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Abstract In the recent decades, variety of real-life problems arises in astro-
physics have been mimic using the class of three-point singular boundary value
problems (BVPs). Finding an effective and accurate approach for a class of
three-point BVPs is still a difficult problem, though. The goal of this paper is
to design a numerical strategy for approximating a class of three-point singular
boundary value problems using the collocation technique and shifted Cheby-
shev polynomials. Utilizing shifted Chebyshev polynomials, the problem is
reduced to a matrix form, which is then converted into a system of nonlinear
algebraic equations by employing the collocation points. The key advantages
of the new approach are (a) it is a straightforward mathematical formulation,
which makes it effortless to code, and (b) it is easily adaptable to solve vari-
ous classes of three-point singular boundary value problems. The convergence
analysis is carried out to ensure the viability of the proposed scheme. Various
examples are considered and tested in order to illustrate its applicability and
efficiency. The results show excellent accuracy and efficiency compared to the
other existing methods.
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1. Introduction
Singular Boundary Value Problems (SBVPs) have been a topic of interest for the
researchers working in the area of physics, chemistry and engineering due to their
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wide applications. Several complex physical phenomena such as the thermal explo-
sion in the cylindrical reactor [32], the theory of stellar structure, the polytropic
and isothermal gas sphere using the Lane-Emden equation of index n [22,41] can be
formulated mathematically using SBVPs. Recently, real-life applications including
large bridges with multi-point support, the vibration of a guy wire of uniform cross
section and composed of N parts, or the elasticity of an equally loaded three layered
sandwich beam, have been modeled using multipoint BVPS (for detail see [8, 47]
and references therein).

Different approaches have been developed in the literature to find analytical
solutions of SBVPs [6, 7, 15, 20, 21, 24]. Pandey [21] presented a study about the
existence of a unique solution of a class of SBVPs with the boundary conditions
limx→0 y

′(x) = 0, y(b) = B. Later, Pandey and Verma [20] presented an analytical
result on the existence and uniqueness of the solution of two point SBVPs with
boundary conditions y(0) = 0, α1y(b) + β1y

′(b) = γ1. Russell and Shampine [24]
proved the existence of a unique solution of a class of two point SBVPs. They have
also developed a method based on patch bases, traditional finite differences and col-
location to get an approximate solution. Kelevedjiev [15] has studied the existence of
positive solutions of the boundary value problem x

′′
= f(t, x, x

′
), x(0) = a, x(1) =

b, a, b > 0. Chawla and Shivakumar [6] have examined the existence of a unique
solution of the class of SBVP with the boundary conditions y′(0+) = 0, y(1) = A,
when sup ∂f

∂y < k1, where k1 is first positive zero of Jα−1
2

√
k, being Jν(z) the Bessel’s

function of first kind and order ν.
In the literature, several successful attempts have been made for obtaining the

analytical solutions of a three-point SBVP [28, 43, 44]. Wang and Tsai [43] have
used the upper and lower solutions method with Schauder’s fixed point theorem
to ensure the existence of a solution of a three-point BVP. Xie [44] has shown an
existence result on three point singular boundary value problems using upper and
lower solutions. Singh et al. [28] have shown some existence results for the solution
of a class of nonlinear SBVPs −y

′′ − 1
xy

′
= f(x, y), 0 < x < 1, y′(0) = 0 and y(1) =

δy(η) using the monotone iterative technique in the presence of upper and lower
solutions. In order to prove these results, they have proved the maximum and anti-
maximum principles for the differential inequalities −(xy

′
(x))′ − λxy(x) ≥ 0, 0 <

x < 1, y
′
(0) = 0 and y(1) − δy(η) ≥ 0. Singh et al. [29] have used the variational

iteration method for the numerical solution of three-point singular boundary value
problems.

There are several numerical techniques available for the numerical solution of
boundary value problems [25,26,40]. Other methods to find approximate solutions
of SBVPs are cubic spline method [13, 23], modified Homotopy analysis method
[30, 32], mixed decomposition analysis method [14], Hermite functional collocation
method [19], Adomian decomposition method [11, 33], advanced Adomian decom-
position method [39], artificial neural network [35], hybrid functions approxima-
tion [38], optimal decomposition method [31] and combination of iterative method
and homotopy perturbation method [27], variational iteration method [37,45]. Ah-
mad et al. [3] have presented a bio-inspired numerical technique for solving a bound-
ary value problem arising in the modelling of corneal shape. Although these meth-
ods have various advantages, the implementation is not easy and time consuming.

In the present work, a class of three-point SBVPs [2, 29,42] is considered

− (p(x)y′(x))′ = p(x)f(x, y(x)), 0 < x ≤ 1, (1.1)
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subject to the boundary conditions

y(0) = 0, y(1) = αy(η), (1.2)

or else to
y

′
(0) = 0, y(1) = αy(η). (1.3)

Here, we assume that
0 < α <

h(1)

h(η)
, h(x) =

∫ x

0

1

p(t)
dt, in the case of boundary conditions (1.2),

α > 0, in the case of boundary conditions (1.3),

0 < η < 1 and f ∈ C([0, 1]× [0,∞), [0,∞)).
For the SBVP (1.1)-(1.2) the function p ∈ C[0, 1]

∩
C1(0, 1] with p(x) > 0 on

(0, 1] and 1
p ∈ L1(0, 1). Moreover, in case of SBVP (1.1) and (1.3), the function

p ∈ C[0, 1]
∩
C1(0, 1] with p(x) > 0 on (0, 1] and 1

p is locally integrable on (0, 1],
but not integrable in any neighborhood of 0. When p(0) = 0 the problems (1.1),
(1.2) or (1.1), (1.3) are singular, which constitutes a challenge to find analytical or
numerical solutions.

The collocation method is a powerful mathematical tool that has been used
to obtain the numerical solution of BVPs. The Chebyshev collocation method
has been used intensively to solve delay differential equations, integro-differential
equations and integro-differential-difference equations (see [9,10,46] and references
therein). Öztürk and Gülsu [18] have solved the Lane-Emden equations arising in
astrophysics using truncated shifted Chebyshev series together with the operational
matrix. Öztürk [17] has applied the collocation method together with Chebyshev
polynomials to solve systems of Lane-Emden type equations [32, 34] with initial
boundary conditions.

In this article, the collocation method in the presence of shifted Chebyshev
polynomials is employed to obtain numerical solutions of the three-point SBVPs
(1.1)-(1.2) or (1.1)-(1.3). The method is based on the representation of the unknown
solution as a truncated shifted Chebyshev series with unknown coefficients. This
leads to the transformation of the SBVP into a matrix form. The next step uses
the collocation points to convert the matrix form of the SBVP into a system of
nonlinear algebraic equations. Consequently, the solution of the system of algebraic
equations yields the approximate solution of the SBVP.

The rest of the article is structured as follows: Section 2 introduces the Cheby-
shev polynomials and the approximation of the unknown solution using shifted
Chebyshev polynomials. In Section 3, the methodology to deal with the SBVPs
(1.1)-(1.3) is developed and the convergence analysis of the method is discussed
in detail in Section 4. The performance of the proposed method is tested against
existing numerical methods by considering several examples of three-point SBVP
in Section 5. Finally, some remarks and conclusions are made in Section 6.

2. Chebyshev Polynomials
The Chebyshev polynomial of first kind of degree n, Tn(x), is given by

Tn(x) = cos(nθ), where x = cos θ. (2.1)
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Since the independent variable lies in the half interval [0, 1] rather than [−1, 1],
then we use the shifted Chebyshev polynomials which are defined as

T ∗
n(x) = Tn(2x− 1), x ∈ [0, 1], n = 0, 1, 2, . . . (2.2)

The first three shifted Chebyshev polynomials are given by

T ∗
0 (x) = 1,

T ∗
1 (x) = 2x− 1,

T ∗
2 (x) = 8x2 − 8x+ 1.

The Chebyshev polynomials Tn(x) verify the following recursive relation

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, . . . . (2.3)

The shifted Chebyshev polynomials have many properties [5,16], the most important
are as follows

1. All the roots of the polynomial T ∗
n(x) are real and lie in the interval [0, 1].

These roots are given as

xi−1 =
1

2

1 + cos


(
n− i+

3

2

)
π

n+ 1


 , i = 1, 2, 3, ..., n. (2.4)

These points are used as collocation points in the present study to obtain a nu-
merical solution of the considered BVPs. These points are called Chebyshev-
Gauss points.

2. The relation between T ∗
n(x) and xn has been discussed in detail by Öztürk

and Gülsu [18], being

xn = 2−2n+1
n∑

k=0

′

 2n

n− k

T ∗
k (x), 0 ≤ x ≤ 1, (2.5)

where the symbol
∑′

denotes that the first term is halved.

Now, we can approximate any function y(x) ∈ L2[0, 1] using shifted Chebyshev
polynomials, by

y(x) =

∞∑
n=0

′
cnT

∗
n(x), (2.6)

where

cn = ⟨y(x), T ∗
n(x)⟩ =

2

π

∫ 1

0

1√
x(1− x)

y(x)T ∗
n(x)dx, n = 0, 1, ... . (2.7)

Let us now consider the approximate solution of the SBVPs (1.1)-(1.2) or (1.1)-(1.3)
in terms of a truncated shifted Chebyshev series which can be written as follows:

yN (x) =

N∑
n=0

′
cnT

∗
n(x), (2.8)
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where N is any arbitrary positive integer. The matrix representation of the sum-
mation in (2.8) and the derivatives of the function yN (x) are given by

yN (x) = T ∗(x)C, y
(k)
N (x) = T ∗(k)(x)C, k = 1, 2, . . . , N, (2.9)

where

T ∗(x) = [T ∗
0 (x), T

∗
1 (x), T

∗
2 (x), ..., T

∗
N (x)], C =

[
1

2
c0, c1, ..., cN

]T
(2.10)

and T ∗(k)(x) denotes the derivatives of order k of each component of T ∗(x). Using
the formula in (2.5) we can write

(X(x))T = D(T ∗(x))T or X(x) = (T ∗(x))DT , (2.11)

where X(x) = [1, x, x2, ... , xN ], and

D =



20

 0

0

 0 0 . . . 0

2−2

 2

1

 2−1

 2

0

 0 . . . 0

2−4

 4

2

 2−3

 4

1

 2−3

 4

0

 . . . 0

...
...

...
. . .

...

2−2N

 2N

N

 2−2N+1

 2N

N − 1

 2−2N+1

 2N

N − 2

 . . . 2−2N+1

 2N

0





.

Now, using equation (2.11), the following expression is obtained

T ∗(x) = X(x)(D−1)T (2.12)

and
T ∗(k)(x) = X(k)(x)(D−1)T . (2.13)

Further, the relation between X(x) and the vector of derivatives of order k of each
component of X(x), denoted by Xk(x), is given by

Xk(x) = X(x)
(
BT
)k

, (2.14)

where

B =



0 0 0 . . . 0

1 0 0 . . . 0

0 2 0 . . . 0

...
...

... . . . ...

0 . . . 0 N 0


. (2.15)
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Using equations (2.12)-(2.14) in (2.9) gives

y
(k)
N (x) = X(x)(BT )k(D−1)TC, k = 0, 1, 2, . . . , N. (2.16)

Note that using (2.9) and (2.13) for k = 0, the m-th power of yN (x) can be expressed
as

(yN (x))
m

= (T ∗(x)C)
m−1

X(x)(D−1)TC. (2.17)

3. Methodology
In this section, a numerical technique for the solution of the SBVP (1.1)-(1.2) or
(1.1)-(1.3) is developed. This method is based on the shifted Chebyshev polynomials
and the collocation approach. Using the approximations of y(x) and its derivatives
given in (2.16) the differential equation in (1.1) can be expressed in a matrix form
given by

p(x)X(x)
(
BT
)2 (

DT
)−1

C + p
′
(x)X(x)BT

(
DT
)−1

C

+ p(x)f(x,X(x)
(
DT
)−1

C) = 0. (3.1)

Now, we evaluate the equation in (3.1) at each of the roots of T ∗
N+1(x), as given in

(2.4), and obtain the matrix equation

P ¯̄X
(
BT
)2 (

DT
)−1

C + P1
¯̄XBT

(
DT
)−1

C + F = 0, (3.2)

where F is given by

F = [p(x0)f(x0, X(x0)
(
DT
)−1

C), . . . , p(xN )f(xN , X(xN )
(
DT
)−1

C)]T

and

P =



p(x0) 0 0 · · · 0

0 p(x1) 0 · · · 0

0 0 p(x2) · · · 0

...
...

... . . . ...

0 0 0 · · · p(xN )


, P1 =



p
′
(x0) 0 0 · · · 0

0 p
′
(x1) 0 · · · 0

0 0 p
′
(x2) · · · 0

...
...

... . . . ...

0 0 0 · · · p′
(xN )


,

¯̄X =



1 x0 x2
0 · · · xN

0

1 x1 x2
1 · · · xN

1

1 x2 x2
2 · · · xN

2

...
...

...
...

...

1 xN x2
N · · · xN

N


.

Furthermore, the matrix representation of the boundary conditions in (1.2) is given
by

X(0)
(
D−1

)T
C = 0, X(1)

(
D−1

)T
C − αX(η)

(
D−1

)T
C = 0, (3.3)
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and the boundary conditions in (1.3) are given by

X(0)BT
(
D−1

)T
C = 0, X(1)

(
D−1

)T
C − αX(η)

(
D−1

)T
C = 0. (3.4)

The aforementioned procedure leads to a system of (N + 1) equations in (3.2),
which is a discretization of the considered BVP. Furthermore, two pair of algebraic
equations given in (3.3) and (3.4) corresponding to the conditions (1.2) and (1.3),
respectively, are obtained. In order to get the solution of a SBVP, replace two of the
equations given in (3.2) by (3.3) or (3.4) according to the corresponding boundary
conditions. The solution of the system of algebraic equations is obtained using the
“Maple 18” software. The desired numerical solution is obtained by replacing the
values of the coefficients in equation (2.8).

It is worth mentioning that most of the numerical examples involve an integer
power of y. Therefore, it is necessary to show how an integer power of y can be
approximate using truncated shifted Chebyshev polynomials and the collocation
method. The approximation of ym in terms of shifted Chebyshev polynomials was
given in Section 2. Now, using the collocation points in (2.17), we obtain the matrix
representation given by

[(yN (x0))
m
, (yN (x1))

m
, . . . , (yN (xN ))

m
]
T

= [(T ∗(x0)C)
m
, (T ∗(x1)C)

m
, . . . , (T ∗(xN )C)

m
]
T
= (T1)

m−1 ¯̄X
(
D−1

)T
C, (3.5)

where

T1 =



T ∗(x0)C 0 0 · · · 0

0 T ∗(x1)C 0 · · · 0

0 0 T ∗(x2)C · · · 0

...
...

... . . . ...

0 0 0 · · · T ∗(xN )C


. (3.6)

The flowchart of the methodology is depicted in Figure 1.

4. Convergence Analysis
In order to support the reliability of the proposed method, a convergence analysis
is addressed.

Theorem 4.1. Suppose that y
′′
(x) ∈ L2[0, 1] and that it is bounded on [0, 1], that

is, |y′′
(x)| ≤ l for some l > 0. Then the infinite series y(x) =

∑′ ∞
n=0cnT

∗
n(x)

converges uniformly, with
|cn| <

l

2n(n− 1)
.

Proof. The coefficients cn in the infinite series y(x) =
∑′ ∞

n=0cnT
∗
n(x) are given

by

cn =
2

π

∫ 1

0

1√
x(1− x)

y(x)T ∗
n(x)dx =

2

π

∫ 1

0

1√
x(1− x)

y(x)Tn(2x− 1)dx. (4.1)
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Figure 1. Schematic representation of the new approach.

Using the change of variable cos−1(2x− 1) = t, the integral (4.1) can be written as

cn = − 2

π

∫ 0

π

y

(
1 + cos(t)

2

)
cos(nt)dt

=
2

π

∫ π

0

y

(
1 + cos(t)

2

)
cos(nt)dt. (4.2)

Using integration by parts on (4.2), we get

cn=
2

π

{
y

(
1+cos(t)

2

)(
sin(nt)

n

)}π

0

+
2

nπ

∫ π

0

y
′
(
1+cos(t)

2

)(
sin(t)

2

)
sin(nt)dt.

(4.3)
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From equation (4.3), we have

cn =
2

nπ

∫ π

0

y
′
(
1 + cos(t)

2

)(
sin(t)

2

)
sin(nt)dt,

=
1

2nπ

∫ π

0

y
′
(
1 + cos(t)

2

)
{cos(n− 1)t− cos(n+ 1)t} dt. (4.4)

Similarly, on performing integration by parts on (4.4), we get

cn =
1

4n(n− 1)π

∫ π

0

y
′′
(
1 + cos(t)

2

)
sin(t) sin(n− 1)tdt

− 1

4n(n+ 1)π

∫ π

0

y
′′
(
1 + cos(t)

2

)
sin(t) sin(n+ 1)tdt, (4.5)

and therefore
|cn| <

l

4n

(
1

n− 1
+

1

n+ 1

)
<

l

2n(n− 1)
. (4.6)

Hence, the series converges to y(x) uniformly.

Theorem 4.2. Assume that the y(x) ∈ L2[0, 1] with a bounded second derivative
such that |y′′

(x)| < l. Then, if e1 = y(x) − yN (x), it hold that ∥e1∥ tend to zero
when N → ∞, where ∥.∥ denotes the canonical form.

Proof. We have that

e1 = y(x)− yN (x) =

∞∑
n=N+1

cnT
∗
n(x), (4.7)

and thus,

∥e1∥2 = ⟨e1, e1⟩ =
2

π

∫ 1

0

( ∞∑
n=N+1

cnT
∗
n(x)

)( ∞∑
m=N+1

cmT ∗
m(x)

)
dx

=

∞∑
n=N+1

cn

∞∑
m=N+1

cm
2

π

∫ 1

0

1√
x(1− x)

T ∗
n(x)T

∗
m(x)dx,

=

∞∑
n=N+1

|cn|2.

From Theorem 4.1, we have

∥e1∥2 <

∞∑
n=N+1

l2

4(n− 1)4
,

=
l2

4

∞∑
n=N+1

1

(n− 1)4
,

=
l2

4

∞∑
n=N

1

n4
,

=
l2

4

(
π4

90
−QN

)
, (4.8)
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where

QN =

N−1∑
n=1

1

n4
.

Thus from (4.8), we have

− l

2

(
π4

90
−QN

)1

2
< ∥e1∥ <

l

2

(
π4

90
−QN

) 1
2

. (4.9)

An inequality [1] is given by

1

3N3
<

(
π4

90
−QN

)
<

1

3(N − 1)3
. (4.10)

Using the following inequality in (4.9), we have

IN < ∥e1∥ < UN , (4.11)

where
IN = − l

2
√
3(N − 1)

3

2

and UN =
l

2
√
3(N − 1)

3
2

. (4.12)

Since IN → 0 and UN → 0 as N → ∞, we have that ∥e1∥ tends to zero as N → ∞,
which proves the convergence of the method. This completes the proof.

5. Numerical Testing and Discussion
In this section, the accuracy of the proposed method is contrasted with exact and
numerical values provided by other methods, considering different examples.

Example 5.1.
− y

′′
− 2

x
y

′
=

3

4
ey, 0 < x < 1, (5.1)

subject to
y′(0) = 0, y(1) =

2

5
y

(
1

2

)
. (5.2)

In this problem f(x, y) =
3

4
ey. Expand the function f(x, y) in Taylor series, we

have
3

4
ey =

3

4

(
1 + y +

y2

2
+

y3

6
+

y4

24
+

y5

120
+ ...

)
.

Using the methodology developed in Section 3, we have the following matrix form
of the differential equation (5.1)

−X(x)
(
BT
)2 (

DT
)−1

C −
(
2

x

)
X(x)BT

(
DT
)−1

C − 3

4
X(x)

(
DT
)−1

C

− 3

8
(T ∗C)X(x)

(
DT
)−1

C − 1

8
∗ (T ∗C)2X(x)

(
DT
)−1

C (5.3)

− 1

32
∗ (T ∗C)3X(x)

(
DT
)−1

C − 1

160
∗ (T ∗C)4X(x)

(
DT
)−1

C =
3

4
. (5.4)
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Also, the matrix representation of the boundary conditions (5.2) is given by

X(0)BT
(
DT
)−1

C = 0, (5.5)

X(1)
(
DT
)−1

C − 2

5
X

(
1

2

)(
DT
)−1

C = 0. (5.6)

Now, using the collocation points (2.4), the equation in (5.4) results in

− ¯̄X
(
BT
)2 (

DT
)−1

C −H ¯̄XBT
(
DT
)−1

C − 3

4
¯̄X
(
DT
)−1

C − 3

8
T1

¯̄X
(
DT
)−1

C

− 1

8
T1

2 ¯̄X
(
DT
)−1

C − 1

32
T1

3 ¯̄X
(
DT
)−1

C − 1

160
T1

4 ¯̄X
(
DT
)−1

C − g = 0. (5.7)

Here, the matrices BT ,
(
DT
)−1 and C are defined in section 2 and ¯̄X and T1 are

defined in Section 3. The matrices H and g are given by

H =



2

x0
0 0 · · · 0

0
2

x1
0 · · · 0

0 0
2

x2
· · · 0

...
...

... . . . ...

0 0 · · · 2

xN


, g =



3
4

3
4

3
4

...
3
4


.

Table 1. Comparison of Cheb(N) with IMVIM and MVIM at N = 5 of Example 5.1.

x Cheb(5) Rw IMVIM Rw MVIM Rw

0.0 0.223148 3.0× 10−05 0.223377 7.8× 10−05 0.221653 0.000000

0.1 0.221587 3.3× 10−05 0.221814 1.5× 10−04 0.220093 1.0× 10−04

0.2 0.216910 2.7× 10−06 0.217135 3.5× 10−04 0.215425 4.1× 10−04

0.3 0.209145 3.6× 10−05 0.209366 6.4× 10−04 0.207674 9.8× 10−04

0.4 0.198334 3.9× 10−05 0.198547 9.6× 10−04 0.196889 1.8× 10−03

0.5 0.184537 5.5× 10−11 0.184736 1.2× 10−03 0.183133 3.1× 10−03

0.6 0.167828 5.6× 10−11 0.168007 1.2× 10−03 0.166489 4.9× 10−03

0.7 0.148295 7.8× 10−05 0.148447 1.0× 10−03 0.147056 7.3× 10−03

0.8 0.126038 1.0× 10−05 0.126161 4.1× 10−04 0.124949 1.0× 10−02

0.9 0.101170 2.9× 10−04 0.101267 8.1× 10−04 0.100299 1.4× 10−02

1.0 0.073815 8.8× 10−04 0.073894 2.7× 10−03 0.073253 1.9× 10−02

In order to get the solution, we replace two equations of (5.7) by (5.5) and (5.6).
Now, solving this system for unknown coefficients ci, i = 0, 1, 2, ..., N and substitut-
ing them into equation (2.8), the required numerical solution is obtained. The ap-
proximated results are presented against the modified variational iteration method
(MVIM) [29] and the improved modified variational iteration method (IMVIM) [42].
Numerical results are listed and presented in comparison with MVIM and IMVIM
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in Table 1 and Figure 2 for N = 5. To check the accuracy the residual errors
Rw = | − y

′′ − 2
xy

′ − 3
4e

y| are presented in Table 1. The values of the Chebyshev
coefficients are given in Table 2 for N = 5. From Figure 2 and Tables 1 and 2,
one can easily conclude that the proposed approach is very promising for solving a
three point SBVPs.
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Figure 2. Comparison of results for Example 5.1.

Table 2. Chebyshev coefficients at N = 5 for Example 5.1.

c0 c1 c2 c3 c4 c5

N = 5 0.33292864 -0.07507989 -0.01802781 0.00041474 0.00004520 -0.00000162

Example 5.2.
− y

′′
− 2

x
y

′
= 1− 2y3, 0 < x < 1, (5.8)

subject to
y′(0) = 0, y(1) =

1

3
y

(
1

4

)
. (5.9)

Applying the methodology developed in Section 3, we have the following matrix
form of the differential equation (5.8)

−X(x)
(
BT
)2 (

DT
)−1

C−
(
2

x

)
X(x)BT

(
DT
)−1

C+2∗ (T ∗C)2X(x)
(
DT
)−1

C=1.

(5.10)
Also, the matrix representation of the boundary conditions (5.9) is given by

X(0)BT
(
DT
)−1

C = 0, (5.11)

X(1)
(
DT
)−1

C − 1

3
X

(
1

4

)(
DT
)−1

C = 0. (5.12)

Now, using the collocation points (2.4), we get the following system

− ¯̄X
(
BT
)2 (

DT
)−1

C −H ¯̄XBT
(
DT
)−1

C − T1
2 ¯̄X
(
DT
)−1

C − g = 0. (5.13)



2174 N. Sriwastav, A. K. Barnwal, H. Ramos, R. P. Agarwal & M. Singh

Here, the matrices BT ,
(
DT
)−1 and C are defined in section 2 and ¯̄X and T1 are

defined in Section 3. The matrices H and g are given by

H =



2

x0
0 0 · · · 0

0
2

x1
0 · · · 0

0 0
2

x2
· · · 0

...
...

... . . . ...

0 0 · · · 2

xN


, g =



1

1

1

...

1


.

In order to get the solution, replace two equations of (5.13) by (5.11) and (5.12).

0.0 0.2 0.4 0.6 0.8 1.0

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

A
p

p
ro

x
im

a
te

 s
o

lu
ti

o
n

 (
y
)

x

Cheb(3)

MVIM

He's VIM

(a) Numerical vs VIM

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
es

id
u

a
l 

e
r
r
o

r
 (
R
w

)

x

Cheb(3)

MVIM

He's VIM

(b) Residual error (Rw)

Figure 3. Comparison of results for Example 5.2.

Now, solving these equations for the unknown coefficients and substituting them
into equation (2.8), the required numerical solution is obtained. The approximate
results obtained using the proposed method (Cheb(N)) are compared against the
MVIM [29] and He’s VIM [12]. Numerical results are also listed and presented in
comparison with MVIM and He’s VIM in Table 3 and Figure 3 for N = 3. The
approximate results using MVIM are presented for the parameter ω = 0 considering
the best result in [29]. Also, the values of approximate solution using He’s VIM
are given at first iteration. The methods are also compared in terms of the residual
error Rw = | − y

′′ − 2
xy

′ − 1 + 2y3|, which are provided in Table 3. The values of
Chebyshev coefficients have presented in Table 4 for N = 3.

From Figure 3, one can easily conclude that the proposed approach is very
promising for solving a three point SBVPs(see Figure 3(a) and 3(b)). Moreover,
in terms of residual errors, the proposed method shows better precision than the
existing method and the similar trends to the previous case are obtained for errors.
From the above results and discussion, it can be concluded easily that the new
approach not only approximate the three point SBVPs with higher precision, but
also consumes lesser computations to obtained these results.

Example 5.3.

− (xy′)′ = x(−92 + 198x− 23x2 + 22x3 + y) (5.14)
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Table 3. Comparison of Cheb(N) with VIM at N = 3 and 4 of Example 5.2.

x Cheb(3) Rw MVIM Rw He’s VIM Rw

0.0 0.240916 1.3× 10−11 0.238177 4.5× 10−17 0.238177 2.8× 10−08

0.1 0.239296 5.8× 10−05 0.236555 5.4× 10−04 0.236555 5.4× 10−04

0.2 0.234428 3.2× 10−04 0.231690 2.1× 10−03 0.231690 2.1× 10−03

0.3 0.226298 5.2× 10−04 0.223582 4.6× 10−03 0.223582 4.6× 10−03

0.4 0.214893 4.4× 10−04 0.212231 7.9× 10−03 0.212231 7.9× 10−03

0.5 0.200199 6.6× 10−12 0.197636 1.1× 10−02 0.197636 1.1× 10−02

0.6 0.182202 7.5× 10−04 0.179798 1.5× 10−02 0.179798 1.5× 10−02

0.7 0.160890 1.6× 10−03 0.158717 1.9× 10−02 0.158717 1.9× 10−02

0.8 0.136248 2.3× 10−03 0.134392 2.2× 10−02 0.134392 2.2× 10−02

0.9 0.108264 2.3× 10−03 0.106825 2.4× 10−02 0.106825 2.4× 10−02

1.0 0.076924 1.6× 10−03 0.076013 2.6× 10−02 0.076014 2.6× 10−02

Table 4. Chebyshev coefficients N = 3 for Example 5.2.

c0 c1 c2 c3

N = 3 0.35911848 -0.08192586 -0.02063932 -0.00007015

subject to
y

′
(0) = 0, y(1) =

1

3
y

(
1

2

)
. (5.15)

The exact solution of the SBVPs (5.14)-(5.15) is −22x3 +23x2. The qualitative
and quantitative comparison of the approximate solution of the present method
(Cheb(N)) at N = 3 against the exact solution (Exact) and the He’s variational
iteration method (He’s VIM) [12] is provided in Table 5 and Figure 4(a), respec-
tively. Table 5 and Figure 4(b) provides the absolute error e = |exact solution −
approximate solution|. The values of unknown Chebyshev coefficient have presented
in Table 6. We have provided the numerical results of He’s VIM at third iteration.
From Figures (4(a) and 4(b)) and Table 5, it can be observed that the proposed
method is computing highly accurate results and matching well with the exact re-
sults.

Example 5.4.

−
(
x2y

′
)′

= x2

(
−1 +

324

53
x+

54

53
x3 − 729

2809
x6 + y2

)
, 0 < x < 1, (5.16)

subject to
y′(0) = 0, y(1) =

1

2
y

(
1

3

)
. (5.17)

The exact solution of the SBVPs (5.16)-(5.17) is − 27
53x

3 +1. For a problem 5.4,
the approximate solution using present method (Cheb(N)) is compared with the
exact solution and He’s VIM [12] graphically in Figure 5 along with the quantitative
values of the solutions at different values of x in Table 7. The absolute errors e are
also calculated and provided in Table 7 and Figure 5. The values of unknown
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Figure 4. Comparison of results for Example 5.3.

Table 5. Comparison of Cheb(N) with exact solution and He’s VIM at N = 3 of Example 5.3.

x Exact Cheb(3) e He’s VIM e

0.0 0.000000 −6.8× 10−09 6.8× 10−09 -0.000887 0.000887
0.1 0.208000 0.207999 6.8× 10−09 0.207114 0.000885
0.2 0.744000 0.743999 6.7× 10−09 0.743121 0.000878
0.3 1.476000 1.475999 6.6× 10−09 1.475132 0.000867
0.4 2.272000 2.271999 6.4× 10−09 2.271147 0.000852
0.5 3.000000 2.999999 6.1× 10−09 2.999169 0.000830
0.6 3.528000 3.527999 5.8× 10−09 3.527198 0.000801
0.7 3.724000 3.723999 5.5× 10−09 3.723244 0.000755
0.8 3.456000 3.455999 5.1× 10−09 3.455323 0.000676
0.9 2.592000 2.591999 4.7× 10−09 2.591465 0.000534
1.0 1.000000 0.999999 4.2× 10−09 0.999722 0.000277

Table 6. Chebyshev coefficients at N = 3 for Example 5.3.

c0 c1 c2 c3

N = 3 3.4999999882 1.1875000013 -1.2499999968 -0.6875000000

Chebyshev coefficients are listed in Table 8 for N = 3. The numerical results of
He’s VIM at third iteration are presented in Table 6 and Figure 5. Once again the
plots show that the proposed approach estimates the results well and overlaps with
the exact solutions (refer to Figures 5(a) and 5(b)).

Example 5.5.

− (x0.7y′)′ = x0.7

(
567

85
x− 17

5

)
, (5.18)
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Figure 5. Comparison of results for Example 5.4.

Table 7. Comparison of Cheb(N) with exact solution and He’s VIM at N = 3 of Example 5.4.

x Exact Cheb(3) e He’s VIM e

0.0 1.000000 1.000000 8.5× 10−10 1.000065 6.4× 10−05

0.1 0.999491 0.999490 8.4× 10−10 0.999555 6.4× 10−05

0.2 0.995925 0.995924 8.3× 10−10 0.995989 6.4× 10−05

0.3 0.986245 0.986245 8.0× 10−10 0.986308 6.2× 10−05

0.4 0.967396 0.967396 7.7× 10−10 0.967458 6.1× 10−05

0.5 0.936321 0.936320 7.4× 10−10 0.936380 5.9× 10−05

0.6 0.889962 0.889962 7.0× 10−10 0.890020 5.7× 10−05

0.7 0.825264 0.825264 6.5× 10−10 0.825318 5.4× 10−05

0.8 0.739170 0.739169 6.0× 10−10 0.739220 4.9× 10−05

0.9 0.628623 0.628622 5.4× 10−10 0.628665 4.2× 10−05

1.0 0.490566 0.490566 4.8× 10−10 0.490597 3.1× 10−05

Table 8. Chebyshev coefficients at N = 3 for Example 5.4.

c0 c1 c2 c3

N = 3 1.681603 -.238797 -0.095518 -0.015919

subject to
y(0) = 0, y(1) = 1.2y

(
1

2

)
. (5.19)

The exact solution of the boundary value problem (5.18)-(5.19) is

y(x) = −14

17
x3 + x2. (5.20)

Applying the methodology developed in Section 3, the following matrix form of the
differential equation (5.14) is obtained

−X(x)
(
BT
)2 (

DT
)−1

C −
(

7

10x

)
X(x)BT

(
DT
)−1

C =

(
567

85
x− 17

5

)
, (5.21)



2178 N. Sriwastav, A. K. Barnwal, H. Ramos, R. P. Agarwal & M. Singh

and the matrix representation of boundary conditions (5.19) is given by

X(0)
(
DT
)−1

C = 0, (5.22)

X(1)
(
DT
)−1

C − 1.2X

(
1

2

)(
DT
)−1

C = 0. (5.23)

Now, using the collocation points (2.4), the matrix form (5.21) of the differential
equation (5.18) has a new matrix representation which is a system of (N + 1)
algebraic equations given by

− ¯̄X
(
BT
)2 (

DT
)−1

C −H ¯̄XBT
(
DT
)−1

C − g = 0. (5.24)

Here, the matrices H and g are given by

H =



7

10x0
0 0 · · · 0

0
7

10x1
0 · · · 0

0 0
7

10x2
· · · 0

...
...

... . . . ...

0 0 · · · 7

10xN


, g =



(
567

85
x0 −

17

5

)
(
567

85
x1 −

17

5

)
(
567

85
x2 −

17

5

)
...(

567

85
xN − 17

5

)


.

In order to get the solution of problem 5.5, following from the proposed methodology
replace the boundary conditions given in equations (5.22) and (5.23) into two out
of (N +1) algebraic equations (5.24). Now, on solving these equations for unknown
coefficient ci, i = 0, 1, 2, ..., N at N = 3, the approximate solution given as follows
is obtained

y(x) = T ∗(x)C,

= −0.8235294115 ∗ x3 + 0.9999999996 ∗ x2 + 2.99× 10−10 ∗ x+ 1.04× 10−17,

≈ −14

17
x3 + x2. (5.25)

Here,
C =

[
0.11764705 0.11397058 −0.02941176 −0.02573529

]T
.

From equation (5.25), it can be seen that the numerical solution is approximately
equal to the exact solution (5.20). Hence, the proposed method has the ability to
find the solution with higher precision at a less computational cost.

Example 5.6.

− (x0.5y′)′ = x0.5

(
−3 +

45

7
x− x4 +

12

7
x5 − 36

49
x6 + y2

)
(5.26)

subject to
y(0) = 0, y(1) = y

(
1

2

)
. (5.27)
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Figure 6. Comparison of results for Example 5.6.

Table 9. Comparison of Cheb(N) with exact solution at N = 2 and N = 3 of Example 5.6.

x Exact Cheb(2) e Cheb(3) e

0.0 0.000000 0.357649 0.357649 1.0× 10−11 1.0× 10−11

0.1 0.009143 0.491171 0.482029 0.009142 1.3× 10−11

0.2 0.033143 0.605619 0.572476 0.033142 1.3× 10−11

0.3 0.066857 0.700992 0.634135 0.066857 1.1× 10−11

0.4 0.105143 0.777291 0.672148 0.105142 7.3× 10−12

0.5 0.142857 0.834515 0.691657 0.142857 2.8× 10−12

0.6 0.174857 0.872664 0.697807 0.174857 9.0× 10−13

0.7 0.196000 0.891738 0.695738 0.196000 2.2× 10−12

0.8 0.201143 0.891738 0.690596 0.201142 1.9× 10−12

0.9 0.185143 0.872664 0.687521 0.185142 2.9× 10−12

1.0 0.142857 0.834515 0.691657 0.142857 1.2× 10−11

Table 10. Chebyshev coefficients at different values of N for Example 5.6.

c0 c1 c2 c3

N = 2 0.71529815 0.23843271 -0.11921635 -
N = 3 0.21428571 0.09821428 -0.03571428 -0.02678571

The exact solution of the boundary value problem (5.26)-(5.27) is y(x) = − 6
7x

3+
x2.

We have presented the approximate solution (Cheb(N)) in comparison with the
exact solution (Exact) for N = 2 and 3 quantitatively and qualitatively in Table 9
and Figure 6, respectively. To ensure the accuracy and reliability of the method,
the absolute error e = |Exact − Cheb(N)| have also been presented in Table 9 and
Figure 6. The values of Chebyshev coefficient have presented in Table 10 for N = 2
and 3.

One can observe that the numerical solution matches well with the exact solution
for N = 3 (refer to Figure 6(a)). Moreover, Table 10 demonstrates that as the value
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of N increased from 2 to 3, the error values (e) decreased significantly.

6. Conclusions and Remarks
This article provides an efficient and accurate approach for finding the approxi-
mate solution of a class of three-point SBVPs based on collocation method in the
presence of shifted Chebyshev polynomials. The mathematical formulations of the
proposed method is very simple in terms of (a) easy to code and, (b) reduces the
mathematical complexities due to utilization of lower order Chebyshev polynomials
(in particular N = 3 and N = 4 for our case). The qualitative and quantitative
behavior of the solution suggest that the proposed method is highly adoptable to
solve various kind of three point SBVPs. The residual error calculated using the
proposed methodology shows better results than the existing variational iterative
methods [12, 29, 42]. The proposed method takes fewer Chebychev polynomials to
determine the solution of a class of three-point SBVPs which makes it highly effi-
cient. Detailed convergence of the method has also been discussed. Finally, it can
be concluded that the proposed method is one of the most smartest approaches to
solve a class of three-point SBVPs.

Moreover, there is vast future scope of the study made in this article. The
methodology developed in this article can be modify and verify over system of
nonlinear singular four point boundary value problems [4]. Multi-pantograph [36]
delay can be incorporated to create a novel mathematical model over SBVPs (1.1)-
(1.3), and the current methods can be improved and validated.

References
[1] H. Anton, I. Bivens and S. Davis, Calculus: Late Transcendentals, John Wiley

& Sons, 2021.
[2] R. P. Agarwal, H. Thompson and C. Tisdell, Three-point boundary value prob-

lems for second-order discrete equations, Computers & Mathematics with Ap-
plications, 2003, 45(6–9), 1429–1435.

[3] I. Ahmad, M. A. Z. Raja, et al., Integrated neuro-evolution-base computing
solver for dynamics of nonlinear corneal shape model numerically, Neural Com-
puting and Applications, 2021, 33(11), 5753–5769.

[4] A. K. Barnwal and P. Pathak, Successive iteration technique for singular non-
linear system with four-point boundary conditions, Journal of Applied Mathe-
matics and Computing, 2020, 62(1), 301–324.

[5] J. P. Boyd, Chebyshev and Fourier spectral methods, Courier Corporation, 2001.
[6] M. Chawla and P. Shivakumar, On the existence of solutions of a class of sin-

gular nonlinear two-point boundary value problems, Journal of Computational
and Applied Mathematics, 1987, 19(3), 379–388.

[7] A. Dinmohammadi, A. Razani and E. Shivanian, Analytical solution to the
nonlinear singular boundary value problem arising in biology, Boundary Value
Problems, 2017, 2017(1), 1–9.

[8] F. Geng, A numerical algorithm for nonlinear multi-point boundary value prob-
lems, Journal of Computational and Applied Mathematics, 2012, 236(7), 1789–
1794.



A numerical scheme for three-point singular BVPs 2181

[9] M. Gülsu, Y. Öztürk and M. Sezer, A new collocation method for solution of
mixed linear integro-differential-difference equations, Applied Mathematics and
Computation, 2010, 216(7), 2183–2198.

[10] M. Gülsu, Y. Öztürk and M. Sezer, On the solution of the Abel equation of the
second kind by the shifted Chebyshev polynomials, Applied Mathematics and
Computation, 2011, 217(9), 4827–4833.

[11] Y. Q. Hasan and L. Zhu, Solving singular boundary value problems of higher-
order ordinary differential equations by modified Adomain decomposition
method, Communications in Nonlinear Science and Numerical Simulation,
2009, 14(6), 2592–2596.

[12] A. R. Kanth and K. Aruna, He’s variational iteration method for treating
nonlinear singular boundary value problems, Computers & Mathematics with
Applications, 2010, 60(3), 821–829.

[13] A. R. Kanth and V. Bhattacharya, Cubic spline for a class of non-linear sin-
gular boundary value problems arising in physiology, Applied Mathematics and
Computation, 2006, 174(1), 768–774.

[14] S. A. Khuri and A. Sayfy, A novel approach for the solution of a class of singular
boundary value problems arising in physiology, Mathematical and Computer
Modelling, 2010, 52(3–4), 626–636.

[15] P. Kelevedjiev, Existence of positive solutions to a singular second order bound-
ary value problem, Nonlinear analysis, 2002, 50(8), 1107–1118.

[16] J. C. Mason and D. C. Handscomb, Chebyshev polynomials, CRC press, 2002.
[17] Y. Öztürk, Solution for the system of Lane–Emden type equations using Cheby-

shev polynomials, Mathematics, 2018, 6(10), 181.
[18] Y. Öztürk and M. Gülsu, An operational matrix method for solving Lane-

Emden equations arising in astrophysics, Mathematical Methods in the Applied
Sciences, 2014, 37(15), 2227–2235.

[19] K. Parand, M. Dehghan, A. Rezaei and S. Ghaderi, An approximation algo-
rithm for the solution of the nonlinear Lane–Emden type equations arising in
astrophysics using Hermite functions collocation method, Computer Physics
Communications, 2010, 181(6), 1096–1108.

[20] R. Pandey and A. Verma, Existence-uniqueness results for a class of singular
boundary value problems-ii, Journal of Mathematical Analysis and Applica-
tions, 2008, 338(2), 1387–1396.

[21] R. Pandey, On a class of weakly regular singular two-point boundary value
problems, ii, Journal of Differential Equations, 1996, 127(1), 110–123.

[22] M. A. Rufai and H. Ramos, Numerical solution of second-order singular prob-
lems arising in astrophysics by combining a pair of one-step hybrid block Nys-
tröm methods, Astrophysics and Space Science, 2020, 365, 1–13.

[23] J. Rashidinia, R. Mohammadi and R. Jalilian, The numerical solution of non-
linear singular boundary value problems arising in physiology, Applied Mathe-
matics and Computation, 2007, 185(1), 360–367.

[24] R. Russell and L. Shampine, Numerical methods for singular boundary value
problems, SIAM Journal on Numerical Analysis, 1975, 12(1), 13–36.



2182 N. Sriwastav, A. K. Barnwal, H. Ramos, R. P. Agarwal & M. Singh

[25] H. Ramos and J. Vigo-Aguiar, A fourth-order Runge–Kutta method based on
bdf-type Chebyshev approximations, Journal of Computational and Applied
Mathematics, 2007, 204(1), 124–136.

[26] H. Ramos, G. Singh, V. Kanwar and S. Bhatia, An embedded 3 (2) pair of non-
linear methods for solving first order initial-value ordinary differential systems,
Numerical Algorithms, 2017, 75(3), 509–529.

[27] M. Singh and A. K. Verma, An effective computational technique for a class
of Lane–Emden equations, Journal of Mathematical Chemistry, 2016, 54(1),
231–251.

[28] M. Singh, A. K. Verma and R. P. Agarwal, Maximum and anti-maximum
principles for three point sbvps and nonlinear three point sbvps, Journal of
Applied Mathematics and Computing, 2015, 47(1–2), 249–263.

[29] M. Singh, A. K. Verma and R. P. Agarwal, On an iterative method for a
class of 2 point & 3 point nonlinear sbvps, Journal of Applied Analysis and
Computation, 2019, 9(4), 1242–1260.

[30] O. P. Singh, R. K. Pandey and V. K. Singh, An analytic algorithm of Lane–
Emden type equations arising in astrophysics using modified homotopy analysis
method, Computer Physics Communications, 2009, 180(7), 1116–1124.

[31] R. Singh and M. Singh, An optimal decomposition method for analytical and
numerical solution of third-order emden–fowler type equations, Journal of Com-
putational Science, 2022, 63, 101790.

[32] R. Singh, G. Singh and M. Singh, Numerical algorithm for solution of the
system of emden–fowler type equations, International Journal of Applied and
Computational Mathematics, 2021, 7(4), 1–20.

[33] R. Singh, J. Kumar and G. Nelakanti, New approach for solving a class of dou-
bly singular two-point boundary value problems using Adomain decomposition
method, Advances in Numerical Analysis, 2012, 541083, 1–22.

[34] R. Singh, V. Guleria and M. Singh, Haar wavelet quasilinearization method for
numerical solution of Emden–Fowler type equations, Mathematics and Com-
puters in Simulation, 2020, 174, 123–133.

[35] Z. Sabir, D. Baleanu, M. A. Z. Raja and E. Hincal, A hybrid computing approach
to design the novel second order singular perturbed delay differential Lane-
Emden model, Physica Scripta, 2022, 97, 085002.

[36] Z. Sabir, H. A. Wahab, T. G. Nguyen, et al., Intelligent computing technique for
solving singular multi-pantograph delay differential equation, Soft Computing,
2022, 26, 1–13.

[37] S. Tomar, M. Singh, K. Vajravelu and H. Ramos, Simplifying the variational
iteration method: A new approach to obtain the lagrange multiplier, Mathe-
matics and Computers in Simulation, 2023, 204, 640–644.

[38] H. Tabrizidooz, H. Marzban and M. Razzaghi, Solution of the generalized
Emden–Fowler equations by the hybrid functions method, Physica Scripta, 2009,
80(2), 025001.

[39] Umesh and M. Kumar, Numerical solution of singular boundary value problems
using advanced Adomian decomposition method, Engineering with Computers,
2021, 37, 2853–2863.



A numerical scheme for three-point singular BVPs 2183

[40] J. Vigo-Aguiar and H. Ramos, Variable stepsize implementation of multistep
methods for y ”= f (x, y, y’), Journal of Computational and Applied Mathe-
matics, 2006, 192(1), 114–131.

[41] A. K. Verma and M. Singh, Singular nonlinear three point bvps arising in
thermal explosion in a cylindrical reactor, Journal of Mathematical Chemistry,
2015, 53(2), 670–684.

[42] A. K. Verma, N. Kumar, M. Singh and R. P. Agarwal, A note on variation
iteration method with an application on Lane–Emden equations, Engineering
Computations, 2021, 38(10), 3932–3943.

[43] S. Wang and L. Y. Tsai, Existence results of three-point boundary value problems
for second-order ordinary differential equations, Boundary Value Problems,
2011, 2011, 1–18.

[44] F. Xie, On a class of singular boundary value problems with singular perturba-
tion, Journal of Differential Equations, 2012, 252(3), 2370–2387.

[45] A. Yıldırım and T. Öziş, Solutions of singular ivps of Lane–Emden type by the
variational iteration method, Nonlinear Analysis: Theory, Methods & Appli-
cations, 2009, 70(6), 2480–2484.

[46] Z. Yin and S. Gan, Chebyshev spectral collocation method for stochastic delay
differential equations, Advances in Difference Equations, 2015, 2015(1), 1–12.

[47] Y. Zou, Q. Hu and R. Zhang, On numerical studies of multi-point boundary
value problem and its fold bifurcation, Applied Mathematics and Computation,
2007, 185(1), 527–537.


	Introduction
	Chebyshev Polynomials
	Methodology
	Convergence Analysis
	Numerical Testing and Discussion
	Conclusions and Remarks

