(
ε

4h2
j

− ã(xj)

12hj
+
r̃(xj)

48

)
+e−iσh

(
− ε

4h2
j

− 3ã(xj)

12hj
+

11r̃(xj)

48

)
+

(
− ε

4h2
j

+
3ã(xj)

12hj
+

˜11r(xj)

48

)
+ eiσh

(
ε

4h2
j

+
ã(xj)

12hj
+

r̃(xj)

48

))
=ξkeijσh

(
e−2iσh

(
−ε

4h2
j

+
ã(xj)

12hj
+

s̃(xj)

48

)
+ e−iσh

(
ε

4h2
j

+
3ã(xj)

12hj
+

˜11s(xj)

48

)
+

(
ε

4h2
j

− 3ã(xj)

12hj
+
11s̃(xj)

48

)
+eiσh

(
−ε

4h2
j

− ã(xj)

12hj
+

s̃(xj)

48

))
, 0 ≤ k ≤ m− 1.

(5.32)

After simplifying the above equation, we get

ξk+1

(
(cos(2σh)−i sin(2σh))

(
ε

4h2
j

− ã(xj)

12hj
+
r̃(xj)

48

)
+cos(σh)

(
−ã(xj)

4hj
+
r̃(xj)

4

)
+ i sin(σh)

(
−ε

2h2
j

+
ã(xj)

3hj
− 5̃r(xj)

24

)
+

(
ε

4h2
j

+
3ã(xj)

12hj
+

11r̃(xj)

48

))
=ξk

(
(cos(2σh)− i sin(2σh))

(
−ε

4h2
j

+
ã(xj)

12hj
+

s̃(xj)

48

)
+ cos(σh)

(
ã(xj)

4hj
+

s̃(xj)

4

)
+ i sin(σh)

(
ε

2h2
j

− ã(xj)

3hj
− 5̃s(xj)

24

)
+

(
−ε

4h2
j

− 3ã(xj)

12hj
+

11s̃(xj)

48

))
,

0 ≤ k ≤ m− 1. (5.33)

For our convenience, we define the following notations:

L1 =

(
ε

4h2
j

− ã(xj)

12hj
+

r̃(xj)

48

)
, L2 =

(
−ã(xj)

4hj
+

r̃(xj)

4

)
,

L3 =

(
−ε

2h2
j

+
ã(xj)

3hj
− 5̃r(xj)

24

)
, L4 =

(
ε

4h2
j

+
3ã(xj)

12hj
+

11r̃(xj)

48

)
,

L5 =

(
−ε

4h2
j

+
ã(xj)

12hj
+

s̃(xj)

48

)
, L6 =

(
ã(xj)

4hj
+

s̃(xj)

4

)
,

L7 =

(
ε

2h2
j

− ã(xj)

3hj
− 5̃s(xj)

24

)
, L8 =

(
−ε

4h2
j

− 3ã(xj)

12hj
+

11s̃(xj)

48

)
.

Thus, equation (5.33) reduces to

ξk+1{(L1 cos(2σh) + L2 cos(σh) + L4)− i(L1 sin(2σh) + L3 sin(σh))}
=ξk{(L5 cos(2σh) + L6 cos(σh) + L8) + i(L7 sin(2σh) + L8 sin(σh))},
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0 ≤ k ≤ m− 1. (5.34)

Suppose ξk+1 = ξk

κ , with κ = κ(σh) is amplification factor of error and it is free
from the time. Then from the above equation, we have

κ{(L5 cos(2σh) + L6 cos(σh) + L8) + i(L7 sin(2σh) + L8 sin(σh))}
={(L1 cos(2σh) + L2 cos(σh) + L4)− i(L1 sin(2σh) + L3 sin(σh))},
0 ≤ k ≤ m− 1, (5.35)

and

κ =
[(L1 cos(2σh) + L2 cos(σh) + L4)− i(L1 sin(2σh) + L3 sin(σh))]

[(L5 cos(2σh) + L6 cos(σh) + L8) + i(L7 sin(2σh) + L8 sin(σh))]
. (5.36)

This implies that

|κ|2 ≤ [(L1 cos(2σh) + L2 cos(σh) + L4)− (L1 sin(2σh) + L3 sin(σh))]
2

[(L5 cos(2σh) + L6 cos(σh) + L8) + (L7 sin(2σh) + L8 sin(σh))]2
. (5.37)

Since

[(L5 cos(2σh) + L6 cos(σh) + L8) + (L7 sin(2σh) + L8 sin(σh))]
2 > 0, (5.38)

and

[(L1 cos(2σh) + L2 cos(σh) + L4)− (L1 sin(2σh) + L3 sin(σh))]

≤[(L5 cos(2σh) + L6 cos(σh) + L8) + (L7 sin(2σh) + L8 sin(σh))]
2. (5.39)

Using the equations (5.38) and (5.39) in equation (5.37), we get

|κ| ≤ 1. (5.40)

From equation (5.40), we have seen that the suggested numerical technique is un-
conditionally stable.

5.2. Convergence Analysis
In this subsection, we discuss the convergence of the proposed algorithm. We shall
used previous results and the lemma to establish the parameter uniform conver-
gence.

Theorem 5.4. If Yh(x) be the quartic B-spline collocation approximation for the
space Φ4(Ω), then bound on solution Yh(x) of the considered problem (1.1)-(1.3) is
given by

|Y (x)| ≤ K, x ∈ Ωx, (5.41)
where K is positive constant.

Proof. From equation (4.19), we observed that the matrix P is strictly diagonally
dominant with 2

rj
(−aj +

√
(a2j − 12rjε)) < h < 2

rj
(aj +

√
(a2jj − 12rjε)), ∀ j =

0, 1, 2, ...n. Thus, we have

∥P−1∥∞ ≤ 1

min0≤i≤n[|aii|−
∑

i̸=j |aij |]
= max

(
1

∆i(P )

)
, (5.42)
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where ∆i(P ) = |aii| −Σi̸=j |aij | > 0, for i = 0, 1, 2, ..., n. Therefore, we can say that

∥P−1∥∞ ≤ K. (5.43)

Thus ∥Y k+1∥ ≤ ∥P−1∥∥G∥ ≤ K, which show that δk+1
0 , δk+1

1 , ..., δk+1
n−1, δ

k+1
n are

bounded. Now using the boundary conditions, the coefficients δk+1
−2 , δk+1

−1 and δk+1
n+1

are also bounded. Therefore

|Y (x)| = |
n+1∑
i=−2

δk+1
i Yh(x)| ≤ max |δk+1

i |
n+1∑
i=−2

|Yh(x)|, ∀x ∈ Ω. (5.44)

Since we know that the quartic B-spline basis function {Yhj}n+1
j=−2, satisfying fol-

lowing inequality

n+1∑
i=−2

|Yhi(xj)| ≤ 47, j = 0, 1, 2, 3, ..., n− 1. (5.45)

Therefore, from equations (5.44) and (5.45), we have

|Y (x)| ≤ K, x ∈ Ωx. (5.46)

Theorem 5.5. Let Y (x) be the sufficiently smooth solution of the given problem
(1.1)-(1.3) and Yh(x) be quartic B-spline collocation approximation on the nonuni-
form mesh. The error term must satisfy the following ε-uniform error estimation
for sufficiently large n as:

∥Y (x)− Yh(x)∥∞ =

{
Kn−4(log(n))10, ∀x ∈ Ω1

Kn−4, ∀x ∈ Ω2.
(5.47)

Proof. To calculate the error ∥Y (x) − Yh(x)∥∞, we suppose T (x) be the unique
quartic B-spline interpolation from space Φ4(Ω) to the solution Y (x) of problem
(1.1)-(1.3). If G(x) ∈ C4[0, 1], and Y (x) ∈ C5[0, 1] , then it follows from [7,11] that

∥Dj(Y (x)− T (x))∥∞ ≤ ςj |Y (6)(x)|h6−j
λ , j = 0, 1, 2, 3, 4 (5.48)

where hλ = max{hλ1 , hλ2} and ςj are constant independent of hλ and n. Let

T (x) =

n+1∑
i=−2

δ̃iBSi(x). (5.49)

Now from equation (5.47), we have

∥LY (xi)− LYh(xi)∥∞ ≤ Kh4
λ, (5.50)

where K = (ες2 + ς1∥a(z)∥hλ + ς0∥r(z)∥h2
λ)∥Y (6)(x)∥h6

λ. Now we suppose that
LY (xi) = G̃(xi), ∀i where G̃(xi) = [G̃(x0), G̃(x1), G̃(x2), ..., G̃(xn−1), G̃(xn)]

T which
leads to system of equation

MW = G̃(x), (5.51)



An ε-uniformly 2109

where W = [w0, w1, ..., wn−1, wn]
T . From equations (4.19) and (5.51), it is clear

that the ith coordinate of vector M(Y −W ) satisfies the following inequality:

∥[M(Y −W )]i∥ = ∥[G− G̃]i∥ ≤ Kh6
λ. (5.52)

Therefore, the ith coordinate of [M(Y −W )] is the ith equation

(−6ε− 4ai + rih
2
i )αi−2 + (6ε− 12ai + 11rih

2
i )αi−1 + (6ε+ 12ai + 11rih

2
i )αi

+ (−6ε+ 4ai + rih
2
i )αi+1 = χi, 0 ≤ i ≤ n, (5.53)

where αi = δi − wi and χi = 48h2
i [G(xi) − G̃(xi)] for 2 ≤ i ≦ n − 1, and from

equation (5.53), we can easily prove that |χi| ≤ τh6
λ. Let χi = max2≤i≤n−1 |χi|.

Also we suppose that αi = [α0, α1, α2, ...., αn−1, αn]
T . Now we have to introduce

error term Êi = |αi| and E = max2≤i≤n−1 |Êi|. From equation (5.53), we have

(6ε+ 12ai + 11rih
2
i )αi = (6ε+ 4ai − rih

2
i )αi−2 − (6ε− 12ai + 11rih

2
i )αi−1

− (−6ε+ 4ai + rih
2
i )αi+1 + χi, 2 ≤ i ≤ n− 1. (5.54)

Now using the condition from differential equation 0 ≤ a∗ ≤ a(x), 0 ≤ r∗ ≤ r(x)
and taking the absolute values with sufficiently small hλ, we obtain

(2r∗h2 + 8a∗h+ 12ε)ẽ ≤ χi ≤ Kh6
λ. (5.55)

Therefore we have

Ẽ ≤ Kh4
λ

(2r∗h2 + 8a∗h+ 12ε)
, i = 2, 3, ..., n− 1. (5.56)

Now we estimate the values Ẽ−2, Ẽ−1, Ẽ0, Ẽn, and Ẽn+1. Using the first and
last equation of the system M(Y −W ) = (G − G̃), with boundary conditions and
auxiliary equation, we get

Ẽ0 ≤ 8r∗Kh4
λ

(24ε+ 18a∗h)(2r∗h2 + 8a∗h+ 12ε)
,

Ẽn ≤ 8r∗Kh4
λ

(24ε− 18a∗h)(2r∗h2 + 8a∗h+ 12ε)
,

(5.57)

and
Ẽ−1 ≤ (18ε+ 4a∗h+ 12r∗h2)Kh4

λ

(64ε+ 48a∗h)(2r∗h2 + 8a∗h+ 12ε)
,

Ẽn+1 ≤ (18ε− 4a∗h+ 12r∗h2)Kh4
λ

(64ε− 48a∗h)(2r∗h2 + 8a∗h+ 12ε)
.

(5.58)

Also
Ẽ−2 ≤ (64ε− 24a∗h+ 8r∗h2)Kh4

λ

(36ε+ 8a∗h+ 16r∗h2)(2r∗h2 + 8a∗h+ 12ε)
. (5.59)

Therefore from equations (5.56)- (5.59), and putting the value of K, we get

Ê = max
−2≤i≤n+1

{Ê} ≤ K1∥Y (6)(x)∥h4
λ, (5.60)
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where K1 is constant independent of ε. The above inequality enables us to estimate
∥Yh(x)− T (x)∥∞ and hence ∥Yh(x)− Y (x)∥∞. Thus, we have

Yh(x)− T (x) =

n+1∑
i=−2

(δi − wi)BSi(x) (5.61)

|Yh(x)− T (x)| ≤ max |δi − wi|
n+1∑
i=−2

|BSi(x)|

|Yh(x)− T (x)| ≤ max |αi|
n+1∑
i=−2

|BSi(x)|. (5.62)

From equations (5.60) and (5.61) and
∑n+1

i=−2 |BSi(x)| ≤ 47, we have

|Yh(x)− T (x)| ≤ Kh4
λ. (5.63)

Also
∥Y (x)− Yh(x)∥∞ ≤ ∥Y (x)− T (x)∥∞ + ∥T (x)− Yh(x)∥∞.

Now from equation (5.63) and (5.48), we have

|Y (x)− Yh(x)| ≤ K∥Y (6)(x)∥h4
λ. (5.64)

Now, we discuss the convergence of the developed method on each subinterval Ωi =
(xi−1, xi), ∀i = 1, 2, 3, ..., n separately. As we have dealt with continuous problem,
we first decomposed the solution of discrete problem into smooth component V (x)
and singular component W (x) respectively. Thus Yh(x) = V (x) + W (x), where
V (x) is the solution of non-homogeneous problem given by

L(V (x)) = G(x), ∀x ∈ Ωx,

V (0) = v(0), V (1) = v(1),

and W (x) is the solution of the homogeneous problem

L(W (x)) = 0, ∀x ∈ Ωx,

W (0) = w(0), W (1) = w(1).

From the above relation, we can define error term in the spatial direction such as

Yh(x)− Y (x) = (V (x)− v(x)) + (W (x)− w(x)), ∀x ∈ Ωx. (5.65)

Since each quartic B-spline basis function covered by five elements at each finite
subinterval Ωx, therefore the B-spline collocation approximation Yh(x) of Y (x), on
x ∈ Ωz is given by

Yh(x) =δk+1
i−2 BSi−2(x) + δk+1

i−1 BSi−1(x) + δk+1
i BSi(x)

+ δk+1
i+1 BSi+1(x) + δk+1

i+2 BSi+2(x), (5.66)

and it is obvious that on Ωi

|Yh(x)| ≤ max
Ωi

|Y (x)|. (5.67)
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Therefore, from the equation (5.64), we can easily write as

|Y (x)− Yh(x)| ≤ K|Y (6)(x)|h(4)
i , x ∈ Ωx. (5.68)

Now, we obtain the estimates on the solution Y (x) and its derivatives of semidis-
cretized problem (4.8):

|Y (m)(x)| ≤ K

(
1 + ε−m exp

(
−a∗(1− x)

ε

))
, x ∈ Ωx. (5.69)

Therefore, from equation (5.69) and (5.68), we have

|Y (x)− Yh(x)| ≤ Kh
(4)
i

(
1 + ε−m exp

(
−a∗(1− x)

ε

))
, x ∈ Ωx. (5.70)

Now, we calculate the error part that varies with the quantity of γ i.e, γ0ε log(n) ≥ 1
2

and γ0ε log(n) ≤ 1
2 .

Case I: Consider γ = 1
2 , then the mesh is uniform with space size hi = 1

n and
γ0ε log(n) ≥ 1

2 and it gives ε−1 ≤ K(log(n)). Now we suppose that ε → 0 and
exp

(−a∗(1−x)
ε

)
→ 0 in the equation (5.70). Then we easily get the error estimate

as:
∥Y (x)− Yh(x)∥∞ ≤ Kn−4(log(n))10, 0 ≤ i ≤ n. (5.71)

Case II: In this case we consider Kε log(n) ≤ 1
2 . Then the mesh is uniform in

fine mesh region Ω1 with space size hi = 2γ
n for i satisfies 1 ≤ i ≤ n

2 , while the
mesh is uniform in the coarse region Ω2 with space size hi =

2(1−γ)
n for i satisfies

n
2 + 1 ≤ i ≤ n. Therefore, from the equation (5.68) in the fine mesh Ω1, the error
estimate is given by

|Y (x)− Yh(x)| ≤|V (x)− v(x)|+ |W (x)− w(x)|

≤Kh
(4)
i max(|v6(x)|+ |w6(x)|)

≤Kh
(4)
i

((
1 + ε−3 exp

(−a∗(1− x)

ε

))
+

(
ε−6 exp

(−a∗(1− x)

ε

)))
.

(5.72)

Here the fine mesh region Ω1 = [0, 1 − γ], we have hi

ε = 2τ
nε = Kn−1 log(n), for

1 ≤ i ≤ n
2 . Now we again suppose that ε → 0 and exp

(−a∗(1−x)
ε

)
→ 0, ∀x ∈ Ωi,

and k ∈ Z. Then the inequality (5.72), become:

|Y (x)− Yh(x)| ≤ Kn−4(log(n))10, ∀x ∈ Ωi, 1 ≤ i ≤ n

4
. (5.73)

Now we find the error estimate in the coarse mesh region Ω2 = [1−γ, 1]. Since both
singular component W (x) and w(x) are small in Ω2 = [1− γ, 1]. Therefore from the
equation (5.67) and (5.68), on Ωi for n/4 ≤ i ≤ n/2, we obtain

|Y (x)− Yh(x)| =|V (x)− v(x) +W (x)− w(x)|
≤|V (x)− v(x)|+ |W (x)− w(x)|

≤Kh
(4)
i max

Ωi

(|v6(x)|+ 2max |w(x)|)
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≤K

(
h
(4)
i + exp

(−a∗(1− x)

ε

))
≤K

((
4(1− γ)

n

)4

+ exp(
−a∗γ0

ε )

)
≤K

((
256(1− γ)4

n4

)
+ exp(−a∗γ0 log(n))

)
≤K(n−4 + n−a∗γ0)

≤Kn−4, ∀x ∈ [1− γ, γ]. (5.74)

From equation (5.73) and (5.74), we conclude that

∥Y (x)− Yh(x)∥∞ =

{
Kn−4(log(n))10, ∀x ∈ Ω1

Kn−4, ∀x ∈ Ω2.
(5.75)

Theorem 5.6. Let Yh(x, τ) be the approximation to the solution Y (x, τ) of the
problem (1.1)-(1.3) at (k + 1)th time level of the fully discretized scheme after the
temporal discretization. Then,

sup
0≤ε≤1

max
0≤n≤1

|Y (x)− Yh(x)| =

{
K((∆τ)2 + n−4(log(n))10), ∀x ∈ Ω1,

K((∆τ)2 + n−4), ∀x ∈ Ω2.
(5.76)

Proof. The proof is the consequence of Theorem 5.5 and Lemma 3.2.

6. Numerical Experiments
In order to demonstrate improved accuracy for various values of ϵ and step size n, we
addressed two problems to demonstrate the efficacy and efficiency of the proposed
technique. We contrasted our findings with those reported in the literature. There
is no analytical solution provided for problems 6.1 and 6.2. So, we apply the double
mesh approach as follows to determine the maximum pointwise errors and order of
convergence

|En,m
ε | = |Y n,m

hj − Y 2n,2m
hj |,

where Y n,m
hj and Y 2n,2m

hj are numerical solutions obtained by the use of the quartic
B-spline method on a shishkin mesh in the spatial direction and a uniform mesh in
the time direction. To calculate ε-uniform maximum pointwise error as:

En,m = maxEn,m
ε .

By using the formula, one can determine the order of convergence of the approach
by

Rn,m
ε = log2

(
En,m

ε

E2n,2m
ε

)
,

and the ε-uniform order of convergence is calculated by

Rn,m = log2

(
En,m

E2n,2m

)
.
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Problem 6.1. Consider the SPPCDE with a(x) = (2 + x2), b(x) = x, F (x, τ) =
10τ2 exp(−τ)x(1−x), and initial and boundary conditions are Y (x, 0) = 0, Y (0, τ) =
0, Y (1, τ) = 0.

Problem 6.2. Consider the SPPCDE with a(x) = (2−x2), b(x) = x2+1+cos(πx),
F (x, τ) = sin(πx), and initial and boundary conditions are Y (x, 0) = 0, Y (0, τ) = 0,
Y (1, τ) = 0.

We apply proposed method (4.19) to solve the problems 6.1 and 6.2 for distinct
values of perturbation parameter ε and spatial size n. We have computed maximum
pointwise error (MPE) and their order of convergence. From the Tables 2 and 5,
we can observe that the constructed method with Shishkin mesh is ε-uniformly
convergent for various values of ε and n. Because of this, we are able to say that the
order of convergence attained computationally is higher than one that was predicted
in the section before it. It has been shown that theoretical rate of convergence of the
developed method is fourth order in the spatial direction and second order in the
time direction. Moreover in Tables 3 and 4, we compare our numerical results with
those obtained by Clavero et al. [6] and Kadalbajoo et al. [14]. The comparison
between these tables makes it very clear that the proposed strategy is superior
to [6,14]. We have plotted the zoomed figure of numerical solutions of the problem
6.1 and 6.2 for ε = 2−20 and n = 64, 128 respectively, in figures 5, 6, 11 and 12.
From, the figures 5, 6, 11, and 12 we observed that the large amount of the mesh
point gather in the boundary layer, when the very small values of ε, and hence we
also observed that the width of boundary layer decreases and becomes sharper at
the ends points. Therefore, we have observed that the significance of Shishkin mesh
over the uniform mesh. The surface plot of numerical solution for various values of
ε, i.e. (ε = 2−06, 2−12, 2−18, 2−24) and m = n = 128 are presented in the Figures
1, 2, 7 and 8. The Log log plot of maximum pointwise errors for the problem 6.1
and 6.2 are plotted in Figures in 3, 4, 9 and 10.

Figure 1. Approximate solutions of the Problem
6.1 for n = 128 and ε = 2−10

Figure 2. Approximate solutions of the Problem
6.1 for n = 128 and ε = 2−20
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Table 2. Maximum Pointwise errors En,m of Problem 6.1 using proposed method (4.19).

ε ↓ n = 25 n = 26 n = 27 n = 28 n = 29

∆τ = 1/25 ∆τ = 1/26 ∆τ = 1/27 ∆τ = 1/28 ∆τ = 1/29

2−08 3.2417e− 03 5.3041e− 04 7.4123e− 05 9.5666e− 06 1.6511e− 06

2.6116 2.8391 2.9538 2.5345

2−10 3.5450e− 03 5.7044e− 04 7.6956e− 05 9.8069e− 06 1.1489e− 06

2.6580 2.8900 2.9721 3.0936

2−12 3.6228e− 03 5.6951e− 04 7.7660e− 05 9.8714e− 06 1.2108e− 06

2.6693 2.8744 2.9758 3.0274

2−14 3.6424e− 03 5.7146e− 04 7.7886e− 05 9.8860e− 06 1.2246e− 06

2.6722 2.8763 2.9737 3.0131

2−16 3.6473e− 03 5.7195e− 04 7.7885e− 05 9.8895e− 06 1.2277e− 06

2.6729 2.8767 2.9774 3.0099

2−18 3.6485e− 03 5.7207e− 04 7.7881e− 05 9.8904e− 06 1.2284e− 06

2.6730 2.8770 2.9771 3.0093

2−20 3.6488e− 03 5.7210e− 04 7.7884e− 05 9.8906e− 06 1.2286e− 06

2.6730 2.8769 2.9773 3.0090

2−22 3.6489e− 03 5.7210e− 04 7.7884e− 05 9.8906e− 06 1.2286e− 06

2.6730 2.8769 2.9771 3.0090

2−24 3.6489e− 03 5.7211e− 04 7.7884e− 05 9.8906e− 06 1.2286e− 06

2.6730 2.8769 2.9771 3.0090

En,m 3.6489e− 03 5.7211e− 04 7.7884e− 05 9.8906e− 06 1.2286e− 06

Rn,m 2.6730 2.8769 2.9771 3.009

Figure 3. Loglog plot of errors the Problem 6.1 for
n = 128 and ε = 2−10

Figure 4. Loglog plot of errors of the Problem 6.1
for n = 128 and ε = 2−20

7. Conclusion
In this paper, we constructed a high order numerical method for solving a class
of singularly perturbed parabolic convection-diffusion problem with the boundary
layer. The method comprised Crank-Nicolson scheme in the temporal direction on
uniform mesh and quartic B-spline basis function in the spatial direction on non-
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Figure 5. Approximate solutions of the Problem
6.1 at various time level with n = 64 and ε = 2−20.

Figure 6. Approximate solutions of the Problem
6.1 at various time level with n = 128 and ε = 2−20.

Table 3. Comparison of En,m for Problem 6.1 between proposed method(PM) and [6,14].

Methods
ε

2−08 2−12 2−16 2−20

n = 64,m = 40 PM 7.3143− 04 7.7052e− 04 7.7296e− 04 7.7311e− 04

[6] 9.9801e− 03 1.1062e− 03 1.1123e− 02 1.1127e− 02

[14] 1.3036e− 03 2.4394e− 03 2.7221e− 03 2.7486e− 03

n = 128,m = 80 PM 1.6094e− 04 9.1412e− 04 1.8520e− 04 1.8528e− 04

[6] 5.8721e− 03 5.8677e− 03 5.8286e− 03 5.0641e− 03

[14] 1.2822e− 03 1.3043e− 03 8.1807e− 03 6.4156e− 03

n = 256,m = 160 PM 5.1430e− 05 5.3509e− 05 5.2178e− 05 5.2178e− 05

[6] 3.0833e− 03 3.0818e− 03 3.0536e− 03 2.5678e− 03

[14] 6.3983e− 04 6.1306e− 04 4.3726e− 03 3.2554e− 04

Figure 7. Approximate solutions of the Problem
6.2 for n = 128 and for ε = 2−10.

Figure 8. Approximate solutions of the Problem
6.2 for n = 128 and ε = 2−20

uniform mesh. We have done comprehensive analysis and got parameter-uniform
error estimates which show high order accuracy with regard to space and time. It
can be seen from the graphs that the boundary layer width continuously relies on ε
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Figure 9. Loglog plot of errors of the Problem 6.2
for n = 64, 128, 256 and ε = 2−10.

Figure 10. Loglog plot of errors of the Problem 6.2
for n = 64, 128, 256 and ε = 2−20.

Figure 11. Approximate solutions of the Problem
6.2 at various time level with n = 64 and ε = 2−20.

Figure 12. Approximate solutions of the Problem
6.2 at various time level with n = 128 and ε = 2−20.

Table 4. Comparison of En,m for Problem 6.2 between proposed method(PM) and [14], [6].

Methods
ε

2−08 2−12 2−16 2−20

n = 64,m = 40 PM 7.3143e− 04 5.2957e− 04 5.3187e− 04 5.3199e− 04

[6] 1.5419e− 02 1.6499e− 02 1.6558e− 02 1.6561e− 02

[14] 1.6693e− 03 2.6772e− 03 3.1358e− 03 3.1573e− 03

n = 128,m = 80 PM 2.3584e− 04 2.6036e− 04 2.6188e− 04 2.6197e− 04

[6] 9.0213e− 03 9.9728e− 03 1.0026e− 02 1.0029e− 02

[14] 7.6966e− 04 1.0383e− 03 1.4896e− 03 1.5190e− 03

n = 256,m = 160 PM 7.8162e− 05 8.2432e− 05 8.2752e− 05 8.2772e− 05

[6] 4.9681e− 03 5.6225e− 03 5.6598e− 03 5.6619e− 03

[14] 3.5999e− 04 5.3072e− 04 6.6507e− 04 7.5426e− 04

and it decreases as ε decreases. Also, numerical results presented in the tables verify
the theoretical estimate. The execution of the developed method for the considered
problems was studied by calculating the maximum pointwise error presented in
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Table 5. Maximum Pointwise errors En,m of Problem 6.2, using proposed method (4.19).

ε ↓ n = 25 n = 26 n = 27 n = 28 n = 29

∆τ = 1/25 ∆τ = 1/26 ∆τ = 1/27 ∆τ = 1/28 ∆τ = 1/29

2−08 1.3494e− 03 2.1931e− 04 6.2680e− 05 8.8802e− 06 1.2078e− 06

2.6212 2.8828 2.8193 2.8782

2−10 3.3079e− 03 4.5175e− 04 6.7584e− 05 9.3250e− 06 1.3271e− 06

2.8723 2.7408 2.8575 2.8128

2−12 3.3506e− 03 4.5970e− 04 6.9204e− 05 9.4918e− 06 1.5004e− 06

2.8656 2.7317 2.8661 2.6613

2−14 3.3704e− 03 4.6169e− 04 6.9613e− 05 9.5669e− 06 1.3763e− 06

2.8679 2.7294 2.8632 2.7972

2−16 3.3774e− 03 4.6218e− 04 6.9716e− 05 9.5858e− 06 1.3211e− 06

2.8694 2.7289 2.8625 2.8591

2−18 3.3791e− 03 4.6230e− 04 6.9742e− 05 9.5906e− 06 1.3331e− 06

2.8698 2.7287 2.8623 2.8469

2−20 3.3796e− 03 4.6232e− 04 6.9748e− 05 9.8906e− 06 1.3361e− 06

2.8700 2.7287 2.8623 2.8880

2−22 3.3797e− 03 4.6233e− 04 6.9750e− 05 9.5921e− 06 1.3368e− 06

2.8700 2.7287 2.8623 2.8431

2−24 3.3797e− 03 4.6233e− 04 6.9750e− 05 9.5921e− 06 1.3370e− 06

2.8700 2.7287 2.8623 2.8428

En,m 3.3797e− 03 4.6233e− 04 6.9750e− 05 9.8906e− 06 1.5004e− 06

Rn,m 2.8700 2.7287 2.8623 2.8880

Tables 2 and 5. From these tables, we can see that the suggested method provides
more precise outcomes with high order convergence than those of the methods
considered in [6,14]. Also, we have connived numerical results in Figures 1, 2, 7 and
8 and observed the physical phenomenon of the considered problems. Our future
research would comprise the analysis of such properties. Also, we extend the result
to solve the high-dimensional problem of the form:

Yτ (z, τ)− ε.∆Y (z, τ) + a(z, τ).∇Y (z, τ) + b(z, τ)Y (z, τ) = F (z, τ),

where z = (x1, x2), which is given in [24].
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