
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 13, Number 4, August 2023, 2121–2152 DOI:10.11948/20220389

THE WITHIN-HOST VIRAL KINETICS OF
SARS-COV-2

Meng Wang1, Yafei Zhao1, Chen Zhang2 and Jie Lou1,†

Abstract Understanding the dynamics of SARS-COV-2 infection in vivo is
crucial for exploring more effective treatments. This paper presents a series of
dynamic models of viral infection in host. We use affine invariant set Monte
Carlo algorithm to achieve parameter fitting and model selection, and study
the structural identifiability of these models to determine if the clinical data
could specify the model parameters. Then we analyze the actual identifiabil-
ity and numerical simulation of the selected optimal model. Research shows
that all models are structurally identifiable, and data noise has little effect
on the actual identifiability of key parameters. Through numerical simula-
tion we found the key factors that may cause cytokine storms. In addition,
we also obtain some qualitative conclusions of the model, including the infec-
tion threshold, the stability of the equilibrium state and the periodic solution.
Studies have found that viral load may exhibit complex periodic motions in
some cases, which may provide new evidence to handle repeated reactivations
among new corona virus infections.

Keywords Dynamics model, SARS-COV-2, identifiability analysis, model
selection, periodic solution.
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1. Introduction
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe
acute respiratory syndrome coronavirus 2 (SARS-COV-2) [50]. SARS-COV-2 is an
RNA virus whose S protein infects alveolar epithelial cells (mainly type II alveolar
cells) by binding to angiotensin-converting enzyme 2 (ACE2) receptors [36, 45].
Destruction of alveolar epithelial cells and increased cellular permeability lead to
viral release [32]. SARS-COV-2 infection causes T lymphocytes to release numerous
extracellular molecular regulators, such as pro-inflammatory factors, chemokines,
etc., to induce innate and adaptive immune responses [15, 31], and to promote
the death of viruses and infected cells [33]. Indeed, in the early stages of SARS-
COV-2 infection, T cell-mediated immunity is essential to control the spread of the
virus [44]. However, in severe COVID-19 patients, T cells may over-induce immune
responses, causing tissue damage [42].
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Many researchers have explored the dynamic model of the COVID-19 transmis-
sion among macroscopic individuals from various angles [7,18,21,37,46]. Still, there
are few models studying the virus dynamics in the host of SARS-COV-2 infection
[15]. Indeed, within-host models can not only explore how the infection process
is affected by the model parameters, especially the parameters related to the host
immune system and drug intervention. It also helps to guide the treatment steps in
the viral life cycle and optimize the treatment strategy [23]. Ejima et al. [9]used a
simple 2-ODE system to model the infection process of SARS-COV-2 in susceptible
host cells, and used this model to estimate the infection time and distinguish the
imported cases from the local secondary cases. Kim et al. [19] used the same model
to simulate potential anti-SARS-COV-2 therapies. Miao et al. used viral load data
from 11 patients from different countries [20, 30] and non-human primates [27] to
explore how cell-mediated and humoral immunity affects the infection process and
viral load dynamics [38]. Sahoo et al. developed a model to analyze the intra-host
dynamics between virus-infected cells, identifying key parameters of various clinical
phenotypes associated with COVID-19 [39]. However, none of these studies were
fitted with real clinical data from SARS-COV-2 infected individuals and lacked
medical support.

Even if reliable clinical data are collected, obtaining parameter estimation by
establishing a model and fitting it is not rigorous. Researchers can describe the in-
fection process of viruses in vivo by selecting different mathematical models. Choos-
ing the model among several models that best fits the actual situation is a problem
worth exploring. It is a new attempt to apply the model selection method in the in-
fectious disease dynamics model. Different mathematical models will produce other
dynamic behaviors of the virus. After the optimal model represents the observation
data information to a certain extent, the model can be used for subsequent analysis
to provide more valuable information.

The data help us to fit the proper parameters as closely as possible, provided that
the parameters are identifiable. However, when fitting models with limited clinical
data to estimate model parameters, this often results in the best-fit parameter
values not being unique, i.e. multiple parameter values will result in the best fit to
the data. Still, different parameter values may produce very different predictions.
This phenomenon is known as an unidentifiable parameter. Parameter identifiability
analysis includes structural identifiability analysis and actual identifiability analysis.
The former is investigated under the assumption that the data are noise-free. See the
literature [5,10,28] for details. The latter is an identifiability analysis when the data
is affected by noise. Since the data collected is often noisy, the actual unidentifiable
parameters are difficult to avoid. At this stage, the impact of unidentifiability on the
reliability of parameter valuation is reduced by searching for more independent data
sets or using better-fitting algorithms and models. The affine invariant set Monte
Carlo algorithm (GWMCMC) is currently the most efficient method for fitting data
[12, 34]. The algorithm combines affine invariant sets with the traditional MCMC
algorithm, using multiple walkers to iterate simultaneously. The next position of
a walker depends on the current positions of all other walkers. Its performance is
independent of the spatial affine transformation, and it converges quickly to the
target posterior distribution even in the face of unrecognizable problems.

In this paper, we model the biological mechanisms of SARS-COV-2 infection,
replication, and interaction with the immune system in the host, perform model se-
lection and parameter identifiability analysis, and investigate the dynamic changes
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in viral load. In the second part, a four-variable infectious disease model (Full
model) is developed based on the infection mechanism; in the third part, the Full
model is analyzed for structural identifiability and four sub-models are developed
based on different assumptions. In the fourth part, the equilibrium point, stabil-
ity, and Hopf branch of the Full model are analyzed and validated by numerical
simulations.

2. The model and sources of clinical data

2.1. The model

In this study, we hypothesized that type II alveolar cells are the main target cells
of the SARS-COV-2 virus and developed a kinetic model for the infection process
of this virus in vivo. This model depicts the interaction between healthy type II
alveolar cells (C), infected type II alveolar cells (I), T lymphocytes (T ), and free
SARS-COV-2 virus particles (V ). The S protein on the surface of SARS-COV-
2 plays an important role in the infection of target cells such as alveolar type II
cells. The S1 subunit of S protein contains a receptor binding domain (RBD). RBD
binds to ACE2 on target cells, leading to cell infection [47]. Wang et al. [48] found
that the antibody ”47D11” also has an affinity for the RBD-binding domain of the S
protein in their study of antiviral therapy . This dynamic response and ’cooperative
binding’ between organisms are often portrayed by the Hill function [29,40,48]. We
assume that the mechanism of action between the virus and the immune system is
as shown in Fig 1. This infection mechanism can also be described by the following
nonlinear system (2.1).

 
 

I
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Figure 1. Diagram of the dynamics of SARS-COV-2 infection. Healthy type II alveolar cells are
produced at a constant rate of α and can be infected by viruses as well as infected cells in the form
of Hill functions. The entry of SARS-COV-2 into the body activates adaptive immunity, with ω and θ
indicating the effect of the immune response induced by the infected cells and the virus, respectively. T
lymphocytes clear the virus at a rate of q and infected cells at a rate of ω. µ, γ, m and p represent the
natural apoptosis rates of healthy II type alveolar cells, infected II type alveolar cells, T lymphocytes
and free SARS-COV-2 virus, respectively. See Table 1 for details of the meaning of the parameters.
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dT
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dV

dt
= nI − qTV − pV.

(2.1)

Table 1. Description and unit of parameters.

Parameter Description Unit

α Type II alveolar cells production rate cells ml−1day−1

δ Hill coefficient ml cell−1

βv Virus-to-type II alveolar cells infection rate ml virion−1day−1

βi Infected cells-to-type II alveolar cells infection rate ml cell−1day−1

θ Virus-to-T lymphocytes infection rate ml virion−1day−1

ω Infected cells-to-T lymphocytes cells ml cell−1day−1

n Virion production rate per infected epithelial cell virion cell−1 day−1

q The rate of lymphocyte attacking virus ml virion−1day−1

µ Death rate of healthy type II alveolar cells day−1

γ Death rate of infected type II alveolar cells day−1

m Death rate of T lymphocytes day−1

p Virus clearance rate day−1

2.2. Sources of clinical data
The clinical data of a total of 198 adult patients (≥18) that were recruited to the
Yale IMPACT Biorepository between 18 March and 9 May 2020 were used in our
study [25, 43]. These patients were positive for SARS-COV-2 by RT-PCR of nasal
or pharyngeal swabs. All patients were admitted to the hospital with symptoms.
The first time point sample of the study was collected for each patient at the time of
positive diagnosis, and subsequent biological samples were collected for 48 of these
patients at an average of every 3 to 7 days. Doctors scored the severity of COVID-
19 disease (1-5) by reviewing electronic cases at each longitudinal time point. The
literature shows a large gap between the biological indicators for mild patients
(scores 1-3) and severe patients (scores 4-5), and clinical data for severe patients
are severely missing in the time series. In addition, the variation in medication use
from patient to patient may also affect the viral load data to some extent [25,43].

This paper intends to use the clinical data of ’T lymphocyte count’ and ’viral
load’ of some COVID-19 patients in Yale New Haven Hospital [25, 43] to fit the
model parameters. To make use of the clinical data of the patients and to make the
fitting results more effective, the data need to be homogenized. We screened data
from patients with mild disease treated with both hydroxychloroquine (HCQ) and
tocilizumab (Toci). At the same time, to reduce the effect of drug action time on
biomass, we only selected patients who were treated within 7 days after symptoms
and those who were treated for more than 3 days as the research objects. The T
lymphocyte data and viral load data of patients every two days were averaged and
applied to the system.
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3. The identifiability and model selection
The predicting results of the model are highly dependent on accurate parameter
estimation. The reasonableness of the parameter estimates requires a discussion
of the identifiability of the model parameters. The identifiability analysis is gen-
erally divided into two parts: mathematical identifiability and statistical identifia-
bility. Structural identifiability analysis investigates whether the parameters in an
ODE model are identifiable under ideal measurement assumptions (no measurement
error), while practical identifiability investigates whether experimental data with
noise can identify (and reasonably estimate) the parameters in the model.

3.1. Structural identifiability analysis
Structural identifiability analysis examines whether unique estimates of the param-
eters can be obtained from the input-output equations, assuming ideal conditions
of measurement data free of interference and error. Under ideal data conditions, a
model is said to be structurally identifiable if parameter values can theoretically be
uniquely determined from these data, or structurally unidentifiable if two or more
parameter sets can lead to the same observed output.

Structural identifiability of the model is necessary for finding a solution to the
parameter estimates from the actual data. Even if a model is structurally unidenti-
fiable, it can reveal helpful information between parameters. This makes the struc-
tural identifiability of analytical models an essential consideration in epidemiological
modeling [11]. To determine whether the model’s parameters (2.1) are structurally
identifiable under ideal conditions (noise-free data), a definition of structural iden-
tifiability analysis is introduced here.

Definition 3.1 ( [28]). A parameter set p is said to be globally (or uniquely)
structurally identifiable if for every q in the parameter space

g(x(t),p) = g(x(t), q) ⇒ p = q,

where x(t) is the state variable, p is the system parameter, and the observations
(new diagnoses and new deaths) are defined by the model output g(x(t),p).

For linear models, the problem can be solved globally via a transfer function
approach and other linear algebra methods [6]. However, for nonlinear ODE models,
identifiability analysis remains a challenge for applications beyond relatively simple
models. One productive identifiability approach is the differential algebra method
[4, 24]. We can employ the model not only to determine the overall identifiability
but also reveal identifiable parameter combinations and the re-parameterization.
Therefore, the structural identifiability of the model is discussed next using the
differential-algebraic method.

Theorem 3.1. With two sets of observations ‘T-lymphocyte’ and ‘viral load’, the
model (2.1) with parameters p=[α, δ, βv, βi, θ, ω, n, q, µ, γ,m, p] is structurally iden-
tifiable.

Proof. Since the dataset contains both T-lymphocyte and viral load data, the
corresponding outputs of the model can be given by y1, y2. Let y1 = T , y2 = V .
For simplicity, the latter two equations of the model are expressed in terms of y1,
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y2, y′1 and y′2

y′1 = ωIy1 + θy2y1 −my1, (3.1)
y′2 = nI − py2 − qy1y2. (3.2)

From (3.1), we have

I =
y′1 +my1 − θy1y2

ωy1
. (3.3)

Derivation of (3.3)

I ′ =
y1y

′
1 − θy21y

′
2

ωy21
. (3.4)

Substitute (3.4) into (3.2)

y′2 =
n(y′1 +my1 − θy1y2)

ωy1
− py2 − qy1y2. (3.5)

Simplifying (3.5) yields the first input-output equation

−ny′1 + ωy1y
′
2 + qωy21y2 + (pω + θn)y1y2 −mny1 = 0. (3.6)

To test the identifiability of the parameters (m,n, ω, q) in the input-output equation
(3.6), suppose a set of parameters (b1, b2, b3, b4) yields the same output, then a new
set of equations can be obtained

−n = −b2,

ω = b3,

qω = b4b3,

−mn = −b1b2.

Using (b1, b2, b3, b4) to solve for (m,n, ω, q), we get m = b1, n = b2, ω = b3, q = b4,
so the parameters m,n, ω, q are identifiable.

The second input-output equation is not given here because it is too lengthy.
However, in order to determine the identifiability of the remaining unknown pa-
rameters (α, βv, βi, δ, µ, γ, θ, p), we also assume that a set of alternative parameters
(b5, b6, b7, b8, b9, b10, b11, b12) can produce the same output, then the following set
of equations can be obtained from some of the terms in the second input-output
equation:

βiδ = b7b8, (3.7)
ωβvδ − θβiδ = ωb6b8 − b11b7b8, (3.8)
−ω2βvδ + 2ωθβiδ + qθβiδ = −ω2b6b8 + 2ωb11b7b8 + qb11b7b8, (3.9)
δ(−ωβv + θδ) = b8(−ωb6 + b11b8), (3.10)
−3γω + 3ωm+ 2ωβi + 3θn = −3b10ω + 3ωm+ 2ωb7 + 3b11n, (3.11)
ωD + 6θmn = ωD1 + 6θmn, (3.12)
ωH − 6θ2nβi = ωH1 − 6nb211b7, (3.13)
ωQ− 6θ2mnβi = ωQ1 − 6b211mnb7. (3.14)
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Of which,

D = ωα− 6γm+ ωβiδ + ωδµ+ 4mβi + 6θmn,

D1 = ωb5 − 6b10m+ ωb7b8 + ωb8b9 + 4mb9,

H = −3pθβi − 3γωβv + 6γθβi + 4ωβvβi + 3θnβv − 4θβ2
i ,

H1 = −3b12b11b7 − 3ωb10b6 + 6b10b11b7 + 4ωb6b7 + 3nb11b6 − 4b11b
2
7,

Q = −3pmθβi − 3mγωβv + 6mγβi + ω2αβv + ω2βvβiδ + ω2βvδµ− ωθαβi

− ωθβ2
i δ − ωθβiδµ+ 4ωmβiβv + 3θmnβv − 4θmβ2

i ,

Q1 = −3mb12b11b7 − 3mωb10b6 + 6mb10b7 + ω2b5b6 + ω2b6b7b8 + ω2b6b8b9

− ωb11b5b7 + 4ωmb6b7 + 3mnb11b6 − 4mb11b
2
7.

From (3.7)–(3.9):

θ =
(ωb6b8 − b11b7b8)ω − ω2b6b8 + 2ωb11b7a8 + qb11b7b8

b7b8(ω + q)
= b11, (3.15)

βvδ =
(ωb6b8 − b11b7b8)(2ω + q)− ω2b6b8 + 2ωb11b7b8 + qb11b7b8

ω(ω + q)
= b6b8. (3.16)

Substituting (3.15), (3.16) into (3.10), we get δ = b8. Then use (b5, b6, b7, b9, b10, b12)
to solve for (α, βv, βi, µ, γ, p) to get α = b5, βv = b6, βi = b7, µ = b9, γ = b10,
p = b12. So substituting (3.15), (3.16) into (3.10) gives δ = b8, and then use
(b5, b6, b7, b9, b10, b12) to solve for (α, βv, βi, µ, γ, p) to get α = b5, βv = b6, βi = b7,
µ = b9, γ = b10, p = b12. So, model (2.1) is structurally identifiable.

3.2. Model selection
We often want to use simple models to describe the process of virus infection, but
worry that ’simplicity’ ignores some important factors, which requires modelers to
select multiple models with different complexity. Choosing a model that can best
reflect the actual infection process of the virus from the limited clinical data is of
great significance. Based on the mechanism of SARS-COV-2 infection in host cells,
we regard the system (2.1) as Full model. Under different biological assumptions,
the model nested four different sub-models (see Table 2, and these according dy-
namic models can be found in the Appendix). We fit all five models using two sets
of clinical statistics, ’lymphocyte count’ and ’viral load’, for COVID-19 patients at
Yale New Haven Hospital, and then used the fit results to evaluate the different
models to determine which model was more appropriate for the clinical data set.

Since some parameters of the model have been reasonably estimated in other
literature, these parameters will be fixed as constants (see Table 3). For other
unknown parameters in the model, we use the affine invariant set Monte Carlo
algorithm(GWMCMC) [12] for parameter estimation. This algorithm is superior
to the Metropolis-Hastings (M-H) algorithm and random walk M-H algorithm [8],
especially when the parameters cannot be identified. Because the original Markov
Chain Monte Carlo (MCMC) algorithms are used to approximate the posterior
distribution of parameters by randomly sampling the parameter space [13]. The
advantage of the GWMCMC algorithm in this paper is using multiple walkers. The
position of walkers is updated based on the current situation of all other walkers
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Table 2. Models and corresponding assumptions.

Model Assumptions Brief summary

Model 1 Full Model Considering the infectivity of all warehouses
Model 2 βi = 0 Not considering the attack of infected cells on target cells
Model 3 ω = 0 Not considering the attack of infected cells on T lymphocytes

Model 4 βi = 0, Not considering the attack of infected cells on target cells and
ω = 0 the interaction between infected cells and T lymphocytes

Model 5 βv = 0, Not considering the attack of SARS-COV-2 on target cells
ω = 0 and the interaction between infected cells and lymphocytes

Table 3. Constant value of parameters and initial value of variables.

Parameters Value Source Initial Condition Value Source

µ 0.001 [22] C0 6e4 [38]
γ 0.088 [17] I0 0.01 assumption
m 0.325 [17] T 0 6e5 [25]
p 7.5 [38] V 0 0.01 assumption

so that the fitting value is more accurate. See the literature for details on the
algorithm [12,34,35].

Assuming that the priors of all parameters obey uniform distribution, the pos-
terior distribution of all estimated parameters is generated by the GWMCMC algo-
rithm. From these distributions, we obtain the best fitting value of the parameters
to be estimated in the Full Model and its 95% confidence interval (95%CI), respec-
tively. The results are shown in Table 4.

Table 4. Model parameters of the Full Model and its estimations.

Parameter α βv βi δ

Best-fit value 1.69e3 0.11 0.09 1.03
95%CI (1.58e3, 1.70e3) (0.10, 0.15) (0.08, 0.14) (0.91, 1.20)

Parameter ω θ n q

Best-fit value 5.47e-6 4.08e-6 757.21 2.16e-5
95%CI (5.36e-6, 6.98e-6) (4.02e-5, 5.11e-5) (6.08e2, 7.78e2) (1.36e-5, 2.42e-5)

The parameter estimations and 95% confidence interval of the remaining four
sub-models are shown in Table 5.

Table 4 and Table 5 give the best parameter fitting value and 95% confidence
interval of the five models, respectively. Based on the above parameter estimates,
we can compare the five models to select the best model. Commonly used model
selection criteria include the akaike information criterion (AIC) [2] and the Bayesian
Information Criterion (BIC) [41], as well as the variant (AICc) of AIC, generally, the
minimum value of AIC,BIC or AICc is the best model. In the likelihood function
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Table 5. Model parameters and their estimations of the four submodels.

Par Model 2 Model 3 Model 4 Model 5

Best-fit 95%CI Best-fit 95%CI Best-fit 95%CI Best-fit 95%CI
value value value value

α 2.64e3 (2.5, 2.69)e3 920.84 (0.89, 9.29)e2 926.39 (9.00, 1.09)e2 867.80 (0.85,1.04)e3
βv 0.11 (0.08, 0.19) 0.08 (0.02, 0.09) 1.14 (1.01, 1.79) NA NA
βi NA NA 0.29 (0.14, 1.30) NA NA 1.47 (1.03,2.00)
δ 0.83 (0.62, 1.50) 0.43 (0.18, 1.17) 2.52 (2.23, 3.93) 1.05 (0.74,1.42)
ω 6.44e-6 (5.72, 8.04)e-5 NA NA NA NA NA NA
θ 4.42e-6 (3.95, 5.30)e-5 5.19e-6 (4.77, 5.67)e-6 5.32e-6 (5.00, 5.81)e-6 4.76e-6 (4.66,5.13)e-6
n 727.54 (6.02, 7.97)e2 91.36 (0.90, 1.19)e2 57.52 (54.86, 79.91) 69.63 (61.40,69.99)
q 3.90e-5 (2.64, 4.52)e-5 1.75e-4 (1.67, 2.59)e-4 9.89e-5 (0.87, 1.65)e-4 1.08e-4 (0.89,1.22)e-4

framework, these criteria can be written as follows:

AICc = AIC +
2K(K + 1)

n−K − 1
= −2 lnL(θMLE) + 2K;

BIC = −2 lnL(θMLE) +K ln(n);

where L is the maximum likelihood function obtained when the best fit is θMLE , K
denotes the number of parameters to be estimated in the model, and n denotes the
sample size, i.e. the number of observed data at the corresponding time point. AIC
is more suitable when K < n

40 , i.e.when the number of time points corresponds to
a larger number of parameters; AICc is more suitable when K > n

40 . Also, as the
sample size increases, AICc converges to AIC, and it is often recommended to use
AICc [3].

Table 6. List of AICc and BIC for different models.

Model Number of fitted pars AICc BIC

Model 1 8 353.35 407.81

Model 2 7 342.15 401.66

Model 3 7 337.43 396.94

Model 4 6 323.18 394.75

Model 5 6 325.77 396.34

According to the estimated parameter values of all models in Table 4 and Table 5,
Table 6 gives the AICc value and BIC value of all models. We know that the model
with the smallest value of AICc (BIC) is the best. As seen in Table 6, the AICc
value for Model 4 is the smallest of all the models, and its BIC value also confirms
this result. Therefore, Model 4 was chosen as the best model. This suggests that
the factors ’attack of infected cells on target cells’ and ’interaction between infected
cells and lymphocytes’ are not essential. Although they can provide a more detailed
picture of the COVID-19 infection process.

Fig 2 shows the fitting results of Model 4 to the lymphocyte count (left panel)
and the viral load (right panel). The initial moment of the fitting (time 0) is when
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the virus invades the individual. As seen in Fig 2 (a), there is a decline in T
lymphocytes in the early stages of infection establishment. As the infection builds
up, the T-lymphocyte levels gradually increase, but returning to the initial levels
is difficult. During the incubation period, the viral load was low until the 10th day
of infection, when it increased rapidly and peaked on the 13th day. Subsequently,
viral load levels began to decrease in response to the drug.
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Figure 2. Fitting results. (a) Fitting curve of the T lymphocyte and its 95% confidence interval. (b)
Fitting curve of the COVID-19 virus load and its 95% confidence interval.

3.3. Practical identifiability analysis
The analysis in Section 3.1 clearly shows that Model 4 is structurally identifiable.
This is a necessary condition to be able to obtain reliable parameter estimates
from the data. However, structurally identifiable parameters are not necessarily
recognizable, which may be related to the fact that the data are not ideal.

The actual data collected is often noisy. A key problem when fitting a model
to data is the effects of noise on the parameter estimates and model identifiability.
To investigate the effect of different noise distributions on parameter estimates in
real systems, we tested the following common error models through simulations:
Poisson, Gaussian (standard deviation equal to 10% of the variance), Negative
binomial (because of the overdispersion, a negative binomial distribution with a
variance equal to 5 times the mean and a variance equal to 50 times the mean will
be considered respectively). We took the best parameter values obtained in Model
4 as the true parameter values, added each of the four noises to the model output
to generate 100 data, and re-estimated the model parameters; the results of the
parameter estimation are shown in Table 7.

The second column in Table 7 shows the values of the best-fit parameters ob-
tained from the Model 4 fit, and the next four columns represent the average of
the best parameter values when the noise is Poisson, Gaussian (standard deviation
equal to 10% of the variance), Negative binomial with variance 5 times the mean
and Negative binomial with variance 50 times the mean, obtained by 100 replica-
tions of the simulation with maximum likelihood. We found that the estimation
results were similar for all noise distributions, and all parameter estimation were
close to the true parameter values, suggesting that the different noise distributions
had little effect on the parameter fitting results. Further consideration was given
to the practical identifiability of the Model 4 parameters under Poisson noise: the
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Table 7. Parameter estimates.

Parameters True value Poisson Gaussian Negative binomial Negative binomial
(10%CV) (5 times) (50 times)

α 926.3887 926.4645 923.0535 925.9913 932.2961
βv 1.1427 1.1420 1.1151 1.1496 1.1409
δ 2.5199 2.5192 2.4825 2.5356 2.5101
θ 5.3242e-6 5.3237e-6 5.3421e-6 5.3229e-6 5.3262e-6
n 57.5238 57.5640 59.8367 57.5092 57.3546
q 9.8904e-5 9.8989e-5 1.0409e-4 9.8802e-5 9.8722e-5

simulation was repeated 100 times using GWMCMC to obtain the best estimate
of the parameter values and generate a scatter plot of the parameter estimates as
shown in Fig 3.
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Figure 3. Scatterplots showing parameter estimates for 100 simulated data sets use Affine Invariant
Ensemble Markov chain Monte Carlo algorithm for Poisson noise. Beat-fit parameters (indicated by red
stars) are as given in Table 5. Note that the parameters θ,q and n can be identified. The parameter
δ, βv, α cannot be identified.

Fig. 3 with red pentagrams is the best fit for Model 4 in Table 5, and the blue
points are the parameter estimation obtained from 100 iterations of the simulation.
The first row of the figure plots the relationship between the parameter θ and the
parameters βv, n, and α, respectively, showing that the estimates of the parameter
θ vary very little, all within a small range around the best-fit value, and we claim
that the parameter θ is practically identifiable. Similarly, the parameter q is also
practically identifiable. The third-row plots the relationship between the parameter
δ and the parameters βv, n and α, respectively, and shows that the estimated value
of the parameter δ varies considerably, so the parameter δ is said to be practically
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unidentifiable. In terms of columns, the first column shows the relationship between
the parameter βv and the parameters θ, q, and δ, respectively. The estimation of
the parameter βv varies considerably, so the parameter βv is practically uniden-
tifiable. The second column shows the relationship between the parameter n and
the parameters θ, q, and δ, respectively. The estimation of the parameter n varies
relatively little, so the parameter n is practically identifiable. The estimation of α
is highly variable. So the parameter α is practically unidentifiable.

To verify our conclusions related to the practical identifiability of the parameters
from the scatter plot, we applied Monte Carlo simulations further to analyze the
practical identifiability of the parameters in Model 4. Monte Carlo simulations
have also been used extensively for the practical identifiability of ODE models. We
generated 100 synthetic data sets using the true parameter set p0 and added noise.
The results of fitting the true parameter set of the model are shown in Table 8. In
general, the Monte Carlo simulation procedure [28] can be summarised as follows.

(1) Solve the Model 4 numerically with the true parameters p0 and obtain the
output vector g(x(ti),p0) at the discrete data time points {tk}nk=1.

(2) Generate M = 1000 simulated data from the statistical model with a given
measurement error structure. Data sets are drawn from a normal distribution whose
mean is the output vector obtained in step 1 and the standard deviation is the σ0%
of the mean.

(3) Fit the Model 4 to each of the M simulated data sets by the GWMCMC algo-
rithm. Get the Parameter Set of Maximum Likelihood Function p̂j , j = 1, 2, · · · ,M .

(4) Calculate the average relative estimation error (ARE) [26] for each parameter
in the set p by

ARE(p(k)) = 100%
1

M

M∑
j=1

|pk0 − pkj |
pk0

,

where p(k) is the kth parameter in the set p, p(k)0 is the kth parameter in the true
parameter set p0 and p̂ , and p

(k)
j is the kth parameter in the estimated parameter

set pj .
(5) Repeat steps 1 through 4 with increasing level of noise, that is take σ0% =

0, 5, 10, 20%.
The calculated ARE values allow a discussion of the identifiability of the pa-

rameters to be fitted in Model 4. Since Model 4 is globally identifiable in structure,
when σ0 = 0, the largest ARE value of each parameter is 0.4456% (corresponding to
the parameter βv, see Table 8). All six parameters are well identified when the data
are free of noise. This indicates that the practical identifiability obtained by Monte
Carlo simulation is consistent with the structural identifiability analysis performed
by differential algebraic methods. From the above table we can see that as the
noise in the data increases, the value of ARE also increases. When the error level
increases to 5%, the relative errors of θ, n and q remain below the error level of 5%,
but the relative errors of α, βv and δ are above the error level. The results are the
same when the error increases to 10% and 20%. It is noteworthy that even at the
error level of 20%, the relative error of θ is still below 5%, indicating that θ is very
insensitive to the noise in the data.

We assume that a parameter is practically identifiable if its ARE value is less
than the measurement error level. Thus, based on the Monte Carlo simulation
results shown in the table above, we obtain that the parameters θ, n and q are
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Table 8. Parameters identifiability analysis of the model 4. The output vector corresponding to the
real parameters is taken as the mean value, and the σ0 % of the mean value is taken as the standard
deviation to generate 100 simulation data sets subject to normal distribution, which are brought into
Model 4 to obtain new estimation parameters through GWMCMC simulation. The ARE calculation is
based on 100 simulation runs with measurement error levels of σ0 = 0, 5, 10, 20%.

Parameters
ARE ARE ARE ARE

σ0 = 0% σ0 = 5% σ0 = 10% σ0 = 20%

α 0.2183 % 5.5726 % 14.7645% 29.1059%

βv 0.4456% 6.7799% 11.2064% 21.6982%

δ 0.4437% 7.3191% 11.1876% 20.7077%

θ 0.0378% 1.5388% 2.8112% 5.6269%

n 0.0621% 2.3115% 6.1430% 17.0549%

q 0.0740% 1.6609% 6.1152% 13.0296%

practically identifiable, while the parameters α, βv, and δ are practically unidenti-
fiable. This is also in general agreement with the practical identifiability results of
the parameters in the scatter plot corresponding to the data under Poisson noise.

Although it is not straightforward to conclude that the parameters α, βv, δ are
practically identifiable, due to the superiority of the GWMCMC algorithm in the
presence of unidentifiable parameters and the degree of aggregation of the param-
eters, it can be assumed that the estimation of the parameters α, βv, δ are to some
extent reliable.

To further illustrate the effect of non-identifiability on model prediction, based
on the approximately linear relationship between the parameters δ and βv in Fig.
4 and the circular dispersion between the parameters δ and α, we take four differ-
ent combinations: min(δ, βv) = (2.1178, 0.9643) , max(δ, βv) = (2.9020, 1.3192),
min(δ, α) = (2.1178, 899.2132) and max(δ, α) = (2.9020, 951.6838). The maximum
and minimum values are taken from the 100 sets of estimated parameter values for
δ, βv and α obtained by 100 iterations of the simulation. Under these four different
combinations, we plotted Fig.4.

The blue curve in Fig. 4 shows the trend of virus load over time for the optimal
parameters. The green and red curves in the left panel are the best curves when δ
and βv have both maximum (max(δ, βv)) and minimum (min(δ, βv)) values respec-
tively. It can be seen that the combination of these two parameters has minimal
effect on the viral load. The green and red curves on the right are the optimal
curves when δ and α have a maximum (max(δ, α)) and a minimum (min(δ, α)),
respectively. We found that although the time to peak viral load is delayed and
advanced by one day in both cases, the time to stabilization and the value of stabi-
lization are almost identical, suggesting to some extent that the parameter values
we estimated earlier are robust.
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Figure 4. The curve of viral load under different combinations of parameters. The black dots correspond
to the peak of curves.

3.4. Simulations
The main drug used in the treatment of COVID-19 is hydroxychloroquine (HCQ),
which works by inhibiting the binding of SARS-COV-2 to cellular receptors and
the replication of nucleic acids, affecting the release of the virus. To investigate
the effect of HCQ drug effects on patients’ treatment progress, we made different
assumptions about two parameters of HCQ drug effects, n and βv, assuming that
other parameters remained unchanged as column 6 in Table 5, and the simulation
results are shown in Fig 5 (left). Assuming that without drug intervention or weak-
ened drug effect, the ability of virus binding cell receptor and replication ability
reach 1.25 times (blue curve) or 1.5 times (purple curve) of the original, then the
peak number of newly infected target cells caused by virus attack will greatly in-
crease, and the time to reach the peak will also be advanced with the decrease of
drug control. If the drug is assumed to be more potent than it is, for example,
if a factor of 0.5 (red suppresses the ability of the virus to bind cellular receptors
and replicate curve) and 0.75 (green curve), respectively, the peak number of newly
infected target cells is significantly reduced and the time to peak is significantly
delayed. As a result, an appropriate increase in the effectiveness of HCQ drugs can
effectively control the disease in infected patients, allowing more time for treatment
and reducing mortality.
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Figure 5. The figure on the left shows the number of cells infected by the virus under different
combinations of parameters. The figure on the right shows the number of T lymphocytes under different
Hill coefficients.
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During SARS-COV-2 infection, the virus rapidly replicates and activates im-
mune cells to release many inflammatory cytokines, which is easy to induce a ’cy-
tokine storm’. At this time, the number of T lymphocytes decreases [49]. This is
the main reason for the death of patients with COVID-19 [16]. At the same time,
some studies have found that the RBD domain of S protein and ’47D11’ antibody
has affinity, which may lead to increased infection ability citehuman. The decrease
of Hill coefficient δ will lead to the enhancement of infection ability, that is, the
number of newly infected cells increases, so how does the number of lymphocytes
that play an important role in the infection change to explore this problem, we make
several different assumptions about δ. The results are shown in Fig. 5 (right). It
can be seen that as δ increases, the number of T lymphocytes declines more, and
when δ is large, T lymphocytes will maintain a low level for a long period, which
shows that the increase of δ is more likely to cause cytokine storm. Therefore,
the treatment of immunosuppression during the hospitalization of patients is also
worthy of attention.

4. Stability of equilibrium and Hopf bifurcations of
the Full model

Next, we study the qualitative results of the system. We conclude that the equi-
librium point of the system (2.1) and its stability are as follows. Although this
conclusion is for the system (2.1), it also holds for all the other four subsystems.

Theorem 4.1. Let

R0 =
α(pβi + nβv)

pr(µ+ δα)
, R1 = 1 +

γp
[
µ+ (R0 − 1)(µ+ δα)

]
α

.

Then

1. The system (2.1) always has a disease-free equilibrium E0

(
α

µ
, 0, 0, 0

)
. When

R0 < 1, E0 is locally asymptotically stable.

2. When R0 > 1, E0 becomes unstable. At this point the system (2.1) has a
boundary equilibrium point

Eb

(
α

(µ+ δα)(R0 − 1) + µ
,

α(µ+ δα)(R0 − 1)

γ[(µ+ δα)(R0 − 1) + µ]
, 0,

αn(µ+ δα)(R0 − 1)

γp[(µ+ δα)(R0 − 1) + µ]

)
.

When 1 < R0 < R1, the boundary equilibrium Eb is locally asymptotically
stable;

3. When R0 > R1 > 1, Eb becomes unstable and the system (2.1) has a positive
equilibrium point E∗(C∗, I∗, T ∗, V ∗).

Proof. We first prove the existence of a positive equilibrium point. Let the right-
hand side of the model (2.1) be equal to zero and rewrite the system of equations
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as: 

α =
(βvV + βiI)C

1 + δC
+ µC, (4.1)

(βvV + βiI)C

1 + δC
= (ωT + γ)I, (4.2)

ωI + θV = m, (4.3)

nI = (qT + p)V. (4.4)

Substituting the relationship between I and V in (4.4) into (4.2) gives

[βi(qT + p) + nβv]C

1 + δC
= (ωT + γ)(qT + p). (4.5)

Solve the first expression of C by (4.5):

C = f1(T ) =
(ωT + γ)(qT + p)

βi(qT + p) + nβv − δ(ωT + γ)(qT + p)
. (4.6)

Solving from (4.3) and (4.4) gives

I =
m(qT + p)

nθ + ω(qT + p)
. (4.7)

From (4.1) and (4.2) we have

α = µC + (ωT + γ)I. (4.8)

The second expression for C is obtained by combining (4.7) and (4.8):

C = f2(T ) =
1

µ

[
α− m(ωT + γ)(qT + p)

nθ + ω(qT + p)

]
. (4.9)

Next, determine the intersection of the functions (4.6) and (4.9) by their mono-
tonicity. From (4.6) we have

f1(T )
′ =− 1

µ

m[ω(qT + p) + (ωT + γ)q][nθ + ω(qT + p)]−mωq(ωT + γ)(qT + p)

[nθ + ω(qT + p)]2

=− 1

µ

m[ωnθ(qT + p) + ω2(qT + p)2 + nθq(ωT + γ)]

[nθ + ω(qT + p)]2
.

Clearly, f1(T )′ < 0, so f1(T ) is monotonically decreasing at (0,+∞) and

f1(0) =
1

µ

(
α− mγp

nθ + ωp

)
.

From (4.9), we have

f2(T )
′ =

ωβi(qT + p)2 + nβvω(qT + p) + nβq(ωT + γ)

[βi(qT + p) + nβv − δ(ωT + γ)(qT + p)]2
.
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Clearly, f2(T )′ > 0, then f2(T ) is monotonically increasing at (0,+∞) and

f2(0) =
γp

pβi + nβv − δγp
.

At this point, f2(0) > 0. If f1(0) > f2(0), then f1(T ) and f2(T ) must have an
intersection (T ∗, C∗) at (0,+∞). Next, explore under what circumstances, f1(0) >
f2(0). To make f1(0) > f2(0), i.e.

α(pβi + nβv)(nθ + ωp) > γp(µ+ δα)(nθ + ωp) +mγp(pβi + nβv − δγp).

Namely

α(pβi + nβv) > γp(µ+ δα) +
mγp(pβi + nβv − δγp)

(nθ + ωp)
.

That is:

R0=
α(pβi+nβv)

γp(µ+ vδα)
> 1+

m(pβi+nβv − δγp)

(µ+δα)(nθ+ωp)
=1+

γp
[
µ+(R0−1)(µ+δα)

]
α

=R1.

Therefore R0 > R1 is equivalent to f1(0) > f2(0), at which point f1(T ) and
f2(T ) have an intersection (T ∗, C∗) on (0,+∞). According to (4.4) and (4.7), if
T ∗ > 0, C∗ > 0, then there must be I∗ > 0, V ∗ > 0. In summary, at R0 > R1,
a positive equilibrium point exists. Secondly, the local stability of the disease-free
equilibrium point E0 is proved. The corresponding characteristic equation of the
system (2.1) at E0 is easily known as:

(λ+m)(λ+ µ)[(−αδ − µ)λ2 + (αβi − (p+ γ)(αδ + µ)
)
λ+

(
pγ(αδ + µ)− α(βip

+ βvn)
)
(αδ + µ)] = 0.

The eigenvalues of E0 are easily obtained as:

λ1 = −m,λ2 = −µ, λ3 =
Ψ1 +

√
Ψ2

1 − 4Ψ2

2(αδ + µ)
, λ4 =

Ψ1 −
√

Ψ2
1 − 4Ψ2

2(αδ + µ)
.

Of which,

Ψ1 = −
[
(1−R0) + αnβv

p
+ p(αδ + µ)

]
, Ψ2 = pγ(1−R0)(αδ + µ)2.

When R0 < 1, Ψ1 < 0, Ψ2 > 0, the disease-free equilibrium point E0 of the
system (2.1) is thus locally asymptotically stable. When R0 > 1, Ψ2 < 0 and
λ3,4 has a positive value, E0 is unstable. Next, we prove the local stability of the
boundary equilibrium point Eb. The characteristic equation of the system (2.1) at
the boundary equilibrium point Eb can be calculated as

(λ3 +K2λ
2 +K1λ+K0)

(
λ+

α(R1 −R0)(αδ + µ)

pγ
[
(R0 − 1)(αδ + µ) + µ

]) = 0.
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Of which,

K0 =
p2γ2

[
(R0 − 1)2(µ+ δα)2 + µ(R0 − 1)(µ+ δα)

]
pβi + nβv

,

K1 =
pµ(pβi + nβv) + γµnβv

pβi + nβv
,

K2 =
αB2 + pγ

[
p2βi + nβvγ + pγ

(
nβv + γδµ)

]
pγ(pβi + nβv)

,

B = nβv + p(βi − γδ).

It is easy to see that when 1<R0<R1, we have λ1=− α(R1−R0)(αδ+µ)

pγ
[
(R0−1)(αδ+µ)+µ

]<0.

At this point, K0 > 0,K1 > 0, K2 > 0. Also because

K1K2 −K0 =
p3γ(pβi + nβv)

[
αB2 + pγ2µ(pδ − βi + γδ) +Bµγ2

]
p2γ2(pβi + nβv)2

+
pγ2(nβv + pδµ)

[
αpB2 + αγB2 + p2γ2µ(pδ − βi + γδ)

]
p2γ2(pβi + nβv)2

+
αB2

[
αpB2 + αγB2 + p2γ2µ(pδ − βi + γδ)

]
p2γ2(pβi + nβv)2

>
p3γ(pβi + nβv)(αB

2 + p2γ2µδ + nβvµγ
2)

p2γ2(pβi + nβv)2

+
pγ2(nβv + pδµ)

[
αpB pγµ

α + αγB pγµ
α + p2γ2µ(pδ − βi + γδ)

]
p2γ2(pβi + nβv)2

+
αB2

[
αpB pγµ

α + αγB pγµ
α + p2γ2µ(pδ − βi + γδ)

]
p2γ2(pβi + nβv)2

=

[
p2γ3µ(pβi + pδµ) + αB2pγµ

][
p(pβi + nβv) + γnβv

]
p2γ2(pβi + nβv)2

+
p3γ(pβi + nβv)

[
αB2 + µγ2(p2δ + nβv)

]
p2γ2(pβi + nβv)2

>0,

by the Routh-Hurwitz criterion [1], the boundary equilibrium point Eb of the system
(2.1) is locally asymptotically stable. When R0 > R1, we have λ1 > 0, so the
boundary equilibrium point Eb is unstable.

Next, we turn to consider possible bifurcations which may occur from the disease
equilibrium E∗, including static bifurcation and Hopf bifurcation.

For ease of operation, first make a time transformation of the system (2.1)
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dτ =
dt

1 + δC
, we get



dC

dτ
= (α− µC)(1 + δC)− βvCV − βiCI,

dI

dτ
= βvCV + βiCI − (ωIT + γI)(1 + δC),

dT

dτ
= (ωIT + θV T −mT )(1 + δC),

dV

dτ
= (nI − qTV − pV )(1 + δC).

(4.10)

According to Theorem 4.1, when R0 > R1, there is a positive equilibrium in the
system(4.10) :

E∗
(

(ωT∗+γ)(qT∗+p)
βi(qT∗+p)+nβv−δ(ωT∗+γ)(qT∗+p) ,

m(qT∗+p)
nθ+ω(qT∗+p) , T

∗, nm
nθ+ω(qT∗+p)

)
,

where T ∗ is given in the form of the system parameter δ. The relationship between
the two is determined by the following implicit functions on T ∗ and δ:

F (T ∗, δ)=
(
1.00000000×10−26T ∗5δ−(1.00000000×10−21−7.53017560×10−17δ)T ∗4

−(0.05655160−0.00664649δ)T ∗2−(568729.51338458+10033.92167360δ)T ∗

− (1.50300877× 10−11 − 1.51607276× 10−9δ)T ∗3 + 7.96595012× 1011

− 9.33426912× 108
)
(3751.00000000 + 1.00000000× 10−7T ∗)−1

× (−5.00000000× 10−8T ∗ − 375.50000000 + 5.00000000× 10−13δT ∗2

+ 5.04400000× 10−6δT ∗ + 0.44000000δ)−2

=0. (4.11)

The rational numbers given in this equation are obtained by symbolic calculation,
except for the branching parameter δ, the other parameters in the system are given
in Table 9. Next, consider the stability at the positive equilibrium point E∗. The
Jacobian matrix of the system at E∗ is:

J(E∗) =


δ(α− 2µC∗)− µ− Σ −βiC

∗ 0 −βvC
∗

Σ− δ(ωI∗T ∗ + γI∗) βiC
∗ − (γ + ωT ∗)Φ −ωI∗Φ βvC

∗

ΩT ∗δ ωT ∗Φ ΩΦ θT ∗Φ

(nI∗ − qT ∗V ∗ − pV ∗)δ nΦ −qV ∗Φ −(qT ∗ + p)Φ

 ,

of which Φ = (1 + δC∗),Σ = (βv + βi),Ω = (ωI∗ + θV ∗ − m). The fourth order
characteristic equation at E∗ can then be obtained as:

P (λ, T ∗, δ) = λ4 + a1(T
∗, δ)λ3 + a2(T

∗, δ)λ2 + a3(T
∗, δ)λ+ a4(T

∗, δ) = 0, (4.12)

where the coefficients a1(T
∗, δ), a2(T

∗, δ), a3(T
∗, δ) and a4(T

∗, δ) of the character-
istic polynomial are shown below:

a1(T
∗, δ)=

(
(−8.00000000×10−17δ2+2.00000000×10−14δ − 5.00000000×10−22)T ∗3
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+ (0.00015040δ − 3.00160704× 10−6δ2 − 2.06001500× 10−9)T ∗2

+(1515.59534108δ−30.27214080δ2−31.58770368)T ∗−2.64070400×106δ2

− 1.12801734× 1011 + 2.38577680× 109δ
)
(3751.00000000

+ 1.00000000× 10−7T ∗)−1(−5.00000000× 10−8T ∗ − 375.50000000

+ 5.00000000× 10−13T ∗2δ + 0.44000000δ + 5.04400000× 10−6T ∗δ)−1,

a2(T
∗, δ) =

(
(3.02640400× 10−25δ2 − 2.10000000× 10−27δ)T ∗5

+(3.12744836×10−18δ2−2.40643608×10−17δ+1.10001000×10−22)T ∗4

+(1.24944608×10−9δ2 − 6.23747673×10−8δ+2.47842758×10−12)T ∗3

+(13455.95835162δ2−1.60375888×106δ+4.66107442×107)T ∗

+(0.01371916δ2−0.68834071δ+0.01861460)T ∗21.00000000×10−32T ∗6δ2

− 9.74601454× 1011δ + 1.07873440× 109δ2 + 4.60838455× 1013
)

× (0.44000000δ − 5.00000000× 10−8T ∗ − 375.50000000

+ 5.00000000× 10−13T ∗2δ + 5.04400000× 10−6T ∗δ)−1

× (3751.00000000 + 1.00000000× 10−7T ∗)−1,

a3(T
∗, δ)=

(
−5.00000000× 10−54T ∗9δ2 + (1.00000000× 10−48δ

− 2.62801320× 10−43δ2)T ∗8 + (6.00801760× 10−38δ

− 3.10695188× 10−33δ2 − 5.00005000× 10−44)T ∗7

− (3.38005693×10−33−1.01603807×10−27δ+1.06717078×10−23δ2)T ∗6

− (7.33636936×10−23+3.21082378×10−16δ2−6.79582232×10−18δ)T ∗5

− (7.21057166×10−13+3.26107687×10−9δ2−1.60458621×10−8δ)T ∗4

− (0.01206377× δ2 − 0.35332145δ + 0.00335005)T ∗3

− (9286.50234027δ2 − 1.96663316106δ + 6.01927189106)T ∗2

− (8.07908258× 108δ2 − 7.88031514× 1011δ + 8.41109631× 1013)T ∗

− 7.20850093× 1012(δ − 853.40909091)2
)
(3751.00000000

+ 1.00000000×10−7T ∗)−2(5.00000000×10−13T ∗2δ−5.00000000×10−8T ∗

− 375.50000000 + 0.44000000δ + 5.04400000× 10−6T ∗δ)−3,

a4(T
∗, δ)=

(
0.00002560T ∗(2.00669128× 10−18T ∗5δ2 + 282138.57065529T ∗2δ2

+ 0.01879761δ2T ∗3 − 0.94082215δT ∗3 + 476044.61019270T ∗2

+ 0.00013042T ∗3 + 8.26640926× 1016δ2 − 7.46839365× 1019δ

+ 1.76370298× 10−35T ∗7δ2 + 1.17187502× 10−45T ∗8δ2

+7.02413389×1014T ∗+3.90625001×10−46T ∗7+1.32085172×10−24T ∗5

+ 1.81879733× 10−14T ∗4 + 4.39726564× 10−35T ∗6

− 5.27617532× 10−40T ∗7δ + 6.66269834× 10−26T ∗6δ2

− 1.25813445× 10−19T ∗5δ − 5.60527757× 10−10T ∗4δ

+ 3.53110680×1021+9.64047333×1011T ∗δ2−6.22741704×1013T ∗δ

− 1.41437616× 107T ∗2δ − 3.90624999× 10−51T ∗8δ
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− 1.27732225× 10−29T ∗6δ) + 2.75779648× 10−11T ∗4δ2
)

× (−5.00000000× 10−8T ∗ − 375.50000000

+ 5.00000000× 10−13T ∗2δ + 5.04400000× 10−6T ∗δ

+ 0.44000000δ)−4(3751.00000000 + 1.00000000× 10−7T ∗)−2.

Based on the characteristic polynomial (4.12), we consider possible bifurca-
tions from E∗, including both static bifurcation and dynamic (Hopf) bifurcations.
The static bifurcation occurs when P (λ, T ∗, δ) = 0 has zero roots (zero eigen-
values). In particular, when a4(T

∗, δ) = 0, the characteristic polynomial (4.12)
must have a single zero root, where T ∗ and δ should satisfy the (4.11). So,
(δt, Tt) ≈ (853.40909025, 0) is a static bifurcation point. The subscript ’t’ stands for
transcritical bifurcation point. And, at that point,except for the Hurwitz criterion
∆4 = 0, all three are positive: ∆1 = 1.399616481 × 109, ∆2 = 2.51563118 × 1024,
∆3 = 2.27882202 × 1037. This indicates that the boundary equilibrium point
Eb meets the positive equilibrium point E∗ at the static branch point (where
R0 = R1 = 1) and the positive equilibrium point E∗ appears. That is, the equi-
librium point E∗ exists only for δ ≥ δt, and no further static branching of E∗ is
possible for δ > δt.

Table 9. Parameter values used in model.

Parameters Value Parameters Value

α 1600 θ 5× 10−6

βv 0.1 m 4

βi 0.1 n 750

µ 0.001 p 1

γ 0.088 q 1× 10−7

ω 1× 10−6 δ Bifurcation parameter

Next, consider the possible Hopf bifurcation at E∗. Obviously, a Hopf bifur-
cation occurs when P (λ, T ∗, δ) = 0 has a pair of purely imaginary eigenvalues.
However, for high-dimensional systems, the eigenvalues are difficult to solve. The
next lemma states the conditions for generating Hopf bifurcations and having stable
periodic solutions without computing eigenvalues.

Lemma 4.1 (Lemma [14]). Suppose that the system ẋ = fµ(x), x ∈ Rn, µ ∈ R has
an equilibrium (x0, µ0) at which the following properties are satisfied:
(H1) Dxfµ0(x0) has a simple pair of pure imaginary eigenvalues and no other
eigenvalues with zero real parts.

Then (H1) implies that there is a smooth curve of equilibria (x(µ), µ) with
x(µ0) = x0. The eigenvalues λ(µ), λ̄(µ) of Dxfµ0(x) which are imaginary at
µ = µ0 vary smoothly with µ. If, moreover,
(H2)

d

dδ
Re(λ(µ))|µ=µ0 = d ̸= 0,

then there is a unique three-dimensional center manifold passing through (x0, µ0) in
Rn × R and a smooth system of coordinates (preserving the planes µ= const.) for
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which the Taylor expansion of degree 3 on the center manifold is given by

ẋ = (dµ+ a(x2 + y2))x− (ω + cµ+ b(x2 + y2))y,

ẏ = (ω + cµ+ b(x2 + y2))x+ (dµ+ a(x2 + y2))y.

If a ̸= 0, there is a surface of periodic solutions in the center manifold which has
quadratic tangency with the eigenspace of λ(µ), λ̄(µ) agreeing to second order with
the paraboloid µ = −(a/d)(x2 + y2). If a < 0, then these periodic solutions are
stable limit cycles, while if a > 0, the periodic solutions are repelling.

a=
1

16
[fxxx+fxyy+gxxy+gyyy]+

1

16ω
[fxy(fxx+fyy)−gxy(gxx+gyy)−fxxgxx+fyygyy].

By Lemma 4.1, in order to explore possible Hopf bifurcations arising from E∗,
starting from (H1), consider the third order principal subformula ∆3(T

∗, δ) of the
fourth order characteristic polynomial P (λ, T ∗, δ) and solve the system of equations∆3(T

∗, δ) = a1a2a3 − a23 − a21a4 = 0,

F (T ∗, δ) = 0.

This gives the Hopf branch point (δH , TH) ≈ (853.40909023, 1.28938689 × 10−6),
where the subscript “H” represents the Hopf bifurcation. At the branch point,

a1(δH)≈1.39961648×109, a2(δH)≈1.79737179×1015, a3(δH)≈1.10592583×1016,

a4(δH)≈1.42021754×1022,∆2(δH)≈2.51563117×1024,∆3(δH)

≈ −3.56960583×10−104.

At this point, P (λ, T ∗, δ) has a pair of purely imaginary characteristic roots, so the
first condition (H1) in Lemma 4.1 is satisfied. By a1(δH)a2(δH)a3(δH)− a23(δH)−
a21(δH)a4(δH) = 0, the characteristic polynomial(4.12) can be transformed into:(

λ2 +
a3(δH)

a1(δH)

)(
λ2 + a1(δH)λ+

a1(δH)a2(δH)− a3(δH)

a1(δH)

)
= 0.

Its four characteristic roots are

λ1,2 = ±i

√
a3(δH)

a1(δH)
, λ3,4 =

1

2

[
−a1(δH)±

√
a21(δH)− 4[a1(δH)a2(δH)− a3(δH)]

a1(δH)

]
.

So, the eigenvalues of the Jacobian matrix at E∗ are a pair of pure imaginary
roots ±2810.98466597i, and two negative real eigenroots: −1.28536923×106 and
−1.39833111×109. Thus, E∗ is stable within δ∈(δH , δt)≈(853.40909023, 853.40909025).
But when δ= δH , E∗ loses its stability and the Hopf branch appears. We then in-
vestigate whether periodic solutions are generated at the Hopf bifurcation, and
investigate the stability of the limit rings generated at the Hopf bifurcation using
center manifold theory and normal form theory.

The first question is whether a periodic solution arises at the Hopf bifurcation.
The first condition for a periodic solution is that the characteristic equation has
purely imaginary roots, which have already been verified. We now confirm that
the cross-sectional conditions required to produce a periodic solution are satisfied.
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After a small perturbation of the parameter values at the branching point, the four
characteristic roots of the characteristic polynomial (4.12) can be expressed in terms
of the branching parameter δ as follows:

λ1(δ) =ν1(δ) + iν2(δ),

λ2(δ) =ν1(δ)− iν2(δ),

λ3(δ) =
1

2

[
−a1(δ) +

√
a1(δ)2 −

4(a1(δ)a2(δ)− a3(δ))

a1(δ)

]
,

λ4(δ) =
1

2

[
−a1(δ)−

√
a1(δ)2 −

4(a1(δ)a2(δ)− a3(δ))

a1(δ)

]
.

The Hopf bifurcation must satisfy the transversal condition for it to occur,

d

dδ
Re(λj(δ))|δ=δH ̸= 0, j = 1, 2.

Substituting λ1(δ) = ν1(δ) + iν2(δ) into the characteristic equation (4.12) and cal-
culating the derivative, we get

Γ(δ)ν′1(δ)−Θ(δ)ν′2(δ) + Υ(δ) = 0,

Θ(δ)ν′1(δ) + Γ(δ)ν′2(δ) + Λ(δ) = 0.

Of which

Γ(δ) =4ν31(δ)− 12ν1(δ)ν
2
2(δ) + 3a1(δ)ν

2
1(δ)− 3a1(δ)ν

2
2(δ) + 2a2(δ)ν1(δ) + a3(δ),

Θ(δ) =12ν21(δ)ν2(δ) + 6a1(δ)ν1(δ)ν2(δ) + 2a2(δ)ν2(δ)− 4ν32(δ),

Υ(δ) =a′1(δ)ν
3
1(δ)−3a′1(δ)ν1(δ)ν

2
2(δ)+a′2(δ)ν

2
1(δ)−a′2(δ)ν

2
2(δ) + a′3(δ)ν1(δ) + a′4(δ),

Λ(δ) =3a′1(δ)ν
2
1(δ)ν2(δ)− a′1(δ)ν

3
2(δ) + 2a′2(δ)ν1(δ)ν2(δ) + a′3(δ)ν2(δ).

From Θ(δH)Λ(δH) + Γ(δH)Υ(δH) ̸= 0,we get

d

dδ
Re(λj(δ))|δ=δH = −Θ(δ)Λ(δ) + Γ(δ)Υ(δ)

Γ2(δ) + Θ2(δ)
|δ=δH ̸= 0, j = 1, 2.

and

λ3,4(δH) =
1

2

[
−a1(δ)±

√
a1(δ)2 −

4(a1(δ)a2(δ)− a3(δ))

a1(δ)

]
|δ=δH ̸= 0.

So when δ = δH , the system satisfies the transversal condition generated by the
periodic solution, and when δ < δH , the system (2.1) generates a Hopf bifurcation
around E∗, resulting in a limit cycle.

Next, we use the central pop theory and normal form theory to consider the
stability of bifurcation limit cycles. First, we perform a translation transformation
Z = Π − E∗, which translates the equilibrium point E∗ to the origin. z1

z2
z3
z4

 =

C
I
T
V

−

C∗

I∗

T ∗

V ∗

 .
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Let

P =


0.11653 −0.00025 0.00011 −1.00000

−0.00132 −2.58370 −0.00011 4.45531× 10−11

−1.52333× 10−15 2.92867× 10−6 −5.92599× 10−12 −2.15696× 10−16

−0.99319 0 1.00000 3.34483× 10−8

 .

Then let Z = PX and consider the coordinate transformation to get

Ẋ = Gi(x1, x2, x3, x4;µH). (4.13)

Among them,

G1 ≈2810.98466597x2

+ 6.64444126× 10−9x2
1 − 4.82373735× 10−7x2

2 + 2.38741494× 10−8x2
3

+2.87146129×10−8x2
4+0.00817761x1x2−0.01180142x2x3−0.00186633x2x4

−6.03998798×10−8x1x4+5.39916853×10−8x3x4−2.23866803×10−8x1x3,

G2 ≈− 2810.98466597x1

−0.00021417x2
1−3.32101036×10−6x2

2−0.01300408x2
3−1.13613328×10−26x2

4

−6384.75498892x1x2+0.01291567x1x3+0.00186680x1x4+0.00021502x2x4

+ 6426.69547693x2x3 − 4.73761865× 10−7x3x4,

G3 ≈− 1.39833111× 109x3

+ 6.59897082× 10−9x2
1 − 6.69938531× 10−9x2

2 − 0.10008025x2
3

+ 2.85189481× 10−8x2
4 + 0.00827970x1x2 − 108.19053051x1x3

− 5.9988335610−8x1x4 + 0.22450490x2x3 − 2.64421420× 10−10x2x4

+ 928.40909023x3x4,

G4 ≈− 1.28536923× 106x4

− 8.09187284× 10−11x2
1 + 5.95706860× 10−11x2

2 + 3.31683884× 10−6x2
3

+ 0.85340909x2
4 + 1.62806567x1x2 − 3.2941768910−6x1x3 − 0.09945054x1x4

− 1.63920216x2x3 + 0.00021743x2x4 − 0.00009199x3x4.

Thus the Jacobian matrix of the system (4.13) at equilibrium xi = 0 (i = 1, 2, 3, 4)
is the following Jordan standard type:

J =


0 2810.98466597 0 0

−2810.98466597 0 0 0

0 0 −1.39833111× 109 0

0 0 0 −1.28536923× 106

 .

From the above matrix, the system contains a two-dimensional central subspace as
well as a two-dimensional stable subspace. The following is a downscaling of the
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system. Let {
x3 = h3(x1, x2) = k1x

2
1 + k2x1x2 + k3x

2
2 + o(r2),

x4 = h4(x1, x2) = l1x
2
1 + l2x1x2 + l3x

2
2 + o(r2).

(4.14)

Then 
dx3

dτ
= 2k1x1x

′
1 + k2x

′
1x2 + k2x1x

′
2 + 2k3x2x

′
2 + o(r2),

dx4

dτ
= 2l1x1x

′
1 + l2x

′
1x2 + l2x1x

′
2 + 2l3x2x

′
2 + o(r2).

(4.15)

The solution of (4.15) is

k1≈−1.66220821×10−17, k2≈5.92112929×10−12, k3≈−1.66938923×10−17,

l1 ≈ 2.76991395× 10−9, l2 ≈ 1.26658899× 10−6, l3 ≈ −2.76991397× 10−9.

Substituting (4.14) into (4.13) for G1(x1, x2, x3, x4) and G2(x1, x2, x3, x4), we get{
x′
1 = 2810.98466597x2 + f(x1, x2),

x′
2 = −2810.98466597x1 + g(x1, x2).

Of which

f(x1, x2) ≈0.00817761x1x2 + 2.27799536× 10−25x4
1 − 3.49212618× 10−20

− 4.82373735× 10−7x2
2 + 5.16956847× 10−12x3

2

− 1.67622819×10−16x3
1−1.21849458×10−23x4

2+6.64444126× 10−9x2
1

+ 1.72851847× 10−33x5
2 + 2.98595494× 10−36x5

1

+ 3.91173910× 10−33x4
1x2 + 6.10637748× 10−10x2

1x2

+ 5.90496694× 10−26x2
1x2

3 − 1.46389230× 10−17x3
1x2

+ 1.30300583× 10−28x3
1x

2
2 + 1.46446109× 10−17x1x

3
2

− 2.65396392× 10−47x5
1x2 − 1.29926614× 10−28x1x

4
2

− 2.36528722× 10−9x1x
2
2 − 2.66919558× 10−47x1x

5
2

− 6.21584175× 10−42x3
1x

3
2 + 2.57251862× 10−44x2

1x
4
2

− 6.69394284× 10−15x2
1x

2
2 − 2.56864001× 10−44x4

1x
2
2

− 2.05078906× 10−52x6
1 + 3.52683920× 10−52x6

2,

g(x1, x2) ≈− 1.29264653×10−27x5
2−2.39501322×10−30x5

1+1.84894133× 10−38

− 0.00049399x2
1x2 + 1.83345860× 10−46x6

1 − 2.63749363× 10−46x6
2

− 0.00021417x2
1 − 5.98860318× 10−21x4

2 − 6384.75498892x1x2

− 3.23002752× 10−27x4
1x2 + 1.17419379× 10−11x3

1x2

+ 5.36919961× 10−9x2
1x

2
2 − 3.22295655× 10−20x2

1x
3
2

+ 7.10741955× 10−23x1x
4
2 − 7.14593124× 10−23x3

1x
2
2

+ 1.11864297× 10−6x1x
2
2 + 1.46379276× 10−41x1x

5
2

− 1.40577277× 10−38x2
1x

4
2 + 3.39263339× 10−36x3

1x
3
2
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+ 1.40366014× 10−38x4
1x

2
2 − 1.17419444× 10−11x1x

3
2

+ 1.45549603× 10−41x5
1x2 + 4.12573940× 10−29x2

− 6.00677289× 10−21x4
1 − 3.32101036× 10−6x2

2

− 7.02322853× 10−13x3
2 + 5.42781920× 10−12x3

1.

Therefore, the Lyapunov coefficient is

ρ =
1

16

{ 1

δH

[
fx1x2(fx1x1 + fx2x2)− gx1x2(gx1x1 + gx2x2)− fx1x1gx1x1 + fx2x2gx2x2

]
+ fx1x1x1

+ fx1x2x2
+ gx1x1x2

+ gx2x2x2

}
|x1=x2=0

= −0.00026514 < 0.

The Hopf bifurcation is therefore a supercritical Hopf bifurcation, and the bifurca-
tion limit cycle is stable.

In summary, the disease-free equilibrium point E0 is locally asymptotically stable
when δ > 853.40909028. As δ decreases, the boundary equilibrium point E1 begins
to appear and E1 is locally asymptotically stable when δt = 853.40909025 < δ <
853.40909028. According to theorem (4.1), the positive equilibrium point E∗ starts
to appear when δ < δt and E∗ is stable when δH = 853.40909023 < δ < δt. At
δ < δH , E∗ becomes unstable and produces a stable periodic solution. Fig 6 shows
the periodic solution when the branching parameter δ = 850 < δH , other parameters
are given in Table 9.

Figure 6. When δ = 850 < δH , an orbitally asymtotically stable periodic solution has appeared.

The results of this characterization suggest that, in a particular immune state,
a cyclical oscillation of virus concentrations may occur in infected individuals. This
may explain the recurrence of recurrence in some infected individuals after seemingly
recovering.

5. Conclusions
Immunology is studied using a non-linear systems theory, which views the immune
system as a complex system consisting of four broad types of components: 1. a
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variety of immune cells; 2. a variety of immune molecules; 3. major histocompat-
ibility complexes and autoantigens associated with genes; and 4. external invasive
antigens. There are complex, non-linear interactions between them. To study this
complex system’s static and dynamic behavior, we need to observe several vari-
ables (e.g., the concentration or quantity of a particular bacterium, immune cell,
immune molecule, or chemical component). They are selected to describe the sys-
tem’s state, and equations or other non-linear mathematical tools also characterize
the relationships between these variables. The study of the Spatio-temporal evolu-
tion of variables, such as the system’s stationary state and its stability and bifur-
cation behavior. A further step is to compare theoretical results with experimental
observations and analyze them.

We propose a set of kinetic models to describe the process of SARS-COV-2
infection in individuals and the resulting immune response. The best model was
selected by fitting five models to two sets of viral load and lymphocyte data from
mildly ill patients at Yale New Haven Hospital using an information criterion. The
model shows that the attack of infected cells on target cells is much less effective
than that of viruses on target cells and can be ignored in the modeling.

To evaluate the reliability of parameter estimation, we first analyze the struc-
tural identifiability of the Full model. If there is no data noise, then the Full model
is structurally identifiable for both viral load and Tlymphocyte data. Therefore
all sub-models under the Full model are also structurally identifiable, i.e., all pa-
rameters can be uniquely determined. A practical identifiability analysis of the
optimal model using the GWMCMC algorithm revealed that the parameters θ, n,
q are identifiable in the case of two data sets, while the parameters α, βv and δ are
not. This suggests that even if the model is structurally identifiable, it may still be
unidentifiable in practice due to data noise or data size.

To further analyze the impact of unrecognized parameters on the model predic-
tion, we selected the maximum and minimum combinations of the actual unrecog-
nized parameters α, βv and δ for simulation, and found that different parameter
combinations had little impact on viral load, indicating that the estimation of model
parameters was robust. On this basis, we further explored the dynamic behavior of
viral load under different medications.

It is worth noting that the best model selected is only relatively optimal among
the five models when the data of New Haven Hospital are used to fit the model.
In order to explore the dynamic behavior of the model in general sense, we con-
tinue to analyze the existence, stability and bifurcation of equilibrium points of Full
model (so do other submodels). We find that the two threshold parameters R0

and R1 completely determine the dynamics of the model. Theorem 4.1 shows that
the disease-free equilibrium point E0 is locally asymptotically stable when R0 < 1,
implying that the individual’s immune system can eradicate SARS-COV-2 when
the system parameters satisfy this relationship, otherwise, infection is established.
Further analysis shows that under certain conditions, the system can have a more
complex Hopf bifurcation phenomenon, and the system will produce a stable peri-
odic solution. This means that in some cases, components such as viral load and
T lymphocytes do not necessarily tend to be stable, and may show more complex
periodic motions. This may explain why some infected people repeatedly return to
positive without contacting new antigens after seemingly recovering. In some cases
components such as viral load and T lymphocytes are not necessarily stable and
may exhibit more complex periodic motions. This may explain why some infected
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people repeatedly return to positive after seemingly recovering without contacting
new antigens.

Our model is only a simple dynamic model. Considering that the novel coro-
navirus has constantly been changing, more experimental or clinical data can be
further improved in the future to explore further infection mechanism of the novel
coronavirus.

Appendix

Model 2:



dC

dt
= α− βvCV

1 + δC
− µC

dI

dt
=

βvCV

1 + δC
− ωIT − γI

dT

dt
= ωIT + θV T −mT

dV

dt
= nI − qTV − pV.

Model 3:



dC

dt
= α− βvCV

1 + δC
− βiCI

1 + δC
− µC

dI

dt
=

βvCV

1 + δC
+

βiCI

1 + δC
− γI

dT

dt
= θV T −mT

dV

dt
= nI − qTV − pV.

Model 4:



dC

dt
= α− βvCV

1 + δC
− µC

dI

dt
=

βvCV

1 + δC
− γI

dT

dt
= θV T −mT

dV

dt
= nI − qTV − pV.
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Model 5: 

dC

dt
= α− βiCI

1 + δC
− µC

dI

dt
=

βiCI

1 + δC
− γI

dT

dt
= θV T −mT

dV

dt
= nI − qTV − pV.

References
[1] L. Allen, An Introduction to Stochastic Processes with Applications to Biology,

CRC Press, 2010.
[2] H. Akaike, Information theory and an extension of the maximum likeli-

hood principle, in Selected papers of hirotugu akaike, Springer, 1998. DOI:
10.1007/978-1-4612-1694-0_15.

[3] K. Burnham and D. Anderson, Multimodel inference: Understad ing AIC and
BIC in Model Selection, 2004, 33(2), 261–304.

[4] G. Bellu, M. P. Saccomani, S. Audoly, et al., DAISY: A new software tool
to test global identifiability of biological and physiological systems, Computer
Methods and Programs in Biomedicine, 2007, 88(1), 52–61.

[5] O. T. Chis, J. R. Banga and E. Balsa-Canto, Structural Identifiability of Sys-
tems Biology Models: A Critical Comparison of Methods, Plos One, 2011, 6(11),
e27755–e27755.

[6] C. Cobelli and J. J. Distefano, Parameter and Structural Identifiability Con-
cepts and Ambiguities -a Critical-Review and Analysis, The American journal
of physiology, 1980, 239(1), R7–24.

[7] T. Chen, J. Rui, Q. Wang, et al., A mathematical model for simulating
the phase-based transmissibility of a novel coronavirus, Infectious Diseases of
Poverty, 2020, 9, 24–24.

[8] M. Chen, Q. Shao and J. G. Ibrahim, Monte Carlo Methods in Bayesian Com-
putation, Springer, 2000. DOI: 10.1007/978-1-4612-1276-8.

[9] K. Ejima, K. S. Kim, Y. Ito, et al., Inferring Timing of Infection Using Within-
host SARS-CoV-2 Infection Dynamics Model: Are ”Imported Cases” Truly
Imported? 2020. DOI: 2020,10.1101/2020.03.30.20040519.

[10] M. C. Eisenberg, S. L. Robertson and J. H. Tien, Identifiability and estimation
of multiple transmission pathways in cholera and waterborne disease, Journal
of Theoretical Biology, 2013, 324(Complete), 84–102.

[11] N. D. Evans, L. J. White, M. J. Chapman, et al., The structural identifiability
of the susceptible infected recovered model with seasonal forcing, Mathematical
Biosciences, 2005, 194(2), 175–197.

[12] J. Goodman and J. Weare, Ensemble samplers with affine invariance, Com-
munications in Applied Mathematics and Computational Science, 2010, 5(1),
65–80.



2150 M. Wang, Y. Zhao, C. Zhang & J. Lou

[13] J. K. Ghosh, Introduction to Applied Bayesian Statistics and Estimation for
Social Scientists by Scott M. Lynch, International Statal Review, 2010, 76(2),
311–312.

[14] M. Golubitsky and P. H. Rabinowitz, Abzweigung einer periodischen Lösung
von einer stationaeren Lösung eines Differentialsystems, Akad. Wiss. (Leipzig),
1942, 94(1), 3–22.

[15] L. F. García, Immune Response, Inflammation, and the Clinical Spectrum of
COVID-19. Frontiers in Immunology, 2020, 11, 1441–1441.

[16] C. Huang, Y. Wang, X. Li, et al., Clinical features of patients infected with 2019
novel coronavirus in Wuhan, China, The Lancet, 2020, 395(10223), 496–496.

[17] K. Hattaf and N. Yousfi, Dynamics of SARS-CoV-2 infection model with two
modes of transmission and immune response, Mathematical Biosciences and
Engineering, 2020, 17(5), 5326–5340.

[18] A. J. Kucharski, T. W. Russel, C. Diamond, et al., Early dynamics of transmis-
sion and control of COVID-19: a mathematical modelling study, The Lancet
Infectious Diseases, 2020, 20(5), 553–558.

[19] K. S. Kim, K. Ejima, Y. Ito, et al., Modelling SARS-CoV-2 Dynamics: Im-
plications for Therapy, Cold Spring Harbor Laboratory Press, 2020. DOI:
10.1101/2020.03.23.20040493.

[20] J. Y. Kim, J. H. Ko, Y. Kim, et al., Viral load kinetics of SARS-CoV-2 infection
in first two patients in Korea, Journal of Korean Medical Science, 2020, 35(7),
e86–e86.

[21] T. Liu, J. Hu, M. Kang, et al., Transmission Dynamics of 2019 Novel
Coronavirus (2019-nCoV), Social Science Electronic Publishing, 2020. DOI:
10.1101/2020.01.25.919787.

[22] C. Li, J. Xu, J. Liu, et al., The within-host viral kinetics of SARS-CoV-2,
Mathematical Biosciences and Engineering, 2020, 17(4), 2853–2861.

[23] R. N. Leander, Y. Wu, W. Ding, et al., A model of the innate immune response
to SARS-CoV-2 in the alveolar epithelium, Royal Society open science, 8(8),
210090–210090.

[24] L. Ljung and T. Glad, Testing Global Identifiability for Arbitrary Model Pa-
rameterizations, IFAC Proceedings Volumes, 1991, 24(3), 1085–1090.

[25] C. Lucas, P. Wong, J. Klein, et al., Longitudinal analyses reveal immunological
misfiring in severe COVID-19, Nature, 2020, 584(7821), 463–469.

[26] H. Miao, X. Xia, A. S. Perelson, et al., On Identifiability Of Nonlinear Ode
Models And Applications In Viral Dynamics, SIAM Review, 2011, 53(1), 3–39.

[27] V. J. Munster, F. Feldmann, B. N. Williamson, et al., Respiratory disease in
rhesus macaques inoculated with SARS-CoV-2, Nature, 2020, 585(7824), 268–
272.

[28] H. Miao, X. Xia, A. S. Perelson, et al., On Identifiability Of Nonlinear Ode
Models And Applications In Viral Dynamics, SIAM Review, 2011, 53(1), 3–39.

[29] A. Mi, B, Si, A. As, et al., AI- modelling of molecular identification and femi-
nization of wolbachia infected Aedes aegypti, Progress in Biophysics and Molec-
ular Biology, 2020, 150, 104–111.



The within-host viral kinetics of SARS-CoV-2 2151

[30] Y. Pan, D. Zhang, P. Yang, et al., Viral load of SARS-CoV-2 in clinical samples,
The Lancet Infectious Diseases, 2020, 20(4), 411–412.

[31] E. Prompetchara, C. Ketloy and T. Palaga, Immune responses in COVID-19
and potential vaccines: Lessons learned from SARS and MERS epidemic, Asian
Pac J Allergy Immunol, 2020, 38(1),1–9.

[32] R. F. Reis, A. B. Pigozzo, C. R. B. Bonin, et al., A Validated Mathematical
Model of the Cytokine Release Syndrome in Severe COVID-19, Frontiers in
Molecular Biosciences, 2021, 8, 639423–639423.

[33] Y. Ren, T. Shu, D. Wu, et al., The ORF3a protein of SARS-CoV-2 induces
apoptosis in cells, Cellular & molecular immunology, 2020, 17(8), 1–3.

[34] W. C. Roda, Bayesian inference for dynamical systems, Infectious Disease
Modelling, 2020, 5, 221–232.

[35] W. C. Roda, M. B. Varughese, D. Han, et al., Why Is It Difficult to Accurately
Predict the COVID-19 Epidemic? Infectious Disease Modelling, 2020, 5, 271–
281.

[36] J. Shang, Y. Wan, C. Luo, et al., Cell entry mechanisms of SARS-CoV-2,
Proceedings of the National Academy of Sciences, 2020, 117(21), 11727–11734.

[37] M. Shen, Z. Peng, Y. Xiao, et al., Modelling the epidemic trend of the 2019
novel coronavirus outbreak in China, 2020. DOI:10.1101/2020.01.23.916726.

[38] A. Sw, P. Yang, C. Qwb, et al., Modeling the viral dynamics of SARS-CoV-2
infection - ScienceDirect, Mathematical Biosciences, 2020, 328, 108438–108438.

[39] S. Sahoo, K. Hari, S. Jhunjhunwala, et al., Mechanistic modeling of the SARS-
CoV-2 and immune system interplay unravels design principles for diverse
clinicopathological outcomes, Public Health Intervention for the COVID-19,
2022. DOI: 10.1142/9789811249723_0002.

[40] L. Sherin, S. Farwa, A. Sohail, et al., Cancer drug therapy and stochastic
modeling of ”nano-motors”, International Journal of Nanomedicine, 2018, 13,
6429–6440.

[41] G. E. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics,
1978, 6(2), 461–464.

[42] M. Z. Tay, C. M. Poh, L. Rénia, et al., The trinity of COVID-19: immunity,
inflammation and intervention, Nature reviews. Immunology, 2020, 20(6), 1–
12.

[43] T. Takahashi, M. K. Ellingson, P. Wong, et al., Sex differences in immune
responses that underlie COVID-19 disease outcomes, Nature, 2020, 588(7837),
315–320.

[44] S. A. Vardhana and J. D. Wolchok, The many faces of the anti-COVID im-
mune response, Journal of Experimental Medicine, 2020, 217(6), e20200678–
e20200678.

[45] X. Wang, W. Xu, G. Hu, et al., SARS-CoV-2 infects T lymphocytes through
its spike protein-mediated membrane fusion, Cellular & molecular immunology,
2020, 17(8), 894–894.

[46] J. Wu, K. Leung, M. Bushman, et al., Estimating clinical severity of COVID-
19 from the transmission dynamics in Wuhan, China, Nature medicine, 2020,
26(4), 1149–1150.



2152 M. Wang, Y. Zhao, C. Zhang & J. Lou

[47] A. Wu, Y. Peng, B. Huang, et al., Genome Composition and Divergence of the
Novel Coronavirus (2019-nCoV) Originating in China, Cell Host & Microbe,
2020, 27(3), 325–328.

[48] C. Wang, W. Li, D. Drabek, et al., A human monoclonal antibody blocking
SARS-CoV-2 infection, Nat. Commun., 2020, 11(1), 2251–2251.

[49] X. Zhang, Y. Tan, Y. Ling, et al., Viral and host factors related to the clinical
outcome of COVID-19, Nature, 2020, 583, 437–440.

[50] P. Zhou, X. Yang, X. Wang, et al., A pneumonia outbreak associated with a
new coronavirus of probable bat origin, Nature, 2020, 579(7798), 270–273.


	Introduction
	The model and sources of clinical data
	The model
	Sources of clinical data

	The identifiability and model selection
	Structural identifiability analysis
	 Model selection
	Practical identifiability analysis
	Simulations

	Stability of equilibrium and Hopf bifurcations of the Full model
	Conclusions

