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AN EFFICIENT PARAMETER UNIFORM
SPLINE-BASED TECHNIQUE FOR

SINGULARLY PERTURBED WEAKLY
COUPLED REACTION-DIFFUSION SYSTEMS

Satpal Singh1,†, Devendra Kumar1 and Higinio Ramos2,3

Abstract A parameter-uniform numerical scheme for a system of weakly
coupled singularly perturbed reaction-diffusion equations of arbitrary size with
appropriate boundary conditions is investigated. More precisely, quadratic B-
spline basis functions with an exponentially graded mesh are used to solve a
ℓ×ℓ system whose solution exhibits parabolic (or exponential) boundary layers
at both endpoints of the domain. A suitable mesh-generating function is used
to generate the exponentially graded mesh. The decomposition of the solution
into regular and singular components is obtained to provide error estimates.
A convergence analysis is addressed, which shows a uniform convergence of
the second order. To validate the theoretical findings, two test problems are
solved numerically.

Keywords Singularly perturbed system, reaction-diffusion equations, param-
eter-uniform convergence, exponentially graded mesh, boundary layers.
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1. Introduction
In many areas of science and engineering, we often face problems whose solution
has a multi-scale behavior, i.e., in some parts of the domain, the solution changes
very rapidly, and in other parts, it changes slowly. These problems are referred to
as singularly perturbed problems (SPPs). The regions where the solution changes
rapidly are referred to as the layer regions, and the parts of the domain where the
solution changes slowly are referred to as the outer regions (or regular regions).
These problems are frequent in many branches of science and engineering, such as
fluid dynamics, quantum mechanics, chemical reactor theory, elasticity, and porous
gas electrode theory. These problems contain small parameters multiplying the
higher-order derivative terms. The coefficient ε of the highest order derivative term
characterizes the diffusion coefficient, and the order of the differential equation
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reduces when ε is set to zero. In the layer region, the solution’s derivatives are
significantly larger than those in the regular part, so classical numerical methods fail
to solve these problems, and unacceptably large oscillations occur in these regions
(see [13, 38, 45] for reference). To overcome this difficulty, one has to use a non-
conventional scheme. In particular, there are two popular strategies for dealing
with these problems. The first one is the use of fitted-operator methods that reflect
the nature of the solution in the boundary layers and can be implemented on an
equidistant mesh, while the second one is the use of layer-adapted meshes. Although
fitted operator methods use a uniform mesh, they are easy to implement, and their
convergence analysis is more straightforward compared to methods based on non-
uniform meshes. These methods have a major drawback; one can not construct an
ε-uniform fitted operator method on an equidistant mesh when there are parabolic
boundary layers in the solution (see Chapter 11 of [38] for completion). Another area
for improvement with this approach is the difficulty of extending these methods to
multidimensional problems in complex domains. Additionally, fitted mesh methods
require knowing the location and thickness of the boundary layers to generate highly
appropriate non-uniform grids. For several non-uniform grids such as Shishkin,
Bakhvalov, or Bakhvalov-Shishkin (B-S) meshes, the readers are referred to [16,
17,23,24,27,41]. This phenomenon determines the evolution of parameter-uniform
numerical methods i.e., the methods in which the error constant is independent of
ε and the mesh parameter.

Various ε-uniform numerical schemes such as the variational method, the finite
difference methods (FDMs), the rational spectral collocation methods, the finite
element methods (FEMs), the adaptive mesh methods, and the layer-adapted mesh
methods have been developed for singularly perturbed boundary value problems
(SPBVPs) (readers are referred to [1, 11–13, 18–20, 32] and the references therein).
Although the Shishkin mesh is one of the simplest non-uniform meshes; it has a
drawback, that is before one attempts to solve the differential equation, significant
information about the exact solution must be known. Often this information is not
available, especially for nonlinear problems. Thus, a different approach can be used,
namely the use of an adaptive non-uniform grid where the adaptivity is governed by
the numerical solution. This approach does not require a priori information about
the solution of the problem. Due to this advantage, these grids (referred to as
solution-adaptive grids) have become extremely popular and have been successfully
used in widespread applications. In this paper, we construct an adaptive grid,
namely exponentially graded mesh, sufficient to settle the issue of the boundary
layers.

Starting in the late 1960s, in this evolution process, several numerical methods
(independent of ε) have been constructed for a scalar reaction-diffusion equation
(see, [2, 38, 43, 45] and the references therein). On the other hand, less effort has
been devoted to systems of reaction-diffusion boundary value problems. For a sys-
tem of two coupled singularly perturbed reaction-diffusion equations, with diffusion
coefficients ε1, ε2, depending on the relation and values of ε1 and ε2 three cases are
of interest (i) ε1, ε2 arbitrary, (ii) ε1 = ε, ε2 = 1, and (iii) ε1 = ε2 = ε (see [47]).
Some schemes and their corresponding convergence analyses for these particular
cases can be seen in [31,34,35], where a parameter-uniform convergence of the first
order was established. We cite some works about systems of SPBVPs: Matthews et
al. [36] proposed classical finite difference operators with special piecewise-uniform
meshes to solve a system of two coupled reaction-diffusion equations. Madden and
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Stynes [32] suggested the first-order parameter-uniform central difference scheme
with a variant of Shishkin mesh for a coupled system of two singularly perturbed lin-
ear reaction-diffusion equations. Using the basic ideas of the perturbation method,
Valanarasu and Ramanujam [53] suggested exponentially fitted FDMs to solve a
class of weakly coupled systems of singularly perturbed reaction-diffusion equa-
tions. For a coupled system of equations containing different magnitudes diffu-
sion parameters Linß and Madden [25] considered a central difference scheme on
layer-adapted piecewise uniform meshes. They established that their scheme is
almost second-order parameter-uniform convergent, which is an improvement on
the scheme proposed in [32]. Linß and Madden [26] suggested a FEM on general
layer-adapted meshes (Shishkin and Bakhvalov meshes) for a system of two coupled
reaction-diffusion equations. They have shown that the method is of first-order
and almost first-order (up to a logarithmic factor) parameter-uniform convergent
with Bakhvalov and Shishkin meshes, respectively. Natesan and Deb [40] devised
a second-order uniformly convergent hybrid scheme for a singularly perturbed sys-
tem of reaction-diffusion equations. The scheme comprises a cubic spline scheme
in the layer region and the classical central difference scheme elsewhere. Clavero et
al. [5] presented a non-monotone FDM of HODIE type on a Shishkin mesh for the
coupled systems of singularly perturbed reaction-diffusion equations. They have
shown that the scheme is a parameter-uniform convergent of orders two and three
in the cases of different and equal diffusion parameters, respectively. They have also
addressed a hybrid FDM of HODIE type on a piecewise uniform Shishkin mesh for
the coupled systems of singularly perturbed reaction-diffusion equations [6]. They
have shown that the discretized operator satisfies the discrete maximum principle,
and the scheme is almost a third-order parameter-uniform convergent (except for a
logarithmic factor).

Das and Natesan [9] proposed a second-order central difference scheme with
the adaptively generated graded mesh for a system of coupled singularly perturbed
reaction-diffusion equations. In the system, they have taken diffusion parameters
with different magnitudes. Lin and Stynes [22] considered a FEM for a system of
coupled reaction-diffusion equations, where each equation has the same diffusion
coefficient. The method was used with a Shishkin mesh and showed an almost
first-order convergent, independent of the magnitude of the diffusion parameter.
Constructing an adaptive layer mesh using the equidistribution principle for a pos-
itive monitor function, Das and Aguiar [10] proposed an accurate second-order
scheme for a system of reaction-diffusion equations. Singh and Natesan [49] ap-
plied the nonsymmetric discontinuous Galerkin FEM with interior penalties on a
piecewise-uniform Shishkin mesh to obtain the numerical solution of a system of
reaction-diffusion equations. They have shown that the method is k-th order uni-
formly convergent in the energy norm, where k is the polynomial degree. In some of
the above articles, the equations have diffusion parameters of different magnitudes,
while diffusion parameters of the same magnitudes were taken in some works.

Motivation: These systems of equations frequently arise in several applications
in science and engineering, as in electroanalytical chemistry [47], predator-prey pop-
ulation dynamics [15], the turbulent interaction of waves and currents [44,52], chem-
ical reactor theory [46], the classical linear double-diffusion model for saturated flow
in fractured porous media [3], modelling of the diffusion process in bones [8], and
control theory [39]. Only a few articles have appeared dealing with systems of arbi-
trary size; to cite a few, Linß and Madden [28] proposed a parameter-uniform central
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difference scheme on layer-adapted meshes (Shishkin, Bakhvalov, and Equidistribu-
tion meshes). They have shown that the method is second-order accurate on the
Bakhvalov and Equidistribution meshes, while it is almost second-order accurate
up to a logarithmic factor on a Shishkin mesh. Linß suggested a FEM on arbi-
trary meshes (layer-adapted meshes) for a system of ℓ ⩾ 2 singularly perturbed
reaction-diffusion equations. Theoretically, he has shown that the error bounds for
the Shishkin meshes are lower than those on the Bakhvalov meshes. Stephens and
Madden [51] developed the discrete Schwarz method on three overlapping subdo-
mains for an arbitrarily sized coupled singularly perturbed systems. They have
used standard FDM on a uniform mesh on each subdomain and proved that the
method is parameter-uniform when appropriate subdomains are used. In this pa-
per, we consider a ℓ× ℓ system of singularly perturbed reaction-diffusion equations
in which the equations have diffusion parameters of the same magnitudes. We use
an exponentially graded mesh for the discretization which results in a second-order
(without logarithmic factor) parameter-uniform convergence. The proposed scheme
extends the method developed for a single singularly perturbed reaction-diffusion
BVP [30] to a system of reaction-diffusion equations.

We propose and analyze a parameter-uniform numerical method that uses quadr-
atic B-spline basis functions with a special non-uniform exponentially graded mesh
[7, 48, 50, 55]. In [7], Constantinou and Xenophontos analyzed h version FEM in
the natural energy norm for the singularly perturbed class of reaction-diffusion
and convection-diffusion problems. Shivhare et al. [48] constructed a quadratic
B-spline-based parameter uniform numerical scheme of second order in space and
first order in time for two parameter singularly perturbed PDEs. Exploring the
degenerate parabolic problems, Singh et al. [50] proposed a uniformly convergent
method and proved second-order convergence on the exponentially graded mesh.
Zarin [55] developed the h-version of the standard Galerkin method using higher
order polynomials and proved its robust convergence in the energy norm.

We consider the following singularly perturbed problem, which involves a system
of ℓ weakly coupled reaction-diffusion equations. We seek a solution uuu ∈ (C2(0, 1)∩
C[0, 1])ℓ that satisfies

LLLuuu(x) := −EEEuuu′′(x) +BBB(x)uuu(x) = ggg(x), x ∈ (0, 1), (1.1a)

subject to the Dirichlet boundary conditions

uuu(0) = ϱϱϱ0, uuu(1) = ϱϱϱ1, (1.1b)

where LLL = (L1, . . . ,Lℓ)
T , EEE = diag(ε21, ε22, . . . , ε2ℓ) with εk=ε, k=1, 2, . . . , ℓ, BBB(x)=

(bij(x))ℓ×ℓ, ggg(x)=(g1(x), g2(x), . . . , gℓ(x))
T , uuu(x)=(u1(x), u2(x), . . . , uℓ(x))

T , ϱϱϱ0=
(ϱ0,1, . . . , ϱ0,ℓ)

T , and ϱϱϱ1 = (ϱ1,1, . . . , ϱ1,ℓ)
T . We assume that each column of the

coupling matrix BBB : [0, 1] → R(ℓ,ℓ) and the function ggg : [0, 1] → Rℓ belong to
C4[0, 1]ℓ. We assume that the following inequality holds to fulfill the condition of
the strongly diagonally dominant matrix along with the nonsingularity of BBB(x) ∀x ∈
[0, 1]

ℓ∑
k=1
k ̸=i

∥∥∥∥bikbii
∥∥∥∥ < 1, for i = 1, 2, . . . , ℓ. (1.2)

The paper is organized as follows: Section 2 gives some preliminary results
on the solution and its derivatives. A decomposition of the exact solution is also
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provided in this section. The scheme is proposed in Section 3, divided into two
subsections: in subsection 3.1, an exponentially graded mesh is constructed, and
the collocation scheme is given in subsection 3.2. The comprehensive convergence
analysis is provided in Section 4. Numerical simulations and discussion of the results
are exemplified in Section 5, while some concluding comments and further research
in this direction are included in Section 6.

Throughout the paper, matrices and vectors will be denoted by bold letters,
while we use plain letters for scalars. A superscript T will be used to transpose a
vector/matrix. When the domain D is obvious, the standard notation ∥.∥ will be
used (instead of ∥.∥D) for the infinity-norm (L∞−norm) e.g., for a scalar function
U defined on an interval I, we define ∥U∥ = maxx∈I |U(x)| while for a vector val-
ued function UUU = (U1, U2, . . . , Uℓ)

T ∈ Rℓ, defined on I, the infinity-norm is defined
as ∥UUU∥ = maxx∈I{|U1(x)|, |U2(x)|, . . . , |Uℓ(x)|}. For simplicity, for any function
U , we use Uj for U(xj) and Ũj for an approximation of U at xj . For a vector
valued function UUU = (U1, U2, . . . , Uℓ)

T ∈ Rℓ applied to xj we use the notation
(U1, U2, . . . , Uℓ)

T (xj) = (U1,j , U2,j , . . . , Uℓ,j)
T . Furthermore, CCC = (C,C, . . . , C)T

denotes a generic positive constant vector independent of the perturbation parame-
ter ε, the nodal points xj , and the mesh parameter Nx. A subscripted C (e.g., C1)
is also a constant independent of ε, xj , and Nx, but whose value is fixed. Further-
more, we use C0(D) for the set of continuous functions in D, and Ck(D) for k times
continuously differentiable functions in D. Moreover, Ck(D)ℓ is used for k times
continuously differentiable vector-valued functions (with ℓ components) in D.

2. Preliminary: Properties of the exact solution
In this section, we show some bounds on the solution uuu and its derivatives which
will be used in the convergence analysis.

Theorem 2.1. Assume that BBB satisfies the following conditions to be a strongly
diagonally dominant matrix

bii > 0, and
ℓ∑

k=1
k ̸=i

∥∥∥∥bikbii
∥∥∥∥ < ξ < 1, ξ ∈ (0, 1), for i = 1, 2, . . . , ℓ.

Then

|u(k)
i (x)| ⩽ C

{
1 + ε−k

(
e−λx/ε + e−λ(1−x)/ε

)}
, for k = 0, 1, 2; i = 1, 2, . . . , ℓ,

where λ = λ(ξ) > 0 is given by

λ2 = (1− ξ) min
i=1,2,...,ℓ

{
min

x∈[0,1]
bii(x)

}
.

Proof. Refer to the proof of Theorem 2.4 given in [28].
In the study of numerical simulation of SPBVPs, stability estimates ensure the

boundedness of the solution. Note that we assumed that the coupling matrix BBB is
an arbitrary matrix with positive diagonal entries. We give the following stability
criterion using the maximum principle (refer to Protter and Weinberger [42]).
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Lemma 2.1 (Stability Estimate). Consider the differential operator

L̃u := −ν2u′′ + c(x)u′ + b(x)u,

with ν > 0, b, c ∈ C[0, 1] and b(x) > 0 on [0, 1]. Then

∥V∥ ⩽ max

{∥∥∥∥ L̃Vb
∥∥∥∥, |V(0)|, |V(1)|

}
, for all V ∈ C2(0, 1) ∩ C[0, 1].

We decompose the solution of problem (1.1) as uuu = φφφ+ηηη, withφφφ = (φ1, . . . , φℓ)
T ,

and ηηη = (η1, . . . , ηℓ)
T , where the components satisfy the following BVPs, respec-

tively

−ε2φ′′
i (x)+bii(x)φi(x) = gi(x), x ∈ (0, 1), φi(0) = ϱ0,i, φi(1) = ϱ1,i, i = 1, 2, . . . , ℓ,

and

−ε2η′′i (x)+bii(x)ηi(x)=−
ℓ∑

k=1
k ̸=i

bik(x)uk(x), x∈(0, 1), ηi(0)=ηi(1)=0, i=1, 2, . . . , ℓ.

Using Lemma 2.1, we obtain

∥φi∥ ⩽ max

{∥∥∥∥ gi
bii

∥∥∥∥, |ϱ0,i|, |ϱ1,i|
}
, and ∥ηi∥ ⩽

ℓ∑
k=1
k ̸=i

∥∥∥∥bikbii
∥∥∥∥∥uk∥ for i = 1, 2, . . . , ℓ.

Now, since ∥ui∥ ⩽ ∥φi∥+ ∥ηi∥, we have

∥ui∥ −
ℓ∑

k=1
k ̸=i

∥∥∥∥bikbii
∥∥∥∥∥uk∥ ⩽ max

{∥∥∥∥ gi
bii

∥∥∥∥, |ϱ0,i|, |ϱ1,i|
}

for i = 1, 2, . . . , ℓ.

We consider the matrix

GGG =



1 −∥b12/b11∥ . . . −∥b1ℓ/b11∥

−∥b21/b22∥ 1 . . . −∥b2ℓ/b22∥
...

... . . . ...

−∥bℓ1/bℓℓ∥ −∥bℓ2/bℓℓ∥ . . . 1


, (2.1)

such that all entries of GGG−1 are non-negative, then u is bounded for the given data.

Theorem 2.2. Assuming that the coupling matrix BBB has positive diagonal entries,
the matrix GGG is inverse monotone. Then the solution uuu of (1.1) satisfies

∥ui∥ ⩽
ℓ∑

k=1

(GGG−1)ik max

{∥∥∥∥ gi
bii

∥∥∥∥, |ϱ0,i|, |ϱ1,i|
}
, for i = 1, 2, . . . , ℓ.

Proof. The condition (1.2) implies that the matrix GGG is a strictly diagonally
dominant L0-matrix, and the inverse monotonicity of GGG is directed by the M -matrix
criterion. The proof follows using Lemma 2.1 (see [27–29] for the details).
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Remark 2.1. In general, the operator LLL does not satisfy the maximum principle,
but Theorem 2.2 suggests that LLL is stable in the maximum-norm sense.

Remark 2.2. The existence and uniqueness of the solution uuu ∈ C4[0, 1]ℓ is guar-
anteed by the following arguments:
(a) The stability estimates of the vector-differential operator LLL using the standard
arguments given in [21] (b) The coupling matrix BBB and the vector-valued function
ggg belong to the space of twice continuously differentiable functions.

Due to the presence of boundary layers, we need to examine the solution in
regular and layer regions. So, we decompose uuu into three parts as follows:

uuu = vvv +wwwL +wwwR,

where vvv is the regular component, wwwL and wwwR are termed as the left and right singu-
lar components, respectively. These components are the solutions of the following
BVPs, respectively:

−EEEvvv′′(x) +BBB(x)vvv(x) = ggg(x), x ∈ (0, 1), vvv(0) = BBB(0)−1ggg(0), vvv(1) = BBB(1)−1ggg(1),
(2.2a)

−EEEwww′′
L(x) +BBB(x)wwwL(x) = 0, x ∈ (0, 1), wwwL(0) = ϱϱϱ0 − vvv(0), wwwL(1) = 0, (2.2b)

and

−EEEwww′′
R(x) +BBB(x)wwwR(x) = 0, x ∈ (0, 1), wwwR(0) = 0, wwwR(1) = ϱϱϱ1 − vvv(1). (2.2c)

Theorem 2.3. The components vvv, wwwL, and wwwR satisfy

|v(k)i | ⩽ C, for k = 0, 1, . . . , 4; i = 1, 2, . . . , ℓ, (2.3a)

|(wL)
(k)
i | ⩽ Cε−ke−λx/ε, for k = 0, 1, . . . , 4; i = 1, 2, . . . , ℓ, (2.3b)

|(wR)
(k)
i | ⩽ Cε−ke−λ(1−x)/ε, for k = 0, 1, . . . , 4; i = 1, 2, . . . , ℓ. (2.3c)

Proof. An explanatory proof is given in [6].

3. The proposed scheme
In this section, first, we give the detail of the construction of the non-uniform mesh.
Then, we introduce and implement the proposed scheme for problem (1.1).

3.1. Mesh construction
It is well-known that standard numerical schemes on an equidistant mesh fail to
solve SPBVPs and unexpectedly large oscillations appear near the layer region(s)
when we use a classical numerical technique. In other words, we can generate a
scheme on an equidistant mesh that converges at all mesh points uniformly in the
diffusion parameter unless an unacceptably large number of mesh points are used. It
is not practical at all; thus, to resolve the layer(s), a non-uniform mesh is required.
In this section, we construct an exponentially graded mesh that generates more
mesh points in the layer region than in the other part of the domain.

To construct the exponentially graded mesh ∆ = {xj | 0 ⩽ j ⩽ Nx}, we split
the interval [0, 1] into Nx > 4 (with Nx a multiple of 4) subintervals Ij = [xj−1, xj ].
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We denote by Pp, the space of all polynomials of degree ⩽ p. In the construction of
the mesh, we require a mesh generating function Ψ(ρ), which belongs to a class of
piecewise continuously differentiable functions, monotonically increasing in nature,
and defined as

Ψ(ρ) = − ln(1− 2Cp,ερ), ρ ∈ [0, 1/2− 1/Nx], (3.1)

where Cp,ε = 1 − exp

(
− 1

(p+1)ε

)
∈ R+. With the help of the transition points

xNx
4 −1 and x 3Nx

4 +1, we split the interval [0, 1] into three subintervals such that
[0, 1] = [0, xNx

4 −1]∪ [xNx
4 −1, x 3Nx

4 +1]∪ [x 3Nx
4 +1, 1]. The nodal points can be written

in the following form

xj =



(p+ 1)εΨ(ρj), j = 0, 1, . . . ,
Nx

4
− 1,

xNx
4 −1 +

(x 3Nx
4 +1 − xNx

4 −1

Nx

2 + 2

)
(j −Nx/4 + 1), j =

Nx

4
, . . . ,

3Nx

4
,

1− (p+ 1)εΨ(1− ρj), j =
3Nx

4
+ 1, . . . , Nx,

where ρj = j
Nx

for j = 0, 1, . . . , Nx, and h̃j = xj − xj−1 for j = 1, 2, . . . , Nx.
The mesh points are distributed equidistantly in [xNx

4 −1, x 3Nx
4 +1] with Nx/2 + 2

subintervals, and exponentially graded in [0, xNx
4 −1] and [x 3Nx

4 +1, 1] with Nx/4− 1

subintervals in each. The mesh step lengths h̃j satisfy the following inequalities
utilizing the mesh characterizing function Φ = exp(−Ψ) (see [7] for more details)

h̃j⩽



C(p+ 1)εN−1
x maxΨ′(ρj) ⩽ C(p+ 1)εN−1

x max |Φ
′
(ρj)| exp

(
xj

(p+ 1)ε

)
,

j = 1, 2, . . . ,
Nx

4
− 1,

CN−1
x , j =

Nx

4
, . . . ,

3Nx

4
+ 1,

C(p+1)εN−1
x maxΨ′(1−ρj)⩽C(p+1)εN−1

x max |Φ
′
(1−ρj)| exp

(
1−xj

(p+1)ε

)
,

j =
3Nx

4
+ 2, . . . , Nx.

Since max |Φ′ | < 2, we can simply write the above inequalities as

h̃j ⩽



CεN−1
x exp

(
xj

(p+ 1)ε

)
, j = 1, 2, . . . ,

Nx

4
− 1,

CN−1
x , j =

Nx

4
, . . . ,

3Nx

4
+ 1,

CεN−1
x exp

(
1− xj

(p+ 1)ε

)
, j =

3Nx

4
+ 2, . . . , Nx,

(3.2)
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and the step lengths of this adaptive mesh satisfy the following estimates

|h̃j+1 − h̃j | ⩽ C


εN−2

x , j = 1, 2, . . . ,
Nx

4
− 1,

0, j =
Nx

4
, . . . ,

3Nx

4
,

εN−2
x , j =

3Nx

4
+ 1, . . . , Nx.

(3.3)

Remark 3.1. Near the transition points, the Shishkin and Bakhvalov meshes do
not satisfy the inequality |h̃i+1− h̃i| ≤ CN−2

x . Thus, we cannot extend our analysis
to these meshes.

3.2. Discretization of the problem
In this section, considering the collocation approach, we discretize problem (1.1) us-
ing piecewise quadratic C1-splines. We denote the mesh intervals by Ij = [xj−1, xj ],
and the collocation points are chosen as midpoints of these intervals i.e.,

Xj = xj−1/2 :=
xj−1 + xj

2
= xj−1 +

h̃j

2
= xj −

h̃j

2
, for j = 1, 2, . . . , Nx.

For m, p ∈ N (m < p), we define

Sm
p (∆) := {r ∈ Cm[0, 1] : r|Ij ∈ Pp, for j = 1, 2, . . . , Nx}.

To discretize (1.1), we consider a vector of splines whose components are in S1
2(∆)

and satisfies the BVP (1.1) at certain points. It is known that the midpoints of
Ij , j = 1, 2, . . . , Nx, are the best choice for collocation with quadratic C1-splines
for regularly perturbed BVPs (see [4]). Next, we define the quadratic nonuniform
and nonsmooth splines Bj(x) ∈ S1

2(∆) for j = 0, 1, 2, . . . , Nx, Nx + 1 as follows:

B0(x) =


(x1 − x)2

h̃2
1

, x0 ⩽ x ⩽ x1,

0, otherwise,

B1(x) =



h̃2
1 − (x1 − x)2

h̃2
1

+
(x− x0)

2

h̃1(h̃1 + h̃2)
, x0 ⩽ x ⩽ x1,

(x2 − x)2

h̃1(h̃1 + h̃2)
, x1 ⩽ x ⩽ x2,

0, otherwise,

and for j = 2, 3, . . . , Nx − 1,

Bj(x) =



(x− xj−2)
2

h̃j−1(h̃j−1 + h̃j)
, xj−2 ⩽ x ⩽ xj−1,

(x− xj−2)(xj − x)

h̃j(h̃j−1 + h̃j)
+

(xj+1 − x)(x− xj−1)

h̃j(h̃j + h̃j+1)
, xj−1 ⩽ x ⩽ xj ,

(xj+1 − x)2

h̃j+1(h̃j + h̃j+1)
, xj ⩽ x ⩽ xj+1,

0, otherwise,
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while for j = Nx, Nx + 1 these are given as

BNx(x) =



(x− xNx−2)
2

h̃Nx−1(h̃Nx−1 + h̃Nx)
, xNx−2 ⩽ x ⩽ xNx−1,

h̃2
Nx

− (x− xNx−1)
2

h̃2
Nx

+
(xNx − x)2

h̃Nx(h̃Nx−1 + h̃Nx)
, xNx−1 ⩽ x ⩽ xNx

,

0, otherwise,

BNx+1(x) =


(x− xNx−1)

2

h̃2
Nx

, xNx−1 ⩽ x ⩽ xNx ,

0, otherwise.

The discretization consists of finding ũuu whose components are in S1
2(∆) such that

ũuu0 = ũuu(0) = ϱϱϱ0, (LLLũuu)j−1/2 = gggj−1/2, ũuuNx
= ũuu(1) = ϱϱϱ1, j = 1, 2, . . . , Nx. (3.4)

Using the component-wise form (for k = 1, 2, . . . , ℓ), it can be written as

(ũk)0 = ϱ0,k, (Lkũk)j−1/2 = (gk)j−1/2, (ũk)Nx = ϱ1,k, j = 1, 2, . . . , Nx. (3.5)

We represent each component of the collocation solution ũuu as

ũk(x) =

Nx+1∑
j=0

αj,kBj(x), k = 1, 2, . . . , ℓ, (3.6)

where the coefficients αj,k can be determined by solving the following system ob-
tained by using (3.6) in (3.4). This system can be written in the form

α0,k=ϱ0,k, [LLLαααk]j−1/2= gggj−1/2, j=1, 2, . . . , Nx, αNx+1,k=ϱ1,k, k=1, 2, . . . , ℓ,
(3.7)

where [LLLαααk]j−1/2 comes from the discretization of (LLLũuu)j−1/2 and is given by

[LLLαααk]j−1/2 :=− ε2
[
2(αj+1,k − αj,k)

h̃j(h̃j + h̃j+1)
− 2(αj,k − αj−1,k)

h̃j(h̃j + h̃j−1)

]

+

ℓ∑
m=1

(bkm)j−1/2

[
q+j αj+1,k +

(
1− q+j − q−j

)
αj,k + q−j αj−1,k

]
,

j = 1, 2, . . . , Nx,

where q+j :=
h̃j

4(h̃j+h̃j+1)
and q−j :=

h̃j

4(h̃j+h̃j−1)
. Combining all the equations, we get

the system
AAA℘℘℘ = G,

where

G =

(
ϱ0,1, g1(X1), . . . , g1(XNx

), ϱ1,1︸ ︷︷ ︸
1st component

, ϱ0,2, g2(X1), . . . , g2(XNx
), ϱ1,2︸ ︷︷ ︸

2nd component

, . . . . . . ,

ϱ0,ℓ, gℓ(X1), . . . , gℓ(XNx), ϱ1,ℓ︸ ︷︷ ︸
ℓth component

)T

,
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℘℘℘ =

(
α0,1, α1,1, . . . , αNx,1, αNx+1,1︸ ︷︷ ︸

1st component

, α0,2, α1,2, . . . , αNx,2, αNx+1,2︸ ︷︷ ︸
2nd component

, . . . ,

α0,ℓ, α1,ℓ, . . . , αNx,ℓ, αNx+1,ℓ︸ ︷︷ ︸
ℓth component

)T

.

The matrix AAA is given as

AAA =



A11 A12 . . . A1ℓ

A21 A22 . . . A2ℓ

...
... . . . ...

Aℓ1 Aℓ2 . . . Aℓℓ


,

where each Akm is a submatrix of order (Nx + 2) × (Nx + 2). These submatrices
are given by

Akk =



1 0 0 0 . . . . . . 0

a21,kk a22,kk a23,kk 0 . . . . . . 0

0 a32,kk a33,kk a34,kk . . . . . . 0

... . . . . . . . . . ...
...

...

. . . . . . . . . 0 aNx+1Nx,kk aNx+1Nx+1,kk aNx+1Nx+2,kk

. . . . . . . . . 0 0 0 1


,

where

aii−1,kk = −
8ε2q−i−1

h̃2
i−1

+ bkk(Xi−1)q
−
i−1,

aii,kk =
8ε2q+i−1

h̃2
i−1

−
8ε2q−i−1

h̃2
i−1

+ bkk(Xi−1)

(
1− q+i−1 − q−i−1

)
,

aii+1,kk = −
8ε2q+i−1

h̃2
i−1

+ bkk(Xi−1)q
+
i−1,

for i = 2, 3, . . . , Nx + 1. Furthermore, for m ̸= k, m = 1, 2, . . . , ℓ; k = 1, 2, . . . , ℓ,
the submatrix Akm is

Akm =



0 0 0 0 . . . . . . 0

a21,km a22,km a23,km 0 . . . . . . 0

0 a32,km a33,km a34,km . . . . . . 0

... . . . . . . . . . ...
...

...

. . . . . . . . . 0 aNx+1Nx,km aNx+1Nx+1,km aNx+1Nx+2,km

. . . . . . . . . 0 0 0 0


,
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where

aii−1,km = bkm(Xi−1)q
−
i−1,

aii,km = bkm(Xi−1)

(
1− q+i−1 − q−i−1

)
,

aii+1,km = bkm(Xi−1)q
+
i−1,

for i = 2, 3, . . . , Nx + 1.

4. Convergence Analysis
4.1. S0

2-interpolation
To find the interpolation I02yyy whose components are in S0

2(∆), we solve the following
interpolation problem assuming that yk ∈ C0[0, 1]:

(I02yk)j = (yk)j , j = 0, 1, . . . , Nx, and (I02yk)j−1/2 = (yk)j−1/2, j = 1, 2, . . . , Nx,

where (yk)j = yk(xj), (yk)j−1/2 = yk(Xj), k = 1, 2, . . . , ℓ.

Theorem 4.1. Assuming bij(x), gj(x) ∈ C4[0, 1], for i, j = 1, 2, . . . , ℓ, the interpo-
lation error uuu− I02uuu of the solution uuu of (1.1) satisfies the following bounds:

∥uuu− I02uuu∥ ⩽ CN−3
x , and EEE max

j=1,2,...,Nx

|(uuu− I02uuu)
′′
j−1/2| ⩽ CCCN−2

x .

Proof. First, we make use of the Lagrange representation of the interpolation
polynomial and Taylor expansions to verify that for any yyy ∈ C4[0, 1]ℓ, the interpo-
lation error on each Ij satisfies∥∥∥∥yk−I02yk

∥∥∥∥
Ij

⩽
h̃3
j

24

∥∥∥∥y(3)k

∥∥∥∥
Ij

,

∣∣∣∣(yk−I02yk)
′′
j−1/2

∣∣∣∣ ⩽ h̃2
j

48

∥∥∥∥y(4)k

∥∥∥∥
Ij

, k = 1, 2, . . . , ℓ. (4.1)

Using the linear property of I02 , the solution components uk can be decomposed as

uk − I02uk = (vk − I02vk) +

(
(wL)k − I02 (wL)k

)
+

(
(wR)k − I02 (wR)k

)
.

We start this analysis by finding the interpolation error in the regular component.
For Ij ⊂ [x0, xNx/4−1], we use the bounds given in Theorem 2.3, to obtain

h̃3
j

24

∣∣∣∣v(3)k

∣∣∣∣
Ij

⩽ Cε3N−3
x exp

(
3xj

(p+ 1)ε

)
⩽ CN−3

x exp

(
xj

ε

)
⩽ CN−3

x exp

(
(p+ 1)Ψ(ρj)

)
⩽ CN−3

x .

Similarly, using the same analysis in the right layer region Ij ⊂ [x3Nx/4+2, xNx ], we
obtain ∥vk − I02vk∥Ij ⩽ CN−3

x . Also, for Ij ⊂ [xNx/4, x3Nx/4+1], the bounds for h̃j
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(using Equation (3.2)) trivially give ∥vk − I02vk∥Ij ⩽ CN−3
x . Thus, by combining

all the estimates for the regular component, we get

∥vk − I02vk∥ ⩽ CN−3
x .

Next, we consider the left singular component (wL)k in Ij ⊂ [x0, xNx/4−1]. Using
Theorem 2.3 and the inequality given in (3.2), we get

h̃3
j

24

∣∣∣∣(wL)
(3)
k

∣∣∣∣
Ij

⩽ Cε3N−3
x exp

(
3xj

(p+ 1)ε

)
ε−3|e−λx/ε|Ij

⩽ CN−3
x exp

(
xj

ε
− xj−1

ε

)
⩽ CN−3

x exp

(
h̃j

ε

)
⩽ CN−3

x exp

(
(p+ 1)N−1

x maxΨ′(ρj)

)
⩽ CN−3

x .

Now for Ij ⊂ [xNx/4, x3Nx/4+1], we obtain

h̃3
j

24

∣∣∣∣(wL)
(3)
k

∣∣∣∣
Ij

⩽ CN−3
x ε−3|e−λx/ε|Ij

⩽ CN−3
x ε−3 exp

(
−λxj−1

ε

)
.

Using L’Hôpital’s rule, it is easy to see that the term ε−3 exp

(
−λxj−1

ε

)
is bounded

in [xNx/4, x3Nx/4+1]. Thus, the above inequality gives

h̃3
j

24

∣∣∣∣(wL)
(3)
k

∣∣∣∣
Ij

⩽ CN−3
x .

Similar bounds can be obtained for Ij ⊂ [x3Nx/4+2, xNx ] using the same arguments
as for [x0, xNx/4−1]. Thus, we get

∥(wL)k − I02 (wL)k∥ ⩽ CN−3
x .

Now for the right singular component (wR)k in Ij ⊂ [x0, xNx/4−1] (using Theorem
2.3 and the inequality in (3.2)), we get

h̃3
j

24

∣∣∣∣(wR)
(3)
k

∣∣∣∣
Ij

⩽ Cε3N−3
x exp

(
3xj

(p+ 1)ε

)
ε−3|e−λ(1−x)/ε|Ij

⩽ Cε3N−3
x exp

(
C1xj

ε

)
ε−3 exp

(
−C2(1− xj−1)

ε

)
⩽ CN−3

x exp

(
C3

xj − (1− xj−1)

ε

)
⩽ CN−3

x exp

(
C3

h̃j − 1− 2xj−1

ε

)
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⩽ CN−3
x exp

(
C3(p+ 1)N−1

x maxΨ′(ρj)

)
⩽ CN−3

x .

Following the same approach as we have done for (wL)k in the intervals [xNx/4,x3Nx/4+1]

and [x3Nx/4+2, xNx ], we obtain
∥(wR)k − I02 (wR)k∥ ⩽ CN−3

x .

Next, we find the bounds for max
j=1,2,...,Nx

|(uk − I02uk)
′′
j−1/2|. For this purpose, first,

we consider vk in Ij ⊂ [x0, xNx/4−1] as follows

h̃2
j

48

∣∣∣∣v(4)k

∣∣∣∣
Ij

⩽Cε2N−2
x exp

(
2xj

(p+1)ε

)
(using Theorem 2.3 and the inequality in (3.2))

⩽ CN−2
x exp

(
2xj

(p+ 1)ε

)
⩽ CN−2

x exp

(
2Ψ(ρj)

)
⩽ CN−2

x .

Similar results can be obtained for the intervals [xNx/4, x3Nx/4+1] and [x3Nx/4+2, xNx ].
Now for the left singular component in Ij ⊂ [x0, xNx/4−1], we have

h̃2
j

48

∣∣∣∣(wL)
(4)
k

∣∣∣∣
Ij

⩽ Cε2N−2
x exp

(
2xj

(p+ 1)ε

)
ε−4|e−λx/ε|Ij

⩽ Cε2N−2
x exp

(
C1xj

ε

)
ε−4 exp

(
−C2xj−1

ε

)
⩽ Cε−2N−2

x exp

(
C3(xj − xj−1)

ε

)
⩽ Cε−2N−2

x exp

(
C3h̃j

ε

)
⩽ Cε−2N−2

x exp

(
C3(p+ 1)N−1

x maxΨ′(ρj)

)
⩽ Cε−2N−2

x .

A similar procedure can obtain the same bounds for the intervals [xNx/4, x3Nx/4+1]
and [x3Nx/4+2, xNx

]. Thus, we have

max
j=1,2,...,Nx

|((wL)k − I02 (wL)k)
′′
j−1/2| ⩽ Cε−2N−2

x .

Furthermore, one can use a similar analogy to find the bounds for the right singular
component (wR)k. Finally, using the triangle inequality leads us to complete the
proof.

Lemma 4.1. Let sk ∈ S0
2(∆) with (sk)j−1/2 = 0, j = 1, 2, . . . , Nx; k = 1, 2, . . . , ℓ,

then

∥sk∥Ij ⩽ max
j

{|(sk)j−1|, |(sk)j |}, ∥s′′k∥Ij ⩽ 8

h̃2
j

max
j

{|(sk)j−1|, |(sk)j |}.

Proof. Refer to [48] for a complete proof.
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4.2. S1
2-interpolation

To find the interpolation I12yk ∈ S1
2(∆) assuming that yk ∈ C1[0, 1], we solve the

following interpolation problem:

(I12yk)0 = (yk)0, (I12yk)j−1/2 = (yk)j−1/2, j = 1, 2, . . . , Nx, (I12yk)Nx
= (yk)Nx

,
(4.2)

where (yk)j−1/2 = yk(Xj), for k = 1, 2, . . . , ℓ.
Let Λ : S1

2(∆) → RNx+1 be the operator defined by

[Λsk]j = aj(sk)j−1 + 3(sk)j + cj(sk)j+1,

where aj =
h̃j+1

h̃j+h̃j+1
and cj = 1− aj =

h̃j

h̃j+h̃j+1
. Then from [14,33], we have

[Λsk]j ≡ aj(sk)j−1 + 3(sk)j + cj(sk)j+1

= 4aj(sk)j−1/2 + 4cj(sk)j+1/2, j = 1, 2, . . . , Nx − 1. (4.3)

Lemma 4.2. The operator Λ in (4.3) is stable, with (sk)0 = (sk)Nx = 0,

max
j=1,2,...,Nx−1

|(sk)j | ⩽
1

2

{
max

j=1,2,...,Nx−1
|[Λsk]j |

}
, k = 1, 2, . . . , ℓ,

for sk ∈ RNx+1.

Proof. Refer to Lemma 3 given in [30].

Theorem 4.2. Assume that bij(x), gj(x) ∈ C4[0, 1], for i, j = 1, 2, . . . , ℓ, then the
interpolation error uuu− I12uuu of the solution uuu of (1.1) satisfies the following bounds

max
j=0,1,...,Nx

|(uuu− I12uuu)j | ⩽ CCCN−4
x , (4.4a)

∥uuu− I12uuu∥ ⩽ CN−3
x , (4.4b)

EEE max
j=1,2,...,Nx

|(uuu− I12uuu)
′′
j−1/2| ⩽ CCCN−2

x . (4.4c)

Proof. For the interpolation error yk− I12yk, we consider an arbitrary function yk
that satisfies

(yk − I12yk)0 = (yk − I12yk)Nx = 0, k = 1, 2, . . . , ℓ.

Using the definitions of S1
2 -interpolation and the operator Λ given by (4.2) and

(4.3), respectively, we have

τyk,j=[Λ(yk−I12yk)]j=aj(yk)j−1−4aj(yk)j−1/2+3(yk)j−4cj(yk)j+1/2+cj(yk)j+1,
(4.5)

for j = 1, 2, . . . , Nx, k = 1, 2, . . . , ℓ. Furthermore, we use the Taylor series expan-
sions to get

|τyk,j | ⩽
1

12
h̃j h̃j+1|h̃j+1 − h̃j ||(y′′′k )j |Ij +

5

96
max{h̃4

j , h̃
4
j+1}∥(y

(4)
k )j∥Ij∪Ij+1 . (4.6)

Now, the interpolation error can be decomposed as

uk − I12uk = (vk − I12vk) +

(
(wL)k − I12 (wL)k

)
+

(
(wR)k − I12 (wR)k

)
,
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or
τuk,j = τvk,j + τ(wL)k,j + τ(wR)k,j .

To find the error, we start considering the regular component. For Ij ⊂ [x0, xNx/4−1],
we use Theorem 2.3 and the inequality (4.6), to get

|τvk,j | ⩽ C

(
h̃j h̃j+1|h̃j+1 − h̃j |+max{h̃4

j , h̃
4
j+1}

)
.

Now as h̃j < h̃j+1 holds in [x0, xNx/4−1], so

|τvk,j | ⩽ C

(
h̃2
j+1|h̃j+1 − h̃j |+ h̃4

j+1

)
⩽ C

(
ε3N−4

x exp

(
2xj+1

(p+ 1)ε

)
+ ε4N−4

x exp

(
4xj+1

(p+ 1)ε

))
⩽ CN−4

x exp

(
4xj+1

(p+ 1)ε

)
⩽ CN−4

x exp

(
4Ψ(ρj+1)

)
⩽ CN−4

x .

Moreover, for xj ∈ [xNx/4, x3Nx/4+1], it is obvious to prove that |τvk,j | ⩽ CN−4
x . A

similar bound can be proved for xj ∈ [x3Nx/4+2, xNx
]. Therefore, using Lemma 4.2,

we get
max

j=0,1,...,Nx

|(vk − I12vk)j | ⩽ CN−4
x .

Now in the process of finding the bounds for (wL)k, we use the fact that h̃j < h̃j+1

for xj ∈ [x0, xNx/4−1], which yields

|τ(wL)k,j | ⩽
1

12
h̃j h̃j+1|h̃j+1 − h̃j ||(w′′′

L )k,j |Ij +
5

96
max{h̃4

j , h̃
4
j+1}∥(w

(4)
L )k,j∥Ij∪Ij+1

⩽ C

(
h̃2
j+1|h̃j+1 − h̃j |ε−3|e−λx/ε|Ij + h̃4

j+1ε
−4|e−λx/ε|Ij∪Ij+1

)
⩽ C

(
N−4

x exp

(
2xj+1

(p+1)ε

)
|e−λx/ε|Ij+N−4

x exp

(
4xj+1

(p+1)ε

)
|e−λx/ε|Ij∪Ij+1

)
⩽ CN−4

x exp

(
C1h̃j+1

ε

)
⩽ CN−4

x exp

(
C1(p+ 1)N−1

x maxΨ′(ρj+1)

)
⩽ CN−4

x .

Similar bounds can be obtained in [x3Nx/4+2, xNx ]. Moreover, it is easy to prove
τ(wL)k,j ⩽ CN−4

x for xj ∈ [xNx/4, x3Nx/4+1]. Therefore, using Lemma 4.2, we get

max
j=0,1,...,Nx

|((wL)k − I12 (wL)k)j | ⩽ CN−4
x .

Similar arguments can be used to derive the bounds for the right singular component
(wR)k (we skip the analysis here). The estimate given in (4.4a) can be attained
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directly by combining all the interpolation errors for three components. To prove
(4.4b), we use the triangle inequality as

∥uuu− I12uuu∥ ⩽ ∥uuu− I02uuu∥+ ∥I02uuu− I12uuu∥
⩽ ∥uuu− I02uuu∥+ max

j=0,1,...,Nx

|(uuu− I12uuu)j |.

Now using the fact (I12uuu)j = uuuj , j = 0, 1, . . . , Nx, Lemma 4.1, Theorem 4.1, and
(4.4a), we obtain the estimate (4.4b). Furthermore, to obtain the inequality (4.4c),
we use the same approach as we have used for (4.4b). For this purpose, we write

|(uk − I12uk)
′′
j−1/2| ⩽ |(uk − I02uk)

′′
j−1/2|+ |(I02uk − I12uk)

′′
j−1/2|

⩽ |(uk − I02uk)
′′
j−1/2|+ max

j=0,1,...,Nx

8

h̃2
j

|(uk − I12uk)j |.

Hence, the proof is completed using Theorem 4.1 and inequality (4.4a).

Theorem 4.3. We assume that there exists a constant µ > 0 such that

max{h̃j+1, h̃j−1} ⩾ µh̃j , j = 1, 2, . . . , Nx − 1, h̃1 ⩾ µh̃2, and h̃Nx
⩾ µh̃Nx−1.

Then the operator Lk is stable in the maximum-norm being

∥γγγk∥ ⩽ 3 max
j=1,2,...,Nx

∣∣∣∣ [Lkγγγk]j−1/2

nj−1/2,k

∣∣∣∣, k = 1, 2, . . . , ℓ,

for all γγγk ∈ RNx+2
0 = {r ∈ RNx+2 : r0 = rNx+1 = 0},

where nj−1/2,k :=

ℓ∑
m=1

(bkm)j−1/2

(
1− q+j − q−j

)
, j = 1, 2, . . . , Nx, k = 1, 2, . . . , ℓ.

Proof. Note that q+j , q−j ∈ (0, 1/4), therefore nj,k > 0, j = 1, 2, . . . , Nx. For
arbitrary vectors γγγk ∈ RNx+2

0 , we define the operators ΛΛΛk by

[ΛΛΛkγγγk]j−1/2=− ε2

nj−1/2,k

[
2(γj+1,k−γj,k)

h̃j(h̃j+h̃j+1)
− 2(γj,k−γj−1,k)

h̃j(h̃j+h̃j−1)

]
+γj,k, j = 1, 2, . . . , Nx.

The operators ΛΛΛk are well defined due to the positivity of all nj−1/2,k. Proceeding
as in [30], we get the required result.

Theorem 4.4. Let uuu be the exact solution to (1.1) and ũuu is its approximation on
the exponentially graded mesh, then

∥uuu− ũuu∥ ⩽ CN−2
x .

Proof. We generalize the approach given in [50] for a scalar problem to a system.
Using the triangle inequality, we have

∥uk − ũk∥ ⩽ ∥uk − I12uk∥+ ∥I12uk − ũk∥,

for k = 1, 2, . . . , ℓ. Making use of B-spline functions, we write the interpolant I12uk

as

I12uk(x) =

Nx+1∑
j=0

βj,kBj(x), for k = 1, 2, . . . , ℓ.
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[LLL(αααk − βββk)]j−1/2 = Lk(ũk − I12uk)j−1/2 = ε2(I12uk − uk)j−1/2, j = 1, 2, . . . , Nx.

Finally, Theorems 4.2 and 4.3 give

∥αααk − βββk∥ ⩽ CN−2
x .

Since each Bj ⩾ 0 and the sum of all basis functions equals 1, so

∥I12uuu− ũuu∥ ⩽ ∥αααk − βββk∥ ⩽ CN−2
x .

We now apply Theorem 4.2 to complete the proof.

5. Numerical outcomes and Discussion
In this section, we examine the verification of the theoretical estimates provided in
the previous section by considering two numerical examples. The error estimates
(in the maximum norm) are obtained by utilizing the double mesh principle [11].
The maximum pointwise error is computed as

eNx

k,ε = max
j

|ũk(x2j−1)− ûk(xj−1/2)|,

where ûk and ũk represent the computed solutions by considering Nx and 2Nx mesh
partitions, respectively. We also compute the corresponding order of convergence
as

ηNx

k,ε =
ln(eNx

k,ε/e
2Nx

k,ε )

ln 2
.

Furthermore, we calculate the ε-uniform maximum pointwise error eNx

k and the
corresponding ε-uniform order of convergence ηNx

k as follows

eNx

k = max
ε

eNx

k,ε,

ηNx

k =
ln(eNx

k /e2Nx

k )

ln 2
.

Remark 5.1. All the above estimates are calculated for k = 1, 2, . . . , ℓ.

We have also calculated the overall error eeeNx as follows:

eeeNx = max
k

(max
ε

eNx

k,ε).

Finally, the corresponding orders of convergence are given by

ηηηNx =
ln(eeeNx/eee2Nx)

ln 2
.

From a practical point of view, we have calculated the uniform errors over a finite
range of ε values (ε = 1, 10−1, . . . , 10−10).

In the test problems, for simplicity, we take ℓ = 2 in the first problem and ℓ = 3
in the second problem. The solution components are denoted as uk (exact solution)
and ũk (numerical solution), respectively. Moreover, the solution in vector form is
denoted by bold letters.
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Example 5.1. In this example, we consider the following system of 2 equations:

− ε2u′′
1 + 2(1 + x)2u1 − (1 + x3)u2 = 2ex,

− ε2u′′
2 − 2 cos

(
πx

4

)
u1 + (1 +

√
2)e1−xu2 = 10x+ 1,

u1(0) = u1(1) = 0, u2(0) = u2(1) = 0.

For this example, the matrix BBB, ggg(x), ϱϱϱ0, and ϱϱϱ1 are as given below

BBB =

 2(1 + x)2 −(1 + x3)

−2 cos

(
πx
4

)
(1 +

√
2)e1−x

 , ggg(x) = (2ex, 10x+ 1)T ,

ϱϱϱ0 = (0, 0)T , ϱϱϱ1 = (0, 0)T .

Example 5.2. In this example, we consider the following system of 3 equations:

− ε2u′′
1 + 3u1 + (1− x)(u2 − u3) = ex,

− ε2u′′
2 + 2u1 + (4 + x)u2 − u3 = cosx,

− ε2u′′
3 + 2u1 + 3u3 = 1 + x2,

u1(0) = u1(1) = 0, u2(0) = u2(1) = 0, u3(0) = u3(1) = 0.

For this example, the matrix BBB, ggg(x), ϱϱϱ0, and ϱϱϱ1 are as given below

BBB =


3 1− x −(1− x)

2 4 + x −1

2 0 3

 , ggg(x) = (ex, cosx, 1 + x2)T ,

ϱϱϱ0 = (0, 0, 0)T , ϱϱϱ1 = (0, 0, 0)T .

Table 1. Maximum pointwise errors eNx
1,ε in the solution ũ1 for Example 5.1

Nx

ε 64 128 256 512 1024 2048 4096

10−2 3.4414e− 03 8.7439e− 04 2.1556e− 04 5.2958e− 05 1.3095e− 05 3.2550e− 06 8.1124e− 07

1.9766 2.0202 2.0252 2.0158 2.0083 2.0045

10−4 3.4571e− 03 8.7821e− 04 2.1656e− 04 5.3212e− 05 1.3159e− 05 3.2708e− 06 8.1520e− 07

1.9769 2.0198 2.0249 2.0157 2.0083 2.0045

10−6 3.4573e− 03 8.7825e− 04 2.1658e− 04 5.3215e− 05 1.3159e− 05 3.2710e− 06 8.1529e− 07

1.9769 2.0198 2.0249 2.0158 2.0083 2.0045

10−8 3.4573e− 03 8.7826e− 04 2.1658e− 04 5.3215e− 05 1.3159e− 05 3.2760e− 06 8.2269e− 07

1.9769 2.0198 2.0249 2.0158 2.0083 2.0045

10−10 3.4573e− 03 8.7826e− 04 2.1658e− 04 5.3215e− 05 1.3159e− 05 3.2765e− 06 8.2278e− 07

1.9769 2.0198 2.0249 2.0158 2.0083 2.0045

eNx
1 3.4573e− 03 8.7826e− 04 2.1658e− 04 5.3215e− 05 1.3159e− 05 3.2765e− 06 8.2278e− 07

ηNx
1 1.9769 2.0202 2.0252 2.0158 2.0083 2.0045

CNx
1 14.16 14.38 14.19 13.95 13.79 13.74 13.75

The solution of the system exhibits twin boundary layers in the neighborhoods of
x = 0 and x = 1. As explained above, the uniform mesh is unsuitable for resolving



2222 S. Singh, D. Kumar & H. Ramos

Table 2. Maximum pointwise errors eNx
2,ε in the solution ũ2 for Example 5.1

Nx

ε 64 128 256 512 1024 2048 4096

10−2 7.0349e− 03 1.7946e− 03 4.4247e− 04 1.0926e− 04 2.7095e− 05 6.7447e− 06 1.6824e− 06

1.9709 2.0200 2.0178 2.0117 2.0062 2.0032

10−4 7.1101e− 03 1.8146e− 03 4.4739e− 04 1.1048e− 04 2.7400e− 05 6.8205e− 06 1.7013e− 06

1.9702 2.0200 2.0177 2.0115 2.0062 2.0032

10−6 7.1109e− 03 1.8148e− 03 4.4744e− 04 1.1049e− 04 2.7403e− 05 6.8213e− 06 1.7016e− 06

1.9702 2.0200 2.0177 2.0115 2.0062 2.0032

10−8 7.1109e− 03 1.8148e− 03 4.4746e− 04 1.1048e− 04 2.7411e− 05 6.8213e− 06 1.7160e− 06

1.9702 2.0200 2.0177 2.0115 2.0062 2.0032

10−10 7.1109e− 03 1.8148e− 03 4.4746e− 04 1.1048e− 04 2.7414e− 05 6.8220e− 06 1.7169e− 06

1.9702 2.0200 2.0177 2.0115 2.0062 2.0032

eNx
2 7.1109e− 03 1.8148e− 03 4.4746e− 04 1.1048e− 05 2.7414e− 05 6.8220e− 06 1.7169e− 06

ηNx
2 1.9702 2.0200 2.0178 2.0117 2.0062 2.0032

CNx
2 29.12 29.73 29.32 28.96 28.74 28.61 28.60

these layers, and one cannot obtain parameter-uniform estimates on this mesh.
So, the numerical results for both examples are obtained using the exponentially
graded mesh (eXp mesh). Tables 1 and 2 show the parameter-uniform results for the
solutions ũ1 and ũ2 in Example 5.1, which are second-order uniformly convergent.
Similarly, for Example 5.2, we obtain the parameter-uniform estimates of order
O(N−2

x ) for ũ1, ũ2, and ũ3, respectively (refer to Tables 3, 4, and 5). We have also
computed the results for the Shishkin mesh and Bakhvalov-Shishkin (B-S) mesh
and compared the results on these meshes in Tables 6 and 7. This comparison
suggests a parameter-uniform convergence of orders O(N−2

x ), O(N−2
x ln2 Nx), and

O(N−2
x ), respectively. To support this, we have also calculated ε-uniform orders of

convergence and ε-uniform error constants (see [13] for the computation of CNx).
Furthermore, we combine the mesh plots of the considered meshes (eXp, Shishkin,

and B-S) in a single plot that shows the distribution of mesh points in the layer
regions and regular regions. Since the eXp and the B-S mesh differ by a slight
change in the choice of the mesh generating function Ψ(ρ), the mesh points coin-
cide in the plot. We have displayed the presence of boundary layers in the solution
by plotting the 2-D graphs. From Fig. 2 it is observed that the boundary layers for
ε = 10−4 are stiffer (see Figs. 2(b) and 2(d)) as compared to the boundary layers
for ε = 10−2 (see Figs. 2(a) and 2(c)) which confirms the theory that for SPBVPs
the width of the boundary layer decreases as ε decreases.

Remark 5.2. In Fig. 2, u∆;k represents the kth component of the numerical solu-
tion on the partition ∆.

6. Concluding Remarks
A numerical scheme that uses the quadratic B-spline functions on an exponentially
graded mesh has been developed for a weakly coupled system of ℓ singularly per-
turbed reaction-diffusion equations. The main reason to choose the exponentially
graded mesh is its advantage over other meshes like Shishkin and Bakhvalov-type
meshes, as it does not require prior information about the transition parameter
i.e., it is independent of the transition point(s). The estimated theoretical bounds
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Table 3. Maximum pointwise errors eNx
1,ε in the solution ũ1 for Example 5.2

Nx

ε 64 128 256 512 1024 2048 4096

10−2 1.8695e− 03 4.7469e− 04 1.1770e− 04 2.9012e− 05 7.1840e− 06 1.7866e− 06 4.4546e− 07

1.9776 2.0119 2.0204 2.0138 2.0076 2.0038

10−4 1.8675e− 03 4.7416e− 04 1.1756e− 04 2.8978e− 05 7.1757e− 06 1.7845e− 06 4.4494e− 07

1.9777 2.0120 2.0204 2.0138 2.0076 2.0038

10−6 1.8675e− 03 4.7416e− 04 1.1756e− 04 2.8978e− 05 7.1757e− 06 1.7845e− 06 4.4496e− 07

1.9776 2.0120 2.0204 2.0138 2.0076 2.0038

10−8 1.8675e− 03 4.7416e− 04 1.1756e− 04 2.8978e− 05 7.1757e− 06 1.7845e− 06 4.4496e− 07

1.9776 2.0120 2.0204 2.0138 2.0076 2.0038

10−10 1.8675e− 03 4.7416e− 04 1.1756e− 04 2.8978e− 05 7.1757e− 06 1.7845e− 06 4.4496e− 07

1.9776 2.0120 2.0204 2.0138 2.0076 2.0038

eNx
1 1.8675e− 03 4.7469e− 04 1.1770e− 04 2.9012e− 05 7.1840e− 06 1.7845e− 06 4.4496e− 06

ηNx
1 1.9776 2.0120 2.0204 2.0138 2.0076 2.0038

CNx
1 7.64 7.76 7.70 7.59 7.52 7.48 7.49

Table 4. Maximum pointwise errors eNx
2,ε in the solution ũ2 for Example 5.2

Nx

ε 64 128 256 512 1024 2048 4096

10−2 7.2661e− 04 1.9713e− 04 4.8933e− 05 1.2064e− 05 2.9843e− 06 7.4152e− 07 1.8478e− 07

1.8820 2.0103 2.0201 2.0152 2.0088 2.0047

10−4 7.2739e− 04 1.9735e− 04 4.8989e− 05 1.2078e− 05 2.9877e− 06 7.4238e− 07 1.8500e− 07

1.8820 2.0102 2.0201 2.0153 2.0088 2.0046

10−6 7.2740e− 04 1.9735e− 04 4.8989e− 05 1.2078e− 05 2.9878e− 06 7.4239e− 07 1.8500e− 07

1.8820 2.0102 2.0201 2.0153 2.0088 2.0046

10−8 7.2740e− 04 1.9735e− 04 4.8989e− 05 1.2078e− 05 2.9878e− 06 7.4239e− 07 1.8500e− 07

1.8820 2.0102 2.0201 2.0153 2.0088 2.0046

10−10 7.2740e− 04 1.9735e− 04 4.8989e− 05 1.2078e− 05 2.9878e− 06 7.4239e− 07 1.8500e− 07

1.8820 2.0102 2.0201 2.0153 2.0088 2.0046

eNx
2 7.2740e− 04 1.9735e− 04 4.8989e− 05 1.2078e− 05 2.9878e− 06 7.4239e− 07 1.8500e− 07

ηNx
2 1.9702 2.0200 2.0178 2.0117 2.0062 2.0032

CNx
2 2.97 3.23 3.21 3.16 3.13 3.11 3.10

Table 5. Maximum pointwise errors eNx
3,ε in the solution ũ3 for Example 5.2

Nx

ε 64 128 256 512 1024 2048 4096

10−2 1.4829e− 03 4.1205e− 04 1.0335e− 04 2.5429e− 05 6.2959e− 06 1.5641e− 06 3.8974e− 07

1.8475 1.9953 2.0230 2.0140 2.0091 2.0047

10−4 1.4837e− 03 4.1227e− 04 1.0340e− 04 2.5442e− 05 6.2991e− 06 1.5648e− 06 3.8993e− 07

1.8475 1.9954 2.0230 2.0140 2.0091 2.0047

10−6 1.4838e− 03 4.1227e− 04 1.0340e− 04 2.5442e− 05 6.2991e− 06 1.5648e− 06 3.8993e− 07

1.8475 1.9954 2.0230 2.0140 2.0091 2.0047

10−8 1.4837e− 03 4.1227e− 04 1.0340e− 04 2.5442e− 05 6.2991e− 06 1.5648e− 06 3.8993e− 07

1.8475 1.9954 2.0230 2.0140 2.0091 2.0047

10−10 1.4837e− 03 4.1227e− 04 1.0340e− 04 2.5442e− 05 6.2991e− 06 1.5648e− 06 3.8993e− 07

1.8475 1.9954 2.0230 2.0140 2.0091 2.0047

eNx
3 1.4837e− 03 4.1227e− 03 1.0340e− 04 2.5442e− 05 6.2991e− 06 1.5648e− 06 3.8993e− 07

ηNx
3 1.8475 1.9954 2.0230 2.0140 2.0091 2.0047

CNx
3 6.07 6.75 6.77 6.66 6.60 6.56 6.55
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Table 6. Uniform maximum pointwise errors comparison in the solution for Example 5.1

eXp mesh Shishkin mesh B-S mesh

Nx eeeNx ηηηNx CNx eeeNx ηηηNx CNx eeeNx ηηηNx CNx

128 1.814(−3) 2.019 29.73 6.114(−3) 1.622 16.41 1.784(−3) 2.006 29.23

256 4.474(−4) 2.018 29.32 1.986(−3) 1.672 16.42 4.440(−4) 2.013 29.10

512 1.104(−4) 2.010 28.96 6.232(−4) 1.706 15.86 1.100(−4) 2.008 28.84

1024 2.741(−5) 2.006 28.74 1.910(−4) 1.774 14.97 2.734(−5) 2.001 28.67

2048 6.821(−6) 1.990 28.61 5.584(−5) 1.921 13.47 6.828(−6) 1.994 28.64

4096 1.716(−6) - 28.60 1.474(−5) - 10.95 1.714(−7) - 28.61

Table 7. Uniform maximum pointwise errors comparison in the solution for Example 5.2

eXp mesh Shishkin mesh B-S mesh

Nx eeeNx ηηηNx CNx eeeNx ηηηNx CNx eeeNx ηηηNx CNx

128 4.741(−4) 2.012 7.76 1.442(−3) 1.563 2.92 4.672(−4) 2.002 7.65

256 1.175(−4) 2.020 7.70 4.878(−4) 1.672 2.92 1.166(−4) 2.014 7.64

512 2.897(−5) 2.013 7.59 1.530(−4) 1.707 2.71 2.886(−5) 2.010 7.56

1024 7.175(−6) 2.007 7.52 4.685(−5) 1.768 2.45 7.161(−6) 2.004 7.50

2048 1.784(−6) 2.003 7.48 1.375(−5) 1.891 2.12 1.785(−6) 1.994 7.48

4096 4.449(−7) - 7.49 3.706(−6) - 1.70 4.446(−7) - 7.49
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Figure 1. Mesh comparison of eXp mesh, Shishkin mesh, B-S mesh for Nx = 64

on the spline interpolation error show that the method is second-order convergent
irrespective of the value of E . The numerical results in the tables validate the the-
oretical estimates regarding the orders of convergence and the errors estimated in
Section 4.
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Figure 2. Numerical solution plots of Example 5.1 (subfigures (a) and (b)), and Example 5.2 (subfigures
(c) and (d))
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