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QUALITATIVE ANALYSIS OF A DIFFUSIVE
COVID-19 MODEL WITH NON-MONOTONE
INCIDENCE RATE*

Mengxin Chen', Ranchao Wu?' and Qiangian Zheng?

Abstract The paper is concerned with a diffusive susceptible-asymptomatic-
infected-recovered-type COVID-19 model with non-monotone incidence rate
and homogeneous zero-flux boundary conditions. First the boundedness re-
sults of the diffusive COVID-19 model are established by the technique of the
comparison principle of the parabolic equations. Then, we turn our attention
to the corresponding elliptic equations. A priori estimates of the solutions are
given, some properties of the positive steady states and nonexistence condi-
tions of the positive steady states are presented by energy estimates. It is
found that the diffusion rate of the proposed diffusive COVID-19 model could
affect the existence of the nonconstant steady states. These qualitative results
will give some theoretical insights into the diffusive COVID-19 model with
non-monotone incidence rate.

Keywords Diffusive COVID-19 model, non-monotone incidence rate, non-
constant steady states.
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1. Introduction

Various epidemic models have been proposed and investigated by many scholars to
perform the dynamics of disease transmissions and they have obtained rich dynam-
ical results. For instance, Liu et al. [10] showed that the stochastic nonautonomous
epidemic model admits at least one nontrivial positive T-periodic solution by inves-
tigating an SEIR epidemic model with distributed delay in random environments.
An and Song [1] studied a spatial susceptible-infected-susceptible (SIS) model in
heterogeneous environments with vary advective rates, and their results showed
that the unique disease-free equilibrium (DFE) is asymptotic stable when the ba-
sic reproduction number Ry < 1, and there is an endemic equilibrium as Ry > 1.
The stability and the Hopf bifurcation were performed in [4] by employing a SIR
model with the age structure of infected individuals. The asymptotic profiles of
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the endemic equilibrium for small or large mortality rate and large saturation rate
are analyzed of a SIRS reaction-diffusion model by Liu and Cui in [11]. For more
results about epidemic models, one can refer to Refs. [5,14,20,22], and so on.

Nowadays, people are suffering from COVID-19 all over the world, and it has
seriously affected people’s daily life, economic and social developments. Statistics is
a valid tool to collect various information about COVID-19. For example, count the
number of people who are infected or have recovered so that one can provide some
information to local government departments to reduce or prevent the infection
of COVID-19. Nevertheless, mathematical modeling based on coupled dynamical
equations can provide a more detailed analysis and prediction for the epidemic
transmission, compared with the statistics method. Indeed, some dynamic mod-
els and mathematical results with respect to COVID-19 have been obtained. The
stability analysis and the global bifurcation analysis of a COVID-19 transmission
epidemiological model have been studied in [6]. The stochastic basic reproduc-
tion number, the dynamic properties around the disease-free equilibrium, and the
endemic equilibrium of a Levy noise-driven susceptible-exposed-infected-recovered
model to study the outbreak of COVID-19 are analyzed in [9]. A mathematical
model for COVID-19 which incorporates multiple transmission pathways has been
proposed by Yang and Wang [21], and their results indicated that the environmen-
tal reservoirs have an important influence on the transmission and spread of the
coronavirus. The basic reproduction number, phase portraits, and bifurcation di-
agrams of a fractional-order Susceptible-Exposed-Infected-Hospitalized-Recovered
(SEIHR) model for COVID-19 were presented in [18]. Early warning indicators
were employed to predict the bifurcation points in the system and six cases of the
subgroups interactions were studied in [16] of a COVID-19 model. For more models
and results about COVID-19, one can refer to [3,15,17,19] and reference therein.

Although there are a lot of mathematical models about COVID-19, it is found
that most of the models are governed by coupled ordinary differential equations. As
it is well known, whether they are infected, recovering, or susceptible, the random
movements of individuals from different compartments in their surroundings always
occur. This implies introducing the diffusion in a COVID-19 model may be more
reasonable to describe the transmission of disease. Very recently, Ahmed et al. [2]
proposed a diffusive COVID-19 model as follows

oS BSI
E—dSAS—ﬂ_m_MS7 xEQ,t>0,
0A BSIT
a_dAAA_1+aIQ_(U+5+E+u)A’ e, t>0,
I

%—d;AI:oA—(v+d+u)I, e, t>0,
OR (1.1)
E—dRAszf—&—eA—uR, e, t>0,
oS 0A 0 OR

—_——— = — = — = >
ov Ov Ov Ov ’ veo, 120,
S(x,0) = Sp(x) >0, A(xz,0)=Ag(x) >0, z€Q
I(x,O):Io(!E)ZO, R(x,O):RO(x)ZO, x € Q,

where S = S(x,t),A = A(z,t),I = I(z,t) and R = R(z,t) are the susceptible,
the asymptomatic, the infected, and the recovered or quarantine humans at spatial
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position z and time ¢, respectively. Parameter p is the natural birth or death rate,
constant d is the death rate of the infected since virus infection, the immunity
rate of the asymptomatic is described by €, constant « is the bilinear incidence
rate constant, constant o denotes the rate that the asymptomatic move to the
infected, parameter § describes the mortality rate of the asymptomatic induced by
the virus, the rate of vaccination, quarantine or treatment is defined by -, and
denotes the rate that the susceptible move to the asymptomatic, one can also find
these notations in Ref. [2]. Moreover, A is the Laplacian operator in a bounded
spatial domain Q@ C RN (N > 1) with the smooth boundary 92, v is the outward
unit normal vector along the boundary 0f), dg,da,d; and dgr are the diffusion
rates of the susceptible, the asymptomatic, the infected, and the recovered, or
quarantine humans, respectively. We assume that all parameters in model (1.1) are
positive constant, and the diffusion model with the non-negative initial conditions
So(z) > 0, Ap(z) > 0,1p(z) > 0, Ro(x) > 0 for any = € Q. The term % is the
non-monotone incidence rate of the COVID-19 outbreak. Also, we plot a scheme
diagram in Fig. 1 to better understand the scheme of establishing the model (1.1)
as diffusion is disappeared.

Figure 1. Scheme diagram of the COVID-19 model (1.1) as diffusion is disappeared.

For the COVID-19 model (1.1), the authors in [2] investigated the existence
and the stability of the disease-free equilibrium and the endemic equilibrium when
diffusion is absent. Precisely, the endemic equilibrium exists if Ry > 1, and its
asymptotic stability conditions can be yielded by employing the Routh-Hurwitz
argument. The disease-free equilibrium is stable when y > 0,0+6+€e¢+2u+d—+~v > 0
and Ro < 1 hold, where Ry represents the basic reproduction number and takes
the form

of
(c+d+e+p)(v+d+p)

Note that only numerical experiments are performed about the diffusive COVID-19
model (1.1) in [2]. Therefore, we will give some qualitative analysis results about
the diffusive COVID-19 model (1.1) with the homogeneous zero-flux boundary con-
ditions, more precisely, the boundedness, including the uniform boundedness of the

Ro =
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parabolic equation (1.1), and the properties, the nonexistence of the nonconstant
steady states of the corresponding elliptic equations, respectively. One believes that
these obtained qualitative analysis results provides the theoretical insights into the
COVID-19 model (1.1) with the non-monotone incidence rate.

The outline of this paper is designed as follows. In Sect. 2, the boundedness
results of solutions to diffusive COVID-19 model (1.1) are given. In Sect. 3, a priori
estimates, the properties and the nonexistence of the non-constant steady states of
the elliptic equation are presented. Some conclusions are drawn in Sect. 4.

2. Boundedness

In this section, we want to establish the boundedness results of the solution (S, A, I, R)
to the diffusive COVID-19 model (1.1).

Theorem 2.1. Suppose that ds = da = d; = dg is valid, then for any solution
(S,A,I,R) of system (1.1), it satisfies
S+ A+ I+ R <max{l,So(x)+ Ao(z) + Io(z) + Ro(z)}, (2.1)

for any x € Q.

Proof. Let ds =dy =d; =dgr = D and define W =S+ A+ 1+ R. In view of
system (1.1), one yields

ow
W—DAWZM—NS—(u—|—5)A—(d—|—,u)I—uR

Sp—pS—pA—pl—pR
=p—pW.

Therefore, it is easy to check that W and
max {1, So(x) + Ao(z) + Ip(z) + Ro(x)},

are lower and upper solutions to the following problem

%—DAwl(%t):u—,uwl(x,t), x e, t>0,
du _y, zedn, t>0,
On

’Ll)l(.’E, 0) = S()(i) + A()((E) + I(](LC) + R(](i) > 0, r € Q.
Thereby the comparison principle of parabolic equations shows that
S+A+IT+R=W <max{1,So(z) + Ao(x) + Ip(z) + Ro(x)},

for € Q,t > 0. This finishes the proof. O

Theorem 2.2. Suppose that ds,da,d;,dr > 0, then for any solution (S, A,I, R)
of system (1.1), it holds

limsup max S(-,¢t) < 1,
t—oo x€eN
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. B
1 . A,t < ’
map e A0 S 5 e

limsupmax I(-,t) < i ,
t—oo z€eN 2Va(c+d+e+pu)(y+d+p)

d
limsup max R(-, 1) < oS+ eBly+d+p) .
t—o0  zeQ 2pv/a(o +0+ e+ p)(y+d+p)

Proof. From (1.1), we can find that the S—equation satisfies

%—f—dsASgu—uS, re, t>0,
@zo, z eI, t>0,
v

S(x,0) = Sp(z) >0, x € Q,

By employing the comparison principle, we infer that there are g > 0 and 77 > 0
such that S(z,t) < 1+ ¢ for Vo € Q and t > T;. Then from the A—equation of
(1.1), one obtains

DA B(1+e1)

7 < EA- Tl

o daAA < a (c+0+e+pnA, z€Q,t>0,
24, reon, t>T,
ov

A(z,0) = Ap(x) > 0, x e

We can obtain A(x,t) < % + ey for Vo € Q, e > 0 and ¢t > T, due to

the comparison principle. Now using the I—equation of (1.1), we get

ol oB(1+e1)+2e00/a(o+0+€e+pu)
——d;AI < - d+p)l, €N, t>0,
ot 0= 2y/a(o+0+e+p) (rdrwl, @

I
8—20, x €00, t>Ts,
ov
I(x,0) = Iy(xz) > 0, x e Q.

As such, the comparison principle again shows that
(1) < oB(l4¢e1)+ 2630 /alc+ 6+ e+ p) .

T Yoo +d+e+p)(y+d+p)

for Vo € Q, e3 > 0 and t > T3. Hereafter, from R—equation of (1.1) and the
comparison principle, we deduce

OR oB(1 +¢e1) +2e00a(o+ 6+ e+ p) )

— —drAR<

ot ¢ —7< 2v/a(o+6+e+pu)(y+d+p) =3

ﬁ(l—‘rEl)

+6(2\/&(a+5+e+u)+52 =

or _

ov

R(z,0) = Ro(z) > 0,
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for t > T3. We can obtain

R(.’L‘,t) S% (06(1+61)+2€20\/a(0+5+6+u) 3)

2ya(c+0+e+p)(y+d+p)

€

L€ ﬁ(l-i-&'l)
1

(2\/&(04—(5—&-64-#

for Vo € Q and g4 > 0,t > Ty. Taking T = max{T}, T, T3, Ty} and noting that
€1,€2,€3,E4 are arbitrary constants, the proof is completed. O

)+€2> + &4

Theorem 2.3. Suppose that dg,da,d;,dr > 0, then the following inequalities are
valid for any solution (S, A, I, R) of system (1.1).
(i) There exists a positive constant c¢; depending on the initial condition such

that (S, A, I, R) fulfills

[SCs )z ) + IAC D)o @) + 1G5 Dl Lo @) + [1R( ) |0y < 1, VE 2(0- |
2.2

(ii) There exists a positive constant co independent of the initial condition such
that solution (S, A, I, R) satisfies

ISCs Dl (@) + 1AC Dl @) + [ )l @) + R )l @) < 2, VE2 (T |
2.3

for some large T' > 0.
Proof. To check that the validity of (2.2) and (2.3), we first verify that

1SC ) k) + I1AC O k) + G D)k + 1RGO Lr) < e, VE>0, (2.4)

is true. Here the basic technique to deduce (2.4) is mathematical induction. Then
for k = 1 and system (1.1), one has

A S+ A+ 1+ R)dx
dt Jo

st/ASdﬂ?—‘rdA/AAdx—l—d]/AIdx—FdR ARdx
Q Q Q Q

+/udm—/ude—/(u+6)Adx—/(d+u)Idx—/uRdx
Q Q Q Q Q

:/udz—/ude—/(u+5)Adx—/(d—l—,u)[dx—/uRd:c
Q Q o Q Q
§M|Q\fu/(S+A+[+R)dx.

Q

It follows that

/(S+A+I+R)dx§e*”t/ (So(2)+ Ao (2)+ Io () + Ro(x))dz-+|2) (1 — e 1),
Q Q

for Vo € Q, t > 0. It implies that

limsup/ (S+A+1+R)dzx <|Q], Vore, (2.5)
Q

t—o00
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namely, (2.4) is valid as £k = 1. In what follows, we assume that (2.4) is true for
k — 1. Multiplying the S-equation of system (1.1) by S*~!, one has

/Skdx—i—d k-1 /Sk 2vsS|? dx—/ uSkt — pS*1 — uS*| da
kdt s 0 1+ al? '
(2.6)

Multiplying the A-equation of system (1.1) by A¥~1, we have

1d BSTAFT
Afdz+da(k—1) [ A2 A2d:/77 5 Ak | da.
poi | Atderante=n) [ 4 vARde= [ [P (o rs et da
(2.7)
By the same manner, multiplying the I-equation of system (1.1) by I*~1, we get
1d

ff/ I’“dx+d1(k—1)/ Ik*2|v1|2dz:/ [cAI" ' — (v + d+ p)I"] dx. (2.8)

Similarly, multiplying the R-equation of system (1.1) by RF~!, we get

;C‘Zt RFdx + dr(k — 1)/ RF2|VR|?dx = / [YIR*' 4+ eARF! — uRF] da.
Q Q
(2.9)

On the basis of (2.6)-(2.9), one yields

1d

k dt

1
Skda:—irds(k )/Sk 2|V S|2dx +kjt AFdx

k—2
+da (k- )/A IV APdz +kdt

L1d
k dt

ST
= Sk dx — Skdx + b
M/Q K Q ol+al?

I*dz +dy(k —1) / I"=2|VI|*dx
Q

RFdz +dp(k —1) / RF2|VR|?dx
Q Q

(Ak—l _ Sk_l)dl'

—(0+5+e+u)/Akdx—Fa/Alkfldx—(’y—kd—l—u)/lkdx
Q Q Q

—|—V/IRk71d$+e/ARk71dx—u/dex
Q Q Q

Su/Sk_ldac—u/Skd:n—l—L/SAk_ldx—(U—&—(S—l—e—i—,u)/Akdx
Q Q 2y Jq Q

Alk’ldm—(7+d+u)/ Ikdx+7/ IR*Ydx
Q

Q Q

—|—6/ ARkildz—u/ RFdx
Q Q

< k=17 _ k k AF
_,u/QS dx M/QS d$+2f (187 + C(e1)A%)dz
—(0+5+e+u)/Akdx+a/(62Ak+0(52)1k)da:—(’y+d+u)/Ikd:c
Q Q Q

Jrv/(531k+0(e3)Rk)da:+e/(54Ak+0(64)Rk)dx—u/ Rdz
Q Q

:u/QSk_ldx— (u—i&%)/é‘kda@ (a+5+e+u—60\;&) —0’62—684)
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X / ARdz — (y +d + p — yes 700(62))/ I*dx
Q Q
(4= 1Cler) — Cle)) [ Rhdo
Q
Su/ Stz — Cy / (8% + AF + 1% + R¥)da
Q Q

Where one employs the well-known e-Young inequality ab < ea? + C(e)b? with
q= 1 ,p = k, and denote by

— 0&9 — €&4,

Cy ::kmin{u—%m—&—é—i—e—i—u— 520\(/%1)

v+d+p—yes —oC(e2)pn — vCles) — eClea)}
for some €1,¢€9,€3,4,C(e1),C(e2), C(e3) and C(e4) such that p— 25\1/% >0,04+d+
e+pu— ﬁg\(;l) —oeg—eey > 0,7+d+pu—ves—oC(e2) > 0and p—vyC(ez)—eC(g4) > 0
are valid. It is noticed that (2.4) is true for k — 1. This means there is a positive
constant, say My, fulfilling fQ Sk=ldz < My. Therefore,

d

p (Sk + AF 4 IF + RMYdx < My — Cy / (S* + A% + 1" + R¥)dx,

namely

/ (8% + A% 4 1% + RF)dx <e~ ot / (SE(x) + Ak (z) + I} (x) + RE(2))dx
Q Q

MO —Cot
—((1 - 0 2.1
1=, (2.10)

for Vo € Q, t > 0. In addition, for some large T' > 0, (2.10) gives

M, _
limsup/(Sk—l—Ak—Flk—i—Rk)de—0, YV € €.
t—o0 Q CO

The proof is completed. O

3. Non-constant steady states

In this section, we will give some results about the non-constant steady states to
the following spatial COVID-19 model

—dgAS(z) = —%—uS(m), x €1,
—daAA(z) = 1—}—(04)12(( 2) —(o+0+e+pAz), e,
—diAI(z) = cA(z) — (v +d + p)I(z), z €Q, (8:-1)
— drAR(z) = vI(z) + €A(x) — pR(z), x €,
0S(x) 0A(x) 0l(x) OR(x)
oo v v v =0, v € o
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3.1. A priori estimates

Lemma 3.1 (Maximum Principle, [7,12] ). Suppose that F(z,w(z)) € C(2 x R).
(i) If w(z) € C?(Q) N CH(Q) satisfies

ow(x

\_/

IN

Aw(z) + F(z,w(x)) 20, xe€Q,
{ 0, x € 08,
and w(xg) = max, qw(x), then F(xg,w(xo)) > 0.

(i) If w(z) € 02 () NCYHQ) satisfies

Aw(z) +F:vw( ) <0, ze€Q,
80.)

x € 09,

and w(wg) = min,gw(z), then F(xo,w(xo)) < 0.

Lemma 3.2 (Harnack Inequality, [8,13]). Suppose that w(z) € C*(Q) N CH(Q) be
a positive solution of

Ow(x)

ov

Aw(z) + c(z)w(x) =0, z€Q,
=0, x € 01,

and satisfying no-flux boundary conditions and c¢(x) € C(2) N L (). Then there
is a positive constant ¢, = c.(||c(r)]|o0, Q) fulfilling max, g w(r) < ¢, min, g w(x).

Theorem 3.1 (A priori estimates). Suppose that dg,da,dr,dr > 0 are valid, then
for any solution (S(x), A(x),I(x), R(x)) of system (3.1), one has

0<S() <1
0<A(>—2¢(a+i+e+m

0<I(z) < 2\f(7+d+:)ﬁ(a+5+e+u)
o= g

Moreover, there is a positive constant 60 depending on u,3,0,€,0,7v,a and 2 such
that every positive solution (S(x), A(z), I(z), R(x)) of system (3.1) satisfies

S(x) > Co, Alx) > Co, I(x)>Co, R(x)>Co
Proof. Suppose that (S(z), A(z), I(x), R(x)) is a positive solution of system (3.1),
and denote by

S(z1) = max S(z), A(y1) = max A(z),
€ e

I(21) = max I(z), Rlq:) = max R(x).
z€eQ e
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By using Lemma 3.1 and the S-equation of (3.1), we have

~ BS(@1)I(x1)

_ < -
S 1+ al?(z) pS(x1) < p— pS(z1),

it follows that S(z1) < 1. Next due to Lemma 3.1 and the A-equation of (3.1), one
has

0 < BS(y1)I(y1)

B
- ] A < — - 0 A
S T3 al(m) (c+d+e+p) (y1)_2\/a (c+d6+e+ p)Aly),
which leads to A(yl) S m Hence for z = 21, Lemma 3.1 and the

I-equation of (3.1) give that

of
0<0A(z1) — (v +d+p)l(z) < Salo+otetn) (v +d+ p)(z1),
and thus we have I(z;) < 2\/@(7+d+2§3(0+6+6+u). For the R-equation of (3.1), one

obtains

0 <vI(q1) + €Alq1) — pR(q1)
< Yo B n B
“2va(y+d4+p)(o+dt+e+p)  2yValc+d+te+p

) — nR(q1),

B . N 3 yoB+eB(v+d+p)
then a simple computation indicates R(q;) < TN ICRE T e v

Now we invetigate the lower bounds of (S(z), A(x),I(x), R(z)). Suppose that
the lower bounds of the positive solution (S(z), A(z), I(x), R(x)) in Theorem 3.1 is
false. Then there is a sequence {(ds,j,da,j,d1,j,dR,5)}521 Withds j,da j,d1 j,dR; >
¢ and a positive solution (S;(z), A;(z), I;(x), R;j(x)) of system (3.1) with respect
to (ds,da,dr,dr) = (ds,j,da,j,dr;,dr,;) satisfying (S;(x), A;(z), I;(x), Rj(z)) —
(S(x), A(z),I(z), R(z)) in [C?(Q)]* as j — oo and

min S;(z) - 0 or minA;(x) - 0or minl;(x) =0
9 ) Q

or minR;(xz) =0 as j— oo, (3.2)
Q

and the positive solution (S;(z), A;(z), I;(z), R;(z)) fulfills

o BSi(x) () ,
—ds;ASj(x) = p — Zliailfj(x) — pS;(x), x € Q,
—dA’jAAj(x):M_(0+5+6+M)Aj(x), x € 9,
J 3.3
— digAlL(@) = o Aj(w) — (7 -+ d+ (o), ven, Y
—dgr,jARj(z) = vIj(z) + €Aj(z) — pR; (), reQ,
08;(w) _ 04;(x) _ OL(w) _ ORy(x) _ o

ov ov ov ov
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Then we obtain

8,(@)1; () )
/Q (“ T Tral(n) ﬂ%(x)) d =0,

/(W_(a+a+e+m,4j<x>>dx:o,
Q

1+ al?(z) (3.4)
| (0ai@) - -+ d+ @) de =0,
| (@) + es(@) = Ry @) do =
It is noticed that if (3.2) is true, then Lemma 3.2 shows
max S;(xz) — 0 or maxA;(xz) = 0or maxI;(xz)—0
) ) Q
or maxR;(z) -0 as j— oo. (3.5)
Q

Therefore, we infer that S(x) =0 or A(x) =0 or I(z) =0 or R(z) =0.

(i) If S(z) = 0. Due to S;(z) = S(x) as j — 0o, then we have %)JQIZS) —(oc+

§+e+p)Aj(x) <0 for Vo € Q and j > 1. This implies

,dA,j/QAAj(x)dx = /Q <m —(c+d+e+ u)Aj(m)> dr <0,

which is a contradiction to A;(z)-equation of (3.4).
(ii) If A(z) = 0. Since A;(z) — A(z) as j — oo, then one has 0 A;(z) — (y+d+
w)I;(xz) <0 for Vo € Q and j > 1. This gives

—dr /Q AT(a)d = L (0A;(x) — (v + d + ) () d < 0,

which is a contradiction to I;(z)-equation of (3.4).

(iii) If I(z) = 0. Since I;(x) — I(z) as j — oo, then one obtains %};Ziﬁﬁ) —

o+6+e+p)A;(x) <0 for Vo € Q and j > 1. This implies
M)A

_dA,j/QAAj(x)dx:/Q (m—(a—i—é—l—e—i—u)AJ(m)) dr <0,

which is a contradiction to A;(x)-equation of (3.4).

(iv) If R(x) = 0. Since R;(z) — R(z) as j — oo, then we get v[;(z) +eAj(z) —
uR;j(x) > 0 for Yz €  and j > 1. It follows that

—dp,j /Q ARj(z)dx = /Q('ylj () + €Aj(z) — pR;j(z)dz > 0,

which is a contradiction to R;(x)-equation of (3.4). Thereby, the lower bounds of
the solution S(z), A(z),I(x) and R(z) exist. This ends the proof. O
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3.2. Some properties of the positive steady states

Let 0=Xg <A1 <A <+ <\ < -+ and lim; oo A; = 00, be the complete set of
eigenvalues of the operator —A with no-flux boundary conditions in €, and

S = |Q|/ x)dz, A_|Q|/ x, :SIN/QI(:c)d:c, R:SIN/QR(x)dm

be their averages over domain ). Then we have

/Q<S—§)dx=o, /Q(A—A)dx:o, /Q(I—I_)dxzo, /Q(R—R)dx:

Denote by ¢ = S(x) — S,1 = A(z) — A, o = I(x) — I and © = R(x) — R. This gives
the fact that [, ¢de =0, [, ¥dx =0, [, pdx =0 and [, Odx = 0 are valid.
Then we deliberate a result as follows.

Theorem 3.2. Suppose that ds,da,d;,dr > 0, then for (S(z), A(z), I(x), R(x)) of
system (3.1), we have

p2Q(1 4+ A
() [ o+ [ (voan < R,

(i0) /w2d:v+/ Vode < FIEUALEX)

T a2 N
a2B2Q(1+ \p)
i) [ Gan [ o 7|
(Z“)/Q v+ [ IVelide < dofo + 8 + €+ p)2diNy’
+ By +d+ P+ 1)[9|
0% +/ vepd: < 7 ,
(w)/ * VOldr < 775 a(y+d+ p)2(c + 6 + e+ p)2dE A2

where \1 is the first positive eigenvalue of —A on Q) about zero-flux boundary con-
ditions.

Proof. Multiplying by ¢ the S-equation of (3.1) and using Cauchy-Schwarz in-
equality, one obtains

ds [ 9o = [ o (- 200D - s ) da
<M/ |¢ldx

<u/19] (/Q |¢2dw>;

Multiplying by ¢ the A-equation of (3.1) and using Cauchy-Schwarz inequality again

dA/ Vi[2da / (fi(a}z((?) —(U+6+€+u)A(as)) do

d
<3 | ola

gﬁ;/\/'? (/Q |1/)2drc>é
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In the same fashion to the I, R-equations of (3.1), we yield

@i [ 19ePde = [ oo~ (r+d+ i) da

§2\F(a+5+e+u /"”dx
7bI (L1 dx) |

“2ya(o+0+e+p)

and

dR/Q |VO|?dx :/QG) (vI(z) + eA(x) — pR(z)) dz

yoB 4+ eB(y+d+ p)
2,uf(’y+d+u)(o+5+e+,u /|®‘d:€
oB+ By +d+ w19
2uf(v+d+u)(o+5+e+u (/ ©l dx)

From the Poincaré’s inequality

1 1
PPdr < — / Vo[ da, / Vi < — | |Vo|de,
Q )\1 Q Q )\1 Q

1 1
/goZda: < —/ |Vo|?da, /@2dx < — [ |VO|idz,
Q A1 Jo Q A Ja
one yields

) 2 \? Q| 2 \?
ds/ﬂw dz sﬂ%ﬁ(/gw dsc) Su\/Al(/QIWI dm) ,

2 _BVI9 2 \? 1] 2 \?
da [ 1vorde <52 ( vl dx) s2f <Q|w| dx) ,

4 [ Vefar < ] (/ ¢l dx)

2ya(c+d+e+p)

op ) (/ ) )é
< — V|*d ,
“2vVa(c+d+e+ )\ M Ql olde

and

o8+ eB(y +d+ p)]V/19]
dR/W@‘d —2uf(v+d+u>(o+6+e+u (/ ©l dw)

yoB +eB(y+d+ p) 2
<2uf(7+d+u)(0+5+e+u )\ A (/ IVerd )

Some direct calculations give that

JRZRE

24y < D19
/'W| = dad? )’
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)
\Y% 2d.T < ’
/Q| plhde < da(o + 0 + e+ p)2diN

[yoB + €B(y +d + w)]?|Q
VoO|“dz < :
/Q| ‘ T = 4M2a(’7+d+ﬂ)2(0+5+6+ﬂ)2d2RA1

By employing the Poincaré’s inequality, one deduces

Q A
R e

210 A
[ vrda [ wopas < ZHHEE,

o232 Ql(l—f—)q)
/ vt |V¢‘ S dofo + 8 + €+ p)2diNe’

+eB(y+d+ p)P(14+ X)|Q]
0%d / VO|2dx byos .
/ v | IVerd *4ua(7+d+u) (048 + e+ p)2dipA?

The proof is completed. O
Theorem 3.3. Suppose thatdg,da,dr,dr > 0,0 < 48 < 3A\1da and the assumption
2 n2

a’f
I Fdi )2 (01 o tetn)? < 1, one has

d
16a(3dar1 — 48)(y +d + p)%(o + 6§ + €+M>6dA/\1 / |V¢| €L - 432
[638* +40B2(y+d+ p)?(c + 6+ €+ p)? / Vo 2da = 3d2N2

and

16c(3daN1 —4B) (v + d+ p)%(0 + 6 + € + p)6dar}
(L + A)[03B% + 4082(y + d + )2 (0 + 6 + € + )22

2 2
</Q<|v¢> O
GRS
Q

where \1 is the first positive eigenvalue of —A on Q) about zero-flux boundary con-
ditions.

Proof. Multiplying the S-equation of (3.1) by ¢, we have

85 (@)1(z)
I(x)

S
:—ds/ \V¢|2dx+u/¢dx—ﬁ/ 1_532]2(/bdar;—;A/QS(xﬁbclac

——as [ |vopas—p [ 2 Hap i [ s

_ 1—|—a12 )2
__ds/‘v‘b' dm_ﬁ/ 1+0J2 @)+ al2 (@)

S(1 - all(z))¢y
- ﬁ/ﬂ (1+al?(2))(1 + al*(z))

de —p | ¢*dx,
Q
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it follows that

l—aII )
5/ 1+a12 N+ al?(z ))dm

z)(1+ al?)p?
:—dg/|V¢| dr — 6/ 1+a12 ))(?—f—aI? dr — /¢2dx

202

Obviously, / ¢Ydx < 0 is true since 4(w+d+u)2(§+5+e+u)2 < 1. Thereby,

)1+ al?)¢?
ds/|V¢\ dm——ﬁ/ 1+a12(( ))(f‘ﬂm de — /(bdx

S(1— all(z))ew
B/ 1+a12 N+ al2(z) ™"

<3 /Q I$lde,

namely

2
ds/ﬂ|v¢| da sz&/ﬁ\wuw

dS>\1 2 52 / 2
<
<= /g)¢dz+dsz\1 Yodx

ds )
<=
= /Q|V¢| dz + Az/\wm da.

As a result, one has

2
2 [vopar < 2 [ wufd.
dsAT Jao

On the other hand, multiplying the A-equation of (3.1) by ), one yields

_ BS@I) s vde
0/Q<dAAA(:c)+1+aI2(I) (040 +e+ pA( ))zﬁd

_ 9 S()I(z) ST
= dA/Q\VM dx+ﬂ/ﬂ<1+a12(x) 1+af2)¢dz

—(a—i—é—i—e—&—u)/z[ﬂdw

2)(1 4 al?)py)
< dA/\VM dx+ﬁ/ 1+al2( SO TR

1—aH )02
+5/ 1—|—0J2 N+ al2(@)

It then follows that

2)(1 + al?)énp
dA/'W' d ﬂ/ 1+a1< N+ al2 @)™

S(1— oll(z))y?
M ATpraere ))(1+a1:2(x))dx

(3.6)
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0354+4062(7+d+u) (U+6—|—e+,u

03B + 40 B2 (y + d + p)? (J+(5+e+,u /|¢¢|dx
8f7+d+u) (c4+0+e+p)3

4 | v

Consequently, if 0 < 48 < 3A\1d4 is valid, we have
dad —
dad B / V|2 dz
A1 Q

3Bt +4oB2 (v +d+ p) (o + 5+ e+ p)? /\¢w|dx
8Va(y+d+p)3(oc+d+e+p)3

daA 2 [038* +40B%(y + d + p)? (0 + 6 + €+ p)?] /

< d d

-4 /w v 64a(y+d+ u)8(c + 6+ e+ p)sdar 91 de

da 2, (0B +40B%(y +d+ (o + 6 + e+ p)?P / 2
- /wa| de + 64c(y+d+ p)8(0 + 6 + € + p)0dar? Vol dz.

Henceforth

3dA>\1 46/ _ 0P8 +40B2 (v +d+p)* (0 +0+etp)?) /
—_ dx d
[VipPPde < 64a(’y+d+u) (0+ 8+ e+ p)bdar? Vol dz.

3.7)
From (3.6) and (3.7), one obtains

6 6 /‘V¢|2d$ 2
16(3dari = 48) (v +d+ p)%(0 + 0+ e+ p)°dah _ Jo < 4P
< N BVE
(0384 4+ 40p%(y + d + p)?(0 + 6 + € + p)?]? / IV 2da 3dgAy
Q

Now due to the Poincaré’s inequality, we have

2 2 1"')‘1 2 2 2 1"‘)‘1 2
[vor +6tyae < 2 [ lofa, [ (V0P +vde < 2 [ Vi
We thus obtain
/ (V6 + ¢*)de
{1 <
/ (VeP +42)de A / (VP + 42)dz
Q Q

(1+A1)/QIV¢I2dx (1+A1>/§2V¢2d1<452(1+m

— 2 3 bl
M [ [VoPda e
Q

<

and

/ (Vo] + ¢%)da Alf (Vo] + ¢*)de M/ Vol dx
(9] > (9] QO

/(\V¢|2+w2)dx _(1+/\1)/ IV [2da (1+)\1)/ V| 2dz
Q Q Q

16c(3dadi —4B) (v + d 4+ p)%(0 + 6 + € + p)0dar
T4+ A)[e3Bt+ 40P (v +d+ p)2 (0 + 0 + e+ p)?)?

The proof is finished. O

v
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3.3. Nonexistence of the positive steady states

Theorem 3.4. Suppose that o > 2(d+ p) +v,e+v > 2u and 8 > p+ 6 are valid,
then system (3.1) has no nonconstant steady state as dg > d§,da > d%,d;r > d}
and dr > df, where

d*_l<02/D’3—8u(v+d+u)2(0+5+e+u)2+ B >
SR 8(y+d+ (0 + 6 + €+ p)? 4/

d*:1< a’B? +ﬁ(1+4f) 4y/o(6 + p) 6+0)
AT N \8(y+d+ p)2(0 40+ e+ p)? 4 /a 2 )7
g I 2dtp) —y

I 2 )

. €+ —2p

dp = SV

and A1 is the first positive eigenvalue of —A on Q with respect to no-fluxz boundary
conditions.

Proof. Multiplying the S-equation of (3.1) by ¢, we have

ds [ oo = [ (- PO < usia) ) oas
- [ (- ”(;I; I(()) _ _S@)) o
[+ )

— [ - sy oas - [ PO g,

o l+al?(z)
=51 + 5o,
where
_ BS(x)I(z)
S1 = /Q (1 —pS(x)) gpdz, Sz =— o m@bdﬂ?-

Then we can obtain

Sy — /Q (1 — pS) pdx = —M/Q ¢’ dr,

and

S2+ Qﬂ _5/ <1+OJ2 N 1%2%8)%“

B(allS — S(x))év / BI(1 + aIl)
0 (1+al2)(1+ al?) 0 L+ al2)(1+ al?)

d*dx

253
< 2d
_8(7+d+u)2(0+6+6+u)2/9¢ ’
O’Qﬁg
_|_
8(y+d+p)(oc+ 3+ e+ u)?

P2 d.
Q
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Hence

2103 2 2

B°—8u(y+d+p)(c+d+e+p) 2
ds | [Vol2dz <Z d
S/Q‘ #'dz < 8(y+d+ p)(oc+8+ e+ u)? ¢ v

263
+8(7+d+u) (0 +0+e€+p)? /wdx (38)
Multiplying the A-equation of (3.1) by v, we have
dA/Q|V1/;|2dx 7/ (1 +(a)]2((?) (o +5+e+u)A(z)> bdx
—/ (1 +(ai'2((fr)) (c+d+e+p)A (x)) dx

S
—/Q(liap (c+d+e+p)A )1/16[33

_ [ BS@)I(x)
-/ mqu /Q(o + 0+ e+ p)A(x)pd
=A; + A,
where
_ [ BS@)I(x) —
ti= | Trapgbde Ax=- [ (o8t et mawds

Henceforth, one yields

ﬁSI / ST
— d
A - o l+ Trapvde =, 1+a[2 1+ al? Ydo

BI(x)py BS(1 —al(x)I)
W1+ al (@) +/Q (1t al?)(1+al?)

szga/gqswmxw/w?dx
s%/ﬂ&dm ”4\F /vﬁ

e

and

A2+/(U+(5+e+u)/_hpdx:—(a+5+e+u)/w2dx.
Q Q

Therefore, one can obtain

5 B 5 B +4y/a) —4y/a(oc+ 5+ e+ p) 2
dA/Q‘Vdegm/Q(bdf"‘ 1/a /¢

In what follows, multiplying the I-equation of (3.1) by ¢, we get

dr / Vol = / [0 A(x) — (v + d+ w)I(z)]pde
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:0/ oYdr — / (v +d + p)p’da
Q Q
-2 d
2 Jo 2 Q
Also, multiplying the R-equation of (3.1) by O gives

d]:g/Q |VO|?dx :/QhI(x) + cA(z) — uR(x)]|Odx

:/7@@@3—}—/ ezb@dx—/,u@ﬂdx
2
_2/¢dx+ / 2z +€+7 “/ezda;.

On the basis of (3.8)-(3.11), one yields
ds/ \V¢|2da:+dA/ |V1/)\2dx+d1/ |w|2daz+d3/ |VO|%dx
) Q Q Q

0?5 —8u(y+d+p(o+otetn)? B :
S( (Y +d+p)2 (0 + 0+ e+ p)? +4f>/¢dx

(3.10)

(3.11)

. 02 LEENGEVENTINELY
’y+d+u) (c+0+e+p)? 4/a
—2(d+p)—~ e+ —2u
/1/}2d + 5 /Qgde:c—i-#/Q@de

1 (P =8uv+d+pPloc+dtetpn)? B )/ 2
S/\ ( 8(y+d+ u)?(c+d+e+p)? +4\/a Q|V¢| dx

+1( o?p3 B(1+4y/a) — 4/l + p) N e+a)
M A\8(y+d+p)2(c+0+e+p)? 4/« 2
></ |w|2da:+"_2(d+”)_7/ |V@|2dm+w/ IVO)|2dz.
Q 2)1 Q 2)1 Q

Let

d*zl(0263—8u(7+d+u)2(0+5+6+u)2 B )

Y 8(y +d+ p)2(0 + 6 + e+ p)? 4/

7 = 1( a’p® p+4va) —4val@+p) e+0>
AT N \8(y +d+p)2(0 + 0+ e+ p)? 4\/a 2 )’
poo2dtw) -y ety -2

! 2\, PR 22

Consequently, it is easy to check that if dg > d§,da > d%,d; > dj and dr > dy
are valid, one obtains V¢ = V¢ = Vi = VO = 0. This implies the solution
(S(x), A(x), I(z), R(z)) must be a constant steady state of system (3.1). This ends

the proof.

4. Conclusions

O

In this present paper, we deal with a diffusive COVID-19 model with the non-
monotone incidence rate and the homogeneous zero-flux boundary conditions. By
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using the technique of the comparison principle of the parabolic equations, the
boundedness of the diffusive COVID-19 model is first established. Especially, the
conclusions show that the positive solution of the diffusive COVID-19 model is uni-
formly bounded in L*°(2). Next, a priori estimates, the properties of the positive
steady states, and nonexistence of the positive steady states to the corresponding
elliptic equations are presented by the maximum principle and some energy esti-
mates, respectively. An interesting finding is that the diffusion rates dg,d4,d;
and dg of the susceptible, the asymptomatic, the infected, and the recovered or
quarantine humans can lead to the nonexistence of the non-constant steady states.
These qualitative results enhance the theoretical research of the diffusive COVID-19
model. More dynamical results, for example, bifurcations, about such a diffusive
COVID-19 model with the non-monotone incidence rate will be considered.
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