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NON-SPURIOUS SOLUTIONS OF DISCRETE
MIXED BOUNDARY VALUE PROBLEM WITH

SINGULAR ϕ-LAPLACIAN∗

Man Xu1,†, Ruyun Ma2 and Ting Wang2

Abstract In this paper, we consider the differential and difference problems
associated with the discrete approximation of classical radial solutions of the
nonlinear Dirichlet problem for the prescribed mean curvature equation in
Minkowski space

− div
( gradv√

1− |gradv|2
)
= f

(
|x|, v, dv

dr

)
in B,

v = 0 on ∂B,

where B is the unit ball in RN , div denotes the divergence operator of RN ,
gradv is the gradient of v, | · | denotes the Euclidean norm in RN , dv

dr
stands

for the radial derivative of v and f is a continuous function. By using lower
and upper solutions, we prove the existence of solutions of the corresponding
differential and difference problems, and based on the ideas of lower and upper
µ-solutions show the solutions of the discrete problem can converge to the
solutions of the continuous problem.

Keywords Non-spurious solution, discrete boundary value problem, singular
ϕ-Laplacian, lower and upper solutions, prescribed mean curvature equation.
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1. Introduction
Let LN+1 := {(x, t) : x ∈ RN , t ∈ R} be the flat Minkowski space, endowed with

the Lorentzian metric
N∑
j=1

dx2
j −dt2. In this paper we are concerned with the mixed

boundary value problem

− (rN−1ϕ(u′))′ = rN−1f(r, u, u′), r ∈ (0, 1), (1.1)
u′(0) = u(1) = 0, (1.2)
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and its discrete approximation

− 1

h
∇
(
tN−1
k ϕ

(△uk

h

))
= tN−1

k f
(
tk, uk,

△uk

h

)
, k = 1, · · · , n− 1, (1.3)

△u0 = 0, un = 0, (1.4)

where ϕ : (−a, a) → R (a > 0) is an increasing homeomorphism with ϕ(0) = 0, such
an ϕ is called singular, f is a continuous function, n ≥ 2 is an integer, h = 1

n is the
step size, tk = kh for k = 0, 1, · · · , n are the grid points, t0 = 0, tn = 1, uk := u(tk)
and the differences are given by

△uk =

{
uk+1 − uk, k = 0, 1, · · · , n− 1,

0, k = n,

∇
(
tN−1
k ϕ

(△uk

h

))
=

tN−1
k ϕ

(△uk

h

)
− tN−1

k−1 ϕ
(△uk−1

h

)
, k = 1, · · · , n− 1,

0, k = 0, n.

The aim of this paper is to investigate the solvability of discrete problem (1.3)-(1.4)
and consider in what sense, if any, will the solutions of discrete problem (1.3)-(1.4)
converge to the solutions of the corresponding continuous problem (1.1)-(1.2).

This study mainly motivated by the numerical approximation of classical ra-
dial solutions of the nonlinear Dirichlrt problem for the prescribed mean curvature
equation in LN+1:

− div
( gradv√

1− |gradv|2
)
= f

(
|x|, v, dv

dr

)
in B, (1.5)

v = 0 on ∂B, (1.6)

where B is the unit ball in {(x, t) ∈ LN+1 : t = 0} ≃ RN , div denotes the divergence
operator of RN , gradv is the gradient of v, | · | denotes the Euclidean norm in RN ,
dv
dr stands for the radial derivative of v and f is a continuous function. Setting, as
usual, r = |x| and u(r) = v(x), we can reduce the Dirichlet problem (1.5)-(1.6) to a
problem of type (1.1)-(1.2) with ϕ(s) = s√

1−s2
, and the solutions of (1.1)-(1.2) are

just the classical radial solutions of (1.5)-(1.6).
These problems are originated in the study - in differential geometry or special

relativity, of maximal or constant mean curvature hypersurfaces, i.e., spacelike sub-
manifolds of codimension one in LN+1, having the property that their mean curva-
ture is respectively zero or constant, for more details, see Alías and Palmer [2], Bart-
nik and Simon [4], Bidaut-Veron and Ratto [10], Calabi [13], Cheng and Yau [15],
Treibergs [39] and the references therein. In recent years, Dirichlet problems for
the prescribed mean curvature equation in LN+1 have been widely concerned by
many scholars, and their attention is mainly focused on the positive solutions, we
refer the reader to [5–8,16–20,22–26,29,31–34,40,41,43] and the references therein.
In particular, based on the detailed analysis of time map, some exact multiplicity
of positive solutions have been obtained in [24, 25, 43], for the radially symmetric
solutions on a ball, some existence, nonexistence and multiplicity results have been
established in [6, 7], and some bifurcation results have been obtained in [20,31] via
the bifurcation method, and when B is a general domain in RN , some existence
and bifurcation results have been obtained in the papers [17–19, 33]. In addition
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to, these concern discrete Dirichlet problems with the mean curvature operator in
LN+1, we refer the reader to [9, 14,27,28] and the references therein.

Up to our knowledge, the study of numerical approximation of solutions of the
Dirichlrt problem for the prescribed mean curvature equation in LN+1 seems lagging
behind.

Recently, P. Jebelean et al. [28] considered the extremal solutions of the mixed
boundary value problem

− (rN−1ϕ(u′))′ = rN−1f(r, u), r ∈ (0, 1),

u′(0) = u(1) = 0,

where f : [0, 1] × R → R is a continuous function, ϕ : (−η, η) → R (η > 0)
is an increasing homeomorphism with ϕ(0) = 0 and ϕ′(y) ≥ d > 0 for all y ∈
(−η, η). They proved the existence of minimal and maximal solutions in presence
of well-ordered lower and upper solutions and developed a numerical algorithm by
combining the shooting method with Euler’s method for their approximation.

In 2007, I. Rachunkova et al. [37] investigated the existence of non-spurious
solutions of discrete Dirichlet problems for second-order difference equation

− ∇△uk

h2
= f

(
tk, uk,

△uk

h

)
, k = 1, · · · , n− 1,

u0 = 0, un = 0,

where n ≥ 2 is an integer, h is step size, tk are grid points, uk := u(tk), △ is
the forward difference operator defined by △uk = uk+1 − uk, ∇ is the backward
difference operator defined by ∇uk = uk − uk−1 and f is a continuous function.
Their result provides some information for the numerical approximation of solutions
of the corresponding continuous problem.

Motivated by the interesting results of [6,7,21,26,28,32], in this paper we shall
show the solvability of the discrete problem (1.3)-(1.4) and the convergence of their
solutions to a solution of the continuous problem (1.1)-(1.2) when the step size
converges to 0.

In Section 2, we present a lower and upper solution result for continuous problem
(1.1)-(1.2) that permits to consider the convergence of solutions of discrete problem
(1.3)-(1.4). For the lower and upper solution method to this type of problem with
periodic or Neumann boundary conditions, we refer the reader to [8, 11, 35], and
the case of elliptic boundary value problem, we refer the reader to [12, 30, 42]. In
Section 3, we give some notations and the fixed point reformulation of (1.3)-(1.4)
and prove all possible solutions of (1.3)-(1.4) and their first differences have a prior
bounds which are independent of h, based on this, we develop the well-order lower
and upper solution method for (1.3)-(1.4) in two cases: for arbitrary fixed step size
and for sufficiently small step size. In Section 4, the ideas of lower µ-solution and
upper µ-solution from [21] are applied to show the solutions of discrete problem
(1.3)-(1.4) can converge to the solutions of the continuous problem (1.1)-(1.2), and
the result has an important theoretical implications for computing the numerical
solutions of the prescribed mean curvature equation in Minkowski space.

For the classical results on difference equations and their comparison with dif-
ferential equations, including existence, uniqueness and spurious solutions, we refer
the reader to [1, 3, 36,38] and the references therein.
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2. Lower and upper solutions
In this section, we extend the lower and upper solution method in [7] to the pre-
scribed mean curvature problem (1.1)-(1.2).

Here and hereafter, let C[0, 1] denote the Banach space of continuous functions
on [0, 1] endowed with the usual norm || · ||∞, C1[0, 1] denote the Banach space
of continuously differentiable functions on [0, 1] endowed with the norm ||u|| =
||u||∞ + ||u′||∞. We say that a function u ∈ C1[0, 1] is a solution of (1.1)-(1.2) if
||u′||∞ < a, rN−1ϕ(u′) ∈ C1[0, 1], and (1.1)-(1.2) is satisfied.

Definition 2.1. A lower solution of (1.1)-(1.2) is a function α ∈ C1[0, 1] such that
||α′||∞ < a, rN−1ϕ(α′) ∈ C1[0, 1] and

−(rN−1ϕ(α′))′ ≤ rN−1f(r, α, α′), r ∈ (0, 1), α(1) ≤ 0.

An upper solution of (1.1)-(1.2) is a function β ∈ C1[0, 1] such that ||β′||∞ < a,
rN−1ϕ(β′) ∈ C1[0, 1] and

−(rN−1ϕ(β′))′ ≥ rN−1f(r, β, β′), r ∈ (0, 1), β(1) ≥ 0.

Theorem 2.1. If (1.1)-(1.2) has a lower solution α and an upper solution β such
that α(r) ≤ β(r) for all r ∈ [0, 1], and if f : [0, 1]× R× (−a, a) → R is continuous
and satisfies

f(r, u, w2)− f(r, u, w1) ≥ 0 for r ∈ [0, 1], u ∈ [α(r), β(r)] and − a < w1 ≤ w2 < a,
(2.1)

then (1.1)-(1.2) has at least one solution u such that

α(r) ≤ u(r) ≤ β(r)

for all r ∈ [0, 1].

Proof. Let γ : [0, 1]× R → R be the continuous function defined by

γ(r, u) =


β(r), u > β(r),

u, α(r) ≤ u ≤ β(r),

α(r), u < α(r),

and define F : [0, 1] × R2 → R by F (r, u, w) = f(r, γ(r, u), w). We consider the
auxiliary problem

− (rN−1ϕ(u′))′ = rN−1[F (r, u, u′)− u+ γ(r, u)], r ∈ (0, 1), (2.2)
u′(0) = u(1) = 0. (2.3)

It follows from [5] that problem (2.2)-(2.3) has at least one solution.
We show that all possible solutions u of (2.2)-(2.3) satisfy α(r) ≤ u(r) ≤ β(r)

for all r ∈ [0, 1]. This will conclude the proof.
Suppose that there exists some r0 ∈ [0, 1] such that

max
r∈[0,1]

{u(r)− β(r)} = u(r0)− β(r0) > 0.
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If r0 ∈ (0, 1), then u′(r0) = β′(r0) and there are sequences {rk} in [r0 − ε, r0) and
{r′k} in (r0, r0+ε] converging to r0 such that u′(rk)−β′(rk) ≥ 0 and u′(r′k)−β′(r′k) ≤
0. This fact together with ϕ is an increasing homeomorphism, we have that

rN−1
k ϕ(β′(rk))− rN−1

0 ϕ(β′(r0)) ≤ rN−1
k ϕ(u′(rk))− rN−1

0 ϕ(u′(r0)),

this implies

(rN−1ϕ(β′(r)))′r=r0 ≥ (rN−1ϕ(u′(r)))′r=r0 .

Note that β is an upper solution of (1.1)-(1.2), it follows that

(rN−1ϕ(β′(r)))′r=r0 ≥(rN−1ϕ(u′(r)))′r=r0

=rN−1
0 [−f(r0, β(r0), u

′(r0)) + u(r0)− β(r0)]

>rN−1
0 [−f(r0, β(r0), β

′(r0))]

≥(rN−1ϕ(β′(r)))′r=r0 ,

but this is a contradiction. If r0 = 1, by using u(1) = 0 and β(1) ≥ 0, we obtain
a contradiction again. Finally, if r0 = 0, then there exists r1 ∈ (0, 1] such that
u(r)− β(r) > 0 for all r ∈ [0, r1] and u′(r1)− β′(r1) ≤ 0, and accordingly, we have
that

rN−1
1 ϕ(β′(r1)) ≥ rN−1

1 ϕ(u′(r1)).

Note that (2.1) and use β is an upper solution of (1.1)-(1.2) again, we can show
that

rN−1
1 ϕ(β′(r1)) ≥rN−1

1 ϕ(u′(r1))

=rN−1
1 [−f(r1, β(r1), u

′(r1)) + u(r1)− β(r1)]

>rN−1
1 [−f(r1, β(r1), u

′(r1))]

≥rN−1
1 [−f(r1, β(r1), β

′(r1))]

≥rN−1
1 ϕ(β′(r1)),

clearly, this is a contradiction. Consequently, we prove that u(r) ≤ β(r) for all
r ∈ [0, 1], analogously, we can prove that α(r) ≤ u(r) for all r ∈ [0, 1]. The proof is
completed.

Remark 2.1. The definitions of α and β do not impose any conditions on their
derivatives at r = 0.

Remark 2.2. The proof of Theorem 2.1 follows the idea of the proof of Proposition
1 in [7].

3. Fixed point, a priori bound, lower and upper so-
lutions

For −→u ∈ Rp set |−→u |∞ = max
1≤k≤p

|uk|. For any −→u ∈ Rp, where p ≥ 3 is an integer, we
define

∆−→u = (∆u1, · · · ,∆up−1) ∈ Rp−1
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as follows

∆uk = uk+1 − uk, (1 ≤ k ≤ p− 1).

A solution of (1.3)-(1.4) should be a vector −→u = (u0, · · · , un) ∈ Rn+1 such that
|∆

−→u
h |∞ < a and satisfies (1.3)-(1.4). Let us introduce the vector space

Wn+1 = {−→u ∈ Rn+1 : △u0 = 0, un = 0}

endowed with the orientation (u0, · · · , un) ∈ Rn+1 and the norm | · |∞.
Now, we give the fixed point reformulation of (1.3)-(1.4). Let τ(k) = t1−N

k ,
k = 1, · · · , n− 1. For each h > 0, define

S : Rn−1 → Rn−1, Suk = −τ(k)

k∑
i=1

tN−1
i ui, k = 1, · · · , n− 1;

K : Rn−1 → Rn−1, Kuk = −
n−1∑
i=k

hui, k = 1, · · · , n− 1.

It is easy to see that K ◦ ϕ−1 ◦ S : Rn−1 → Rn−1 is continuous, and for a given
function −→g = (g1, · · · , gn−1), the discrete problem

−∇
(
tN−1
k ϕ

(△uk

h

))
= tN−1

k gk, k = 1, · · · , n− 1,

△u0 = 0, un = 0

has a unique solution −→u ∈ Wn+1 given by

uk = K ◦ ϕ−1 ◦ S ◦ gk.

Moreover, we denote by Nf the Nemytskii operator associated to f :

Nf : Rn+1 → Rn−1, Nf (
−→u ) =

(
f
(
t1, u1,

△u1

h

)
, · · · , f

(
tn−1, un−1,

△un−1

h

))
.

Notice that the following result.

Lemma 3.1. A vector −→u = (u0, · · · , un) ∈ Rn+1 is a solution of (1.3)-(1.4) if and
only if −→u ∈ Wn+1 is a fixed point of the continuous operator

Af : Wn+1 → Wn+1, Af = K ◦ ϕ−1 ◦ S ◦ (hNf ).

Lemma 3.2. Any fixed point −→u ∈ Wn+1 of Af satisfies∣∣∣∆−→u
h

∣∣∣
∞

< a and |−→u |∞ < a.

Proof. In terms of the range of ϕ−1 the results are obvious, we omit the details.

In the next result, we provide an a priori bounds to the first differences of all
possible solutions of (1.3)-(1.4). This fact will play a key role later.



2256 M. Xu, R. Ma & T. Wang

Lemma 3.3. For any given Λ > 0, there exists a constant ν = ν(Λ) ∈ (0, a),
such that for any −→e = (e1, · · · , en−1) ∈ Rn−1 with |−→e |∞ ≤ Λ, the solution −→u =
(u0, · · · , un) ∈ Rn+1 of

− 1

h
∇
(
tN−1
k ϕ

(△uk

h

))
= ek, k = 1, · · · , n− 1, (3.1)

△u0 = 0, un = 0 (3.2)

satisfies ∣∣∣△−→u
h

∣∣∣
∞

≤ a− ν < a. (3.3)

Proof. Let −→u be a solution of (3.1)-(3.2). It is easy to see that∣∣∣− 1

h
∇
(
tN−1
k ϕ

(△uk

h

))∣∣∣ ≤ Λ

for k = 1, · · · , n− 1. This implies∣∣∣tN−1
k ϕ

(△uk

h

)
− tN−1

k−1 ϕ
(△uk−1

h

)∣∣∣ ≤ hΛ (3.4)

for k = 1, · · · , n− 1. Using (3.4) we deduce that∣∣∣ϕ(△uk

h

)∣∣∣ ≤ t1−N
k · khΛ < +∞

for k = 1, · · · , n−1, and accordingly, there exists a constant ν = ν(Λ) ∈ (0, a), such
that ∣∣∣△uk

h

∣∣∣ ≤ a− ν < a

for k = 1, · · · , n− 1, and we complete the proof.
The rest of this section, we develop the lower and upper solution method for

(1.3)-(1.4), and we give the definition of the lower and upper solutions as follows.

Definition 3.1. We call −→α = (α0, · · · , αn) ∈ Rn+1 is a lower solution of (1.3)-(1.4)
if |△

−→α
h |∞ < a and

− 1

h
∇
(
tN−1
k ϕ

(△αk

h

))
≤ tN−1

k f
(
tk, αk,

△αk

h

)
, k = 1, · · · , n− 1,

△α0 = 0, αn ≤ 0.

We call −→β = (β0, · · · , βn) ∈ Rn+1 is an upper solution of (1.3)-(1.4) if |△
−→
β
h |∞ < a

and

− 1

h
∇
(
tN−1
k ϕ

(△βk

h

))
≥ tN−1

k f
(
tk, βk,

△βk

h

)
, k = 1, · · · , n− 1,

△β0 = 0, βn ≥ 0.
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Theorem 3.1. If (1.3)-(1.4) has a lower solution −→α = (α0, · · · , αn) and an upper
solution −→

β = (β0, · · · , βn) such that αk ≤ βk for k = 0, · · · , n− 1, f is continuous
and satisfies

f(r, u, w2)− f(r, u, w1) ≥ 0 for r ∈ [0, 1], u ∈ [α(r), β(r)] and − a < w1 ≤ w2 < a,
(3.5)

where α(r) and β(r) are continuous functions on [0, 1] such that αk = α(tk) and
βk = β(tk) for k = 0, · · · , n. Then (1.3)-(1.4) has at least one solution −→u =
(u0, · · · , un) such that

αk ≤ uk ≤ βk (3.6)

for k = 0, · · · , n.

Proof. For r ∈ [0, 1], x, z ∈ R, we define functions

ω(r, z) =


β(r + h), z > β(r + h),

z, α(r + h) ≤ z ≤ β(r + h),

α(r + h), z < α(r + h),

f̃
(
r, x,

z − x

h

)
=



f
(
r, β(r),

ω(r, z)− β(r)

h

)
− x− β(r)

x− β(r) + 1
, x > β(r),

f
(
r, x,

ω(r, z)− x

h

)
, α(r) ≤ x ≤ β(r),

f
(
r, α(r),

ω(r, z)− α(r)

h

)
+

α(r)− x

α(r)− x+ 1
, x < α(r),

and consider the auxiliary problem

− 1

h
∇
(
tN−1
k ϕ

(△uk

h

))
= tN−1

k f̃
(
tk, uk,

△uk

h

)
, k = 1, · · · , n− 1, (3.7)

△u0 = 0, un = 0. (3.8)

We claim that (3.7)-(3.8) has at least one solution. In fact, (3.7)-(3.8) is equivalent
to the fixed point problem −→u = Af̃

−→u . From |∆
−→u
h |∞ < a, we have that |−→u |∞ < a,

and by using the Brouwer fixed point theorem, we deduce that there exists −→u ∈
Wn+1 such that −→u = Af̃

−→u .
Let −→u = (u0, · · · , un) be a solution of (3.7)-(3.8). Next we prove that the

solution −→u satisfies (3.6), which ends the proof.
Let yk = uk − βk, k = 0, · · · , n and suppose that

max{yk : k = 0, · · · , n} = ym > 0. (3.9)

It follows from the definition of −→β and the boundary condition un = 0 that m ∈
{0, 1, · · · , n− 1}. If m ∈ {1, · · · , n− 1}, then we have that

ym+1 ≤ ym, ym−1 ≤ ym,

and

△um ≤ △βm, △um−1 ≥ △βm−1,
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this together with the monotonicity of ϕ, we have that

ϕ
(△um

h

)
≤ ϕ

(△βm

h

)
, ϕ

(△um−1

h

)
≥ ϕ

(△βm−1

h

)
,

and
1

h
∇
(
tN−1
m ϕ

(△um

h

))
≤ 1

h
∇
(
tN−1
m ϕ

(△βm

h

))
.

If m = 0, from △β0 = 0 = △u0, we have that β0 = β1 and u0 = u1, this implies
that m = 1 is also the maximum point, therefore, the case is concluded by the above
case.

Note that (3.5) implies that f is nondecreasing on (−a, a) with respect to its
third variable, this together with (3.7)-(3.8), (3.9) and Definition 3.1, we have that

1

h
∇
(
tN−1
m ϕ

(△βm

h

))
≥ 1

h
∇
(
tN−1
m ϕ

(△um

h

))
=− tN−1

m f̃
(
tm, um,

△um

h

)
=− tN−1

m

[
f
(
tm, βm,

ω(tm, um+1)− βm

h

)
− um − βm

um − βm + 1

]
>− tN−1

m f
(
tm, βm,

ω(tm, um+1)− βm

h

)
≥− tN−1

m f
(
tm, βm,

△βm

h

)
≥ 1

h
∇
(
tN−1
m ϕ

(△βm

h

))
,

but this is a contradiction. Therefore, we prove that uk ≤ βk for k = 0, · · · , n.
Similarly, we can get that uk ≥ αk for k = 0, · · · , n. The proof is completed.

Remark 3.1. The proof of Theorem 3.1 follows the idea of the proof of Theorem
3.1 in [37].

Theorem 3.1 is valid for an arbitrary fixed step size h. We also want to con-
sider the convergence of solutions of (1.3)-(1.4) and our consideration there can be
restricted to a sufficiently small step, to this end it will be necessary to develop a
lower and upper solution method for each sufficiently small step size h .

Theorem 3.2. If (1.3)-(1.4) has a lower solution −→α = (α0, · · · , αn) and an upper
solution −→

β = (β0, · · · , βn) such that αk ≤ βk for k = 0, · · · , n− 1, and assume that
there exists M > 0 such that

|f(r, u, w)| ≤ M for r ∈ [0, 1], u ∈ [α(r), β(r)] and w ∈ (−a, a), (3.10)

where α(r) and β(r) are continuous functions on [0, 1] such that αk = α(tk) and
βk = β(tk) for k = 0, · · · , n. Then there exists n∗ ≥ 2, such that for each n : n ≥ n∗,
(1.3)-(1.4) has at least one solution −→u = (u0, · · · , un) and it satisfies (3.6).

Proof. Argue as in the proof of Theorem 3.1, we can get that (3.7)-(3.8), (3.9)
and

1

h
∇
(
tN−1
m ϕ

(△um

h

))
≤ 1

h
∇
(
tN−1
m ϕ

(△βm

h

))
(3.11)
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for m = 0, · · · , n−1. From (3.9), we have that um > βm for some m ∈ {0, 1, · · · , n−
1}, this yields that there exists c > 0, such that βm + c = um. In fact, we can show
that for sufficiently large n,

um > βm ⇒ um+1 ≥ βm+1.

On one hand, from (3.10) and Lemma 3.3, for any solution −→u of (3.7)-(3.8), we
have that there exists a constant ν = ν(M) ∈ (0, a), such that∣∣∣△uk

h

∣∣∣ ≤ a− ν < a for k = 0, · · · , n− 1. (3.12)

On the other hand, from Definition 3.1, we have that there exists a ρ > 0 such that∣∣∣△αk

h

∣∣∣ ≤ ρ,
∣∣∣△βk

h

∣∣∣ ≤ ρ (3.13)

for each n ≥ 2, h = 1
n and k = 0, · · · , n− 1. From (3.12) and (3.13), we have that

um+1 =um +△um

=βm + c+△um

=βm+1 −△βm + c+△um

≥βm+1 + c− |△βm| − |△um|
≥βm+1 + c− ρh− (a− ν)h

≥βm+1

if n ≥ n∗ and n∗ = ρ+a−ν
c .

Therefore, from the definition of ω(r, z), we have that ω(tm, um+1) = βm+1.
And accordingly, by (3.7)-(3.8), (3.9) and Definition 3.1, we get that

1

h
∇
(
tN−1
m ϕ

(△um

h

))
− 1

h
∇
(
tN−1
m ϕ

(△βm

h

))
=− tN−1

m f̃
(
tm, um,

△um

h

)
− 1

h
∇
(
tN−1
m ϕ

(△βm

h

))
=− tN−1

m f
(
tm, βm,

ω(tm, um+1)− βm

h

)
+

tN−1
m ym
ym + 1

− 1

h
∇
(
tN−1
m ϕ

(△βm

h

))
=− tN−1

m f
(
tm, βm,

△βm

h

)
+

tN−1
m ym
ym + 1

− 1

h
∇
(
tN−1
m ϕ

(△βm

h

))
≥ tN−1

m ym
ym + 1

> 0,

but this contradicts with (3.11). Therefore, we prove that uk ≤ βk for k = 0, · · · , n.
Similarly, we can prove that uk ≥ αk for k = 0, · · · , n. The proof is completed.

Example 3.1. Assume that there exist s1, s2 ∈ (0,∞) such that

f(r,−s1, 0) ≥ 0, f(r, s2, 0) ≤ 0 for all r ∈ [0, 1],

and there exists M > 0 such that

|f(r, u, w)| ≤ M for r ∈ [0, 1], u ∈ [−s1, s2] and w ∈ (−a, a).
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Then by Theorem 3.2, there exists n∗ ≥ 2 such that for each n ≥ n∗, problem
(1.3)-(1.4) has a solution −→u = (u0, · · · , un), and it satisfies

−s1 ≤ uk ≤ s2

for k = 0, · · · , n.

4. Non-spurious solutions
In this section, we consider the convergence of solutions of (1.3)-(1.4). The ideas of
this section from the work of R. Gaines [21].

We need the following definition.

Definition 4.1. Let µ > 0 be a constant. We call function α ∈ C1[0, 1] is a lower
µ-solution of (1.1)-(1.2) if ||α′||∞ < a, rN−1ϕ(α′) ∈ C1[0, 1] and

(rN−1ϕ(α′))′ + rN−1f(r, α, α′) ≥ µ, r ∈ (0, 1),

α′(0) ≤ −µ, α(1) ≤ −µ.

We call function β ∈ C1[0, 1] is an upper µ-solution of (1.1)-(1.2) if ||β′||∞ < a,
rN−1ϕ(β′) ∈ C1[0, 1] and

(rN−1ϕ(β′))′ + rN−1f(r, β, β′) ≤ −µ, r ∈ (0, 1),

β′(0) ≥ µ, β(1) ≥ µ.

Lemma 4.1. If (1.1)-(1.2) has a lower µ-solution α and an upper µ-solution β,
then there exists a constant δ(µ) > 0 such that

1

h
∇
(
tN−1
k ϕ

(△αk

h

))
+ tN−1

k f
(
tk, αk,

△αk

h

)
≥ µ

2
, k = 1, · · · , n− 1,

△α0 ≤ −µ

2
, αn ≤ −µ

2

and

1

h
∇
(
tN−1
k ϕ

(△βk

h

))
+ tN−1

k f
(
tk, βk,

△βk

h

)
≤ −µ

2
, k = 1, · · · , n− 1,

△β0 ≥ µ

2
, βn ≥ µ

2

for each h < δ(µ).

Proof. Since β is an upper µ-solution of (1.1)-(1.2) and ϕ is continuous, we have
that there exists ξ1k ∈ (tk, tk+1) such that

∆βk

h
=

β(tk+1)− β(tk)

h
= β′(ξ1k) = β′(tk) +

[
β′(ξ1k)− β′(tk)

]
(4.1)

for k = 0, · · · , n− 1, and there exists ξ2k ∈ (tk−1, tk+1) such that

∇
(
tN−1
k ϕ

(
△βk

h

))
h



Non-spurious solutions of discrete problem 2261

=
tN−1
k ϕ

(
△βk

h

)
− tN−1

k−1 ϕ
(

△βk−1

h

)
h

=
(
(ξ2k)

N−1ϕ
(
β′(ξ2k)

))′

=
(
tN−1
k ϕ

(
β′(tk)

))′
+
[(

(ξ2k)
N−1ϕ

(
β′(ξ2k)

))′
−

(
tN−1
k ϕ(β′(tk))

)′]
(4.2)

for k = 1, · · · , n− 1.
Assume that there exists δ1(µ) > 0 such that if |r1 − r2| < δ1(µ) then∣∣∣(rN−1

1 ϕ(β′(r1))
)′

−
(
rN−1
2 ϕ(β′(r2))

)′∣∣∣ ≤ µ

4
. (4.3)

Let
S = {(r, y, z) : y = β(r), |z − β′(r)| < 2a}.

Assume that there exists σ(µ) > 0 such that if |z1 − z2| < σ(µ) then

|rN−1f(r, y, z1)− rN−1f(r, y, z2)| ≤
µ

4
(4.4)

for (r, y, z1), (r, y, z2) ∈ S.
Assume that there exists δ2(µ) > 0 such that if |r1 − r2| < δ2(µ) then

|β′(r1)− β′(r2)| < min{σ(µ), 2a}. (4.5)

By (4.1)-(4.5) and Definition 4.1, if h < min{δ1(µ), δ2(µ)}, then we have that

1

h
∇
(
tN−1
k ϕ

(△βk

h

))
+ tN−1

k f
(
tk, βk,

△βk

h

)
=
(
tN−1
k ϕ

(
β′(tk)

))′
+
[(

(ξ2k)
N−1ϕ

(
β′(ξ2k)

))′
−
(
tN−1
k ϕ(β′(tk))

)′]
+ tN−1

k f
(
tk, βk, β

′(tk) +
(
β′(ξ1k)− β′(tk)

))
≤
(
tN−1
k ϕ

(
β′(tk)

))′
+

µ

4
+ tN−1

k f
(
tk, βk, β

′(tk)
)
+

µ

4

≤− µ+
µ

4
+

µ

4

=− µ

2
.

From (4.1), we have that

∆β0

h
= β′(t0) +

[
β′(ξ10)− β′(t0)

]
.

Similarly, we assume that there exists δ3(µ) > 0 such that if |r1 − r2| < δ3(µ) then

|β′(r1)− β′(r2)| ≤
µ

2
.

From this fact and β′(0) ≥ µ, we can conclude that if h < δ3(µ), then △β0 ≥ µ
2 .

βn = β(tn) = β(1) ≥ µ
2 is obvious. In a similar argument, we can get the conclusion

of α. The proof is completed.
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Next, we give a result which describes the sense in which the solutions we shall
obtain for the discrete problem will converge to the solutions of the continuous
problem. We first let

nm → +∞ as m → +∞, hm =
1

nm
,

tmk = khm for k = 0, · · · , n and tm0 = 0, tmn = 1.

Assume that (1.3)-(1.4) has a solution −→u m = (um
0 , · · · , um

n ) for h = hm and m ≥ m0.
Define the continuous function um(r) by linear interpolation such that um(tmk ) =
um
k , i.e.

um(r) = um
k +

um
k+1 − um

k

hm
(r − tmk ), tmk ≤ r ≤ tmk+1.

Define ymk =
um
k −um

k−1

hm
, −→y m = (ym1 , · · · , ymn ) and ym(r) on [0, 1] by

ym(r) =

ymk +
ymk+1 − ymk

hm
(r − tmk ), tmk ≤ r ≤ tmk+1,

ym1 , 0 ≤ r ≤ tm1 .

We have the following result.

Lemma 4.2. If −→u m = (um
0 , · · · , um

n ) is a solution of (1.3)-(1.4) for h = hm and
m ≥ m0, and there exist constant R1 ≥ 0 and R2 ≥ 0 such that

|−→u m|∞ ≤ R1, |−→y m|∞ ≤ R2.

Then there exists a sequence {uk(m)(r)} and a solution u(r) of (1.1)-(1.2) such that

max
r∈[0,1]

∣∣uk(m)(r)− u(r)
∣∣ → 0 and max

r∈[0,1]

∣∣yk(m)(r)− u′(r)
∣∣ → 0

as m → +∞.

Proof. By Arzela-Ascoli theorem it can be shown that there exists a subsequence
{uk(m)(r)} such that {uk(m)(r)} converges uniformly to a continuous function u(r),
and {yk(m)(r)} converges uniformly to a continuous function y(r). From Lemma
3.1 and the continuity of f , we can in a direct way prove the limit u(r) is a solution
of continuous problem (1.1)-(1.2). The conclusion y(r) = u′(r) follows immediately
from the fact

|u(τ)− u(r)− y(r)(τ − r)| ≤ H|τ − r|2.

The proof is completed.
We have the following convergence result.

Theorem 4.1. If (1.1)-(1.2) has a lower µ-solution α and an upper µ-solution β
such that α(r) ≤ β(r) for all r ∈ [0, 1], and if f : [0, 1] × R × (−a, a) → R is
continuous and satisfies

f(r, u, w2)− f(r, u, w1) ≥ 0 for r ∈ [0, 1], u ∈ [α(r), β(r)] and − a < w1 ≤ w2 < a,
(4.6)
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and there exists M > 0 such that

|f(r, u, w)| ≤ M for r ∈ [0, 1], u ∈ [α(r), β(r)] and w ∈ (−a, a). (4.7)

Then
(i) problem (1.1)-(1.2) has at least one solution u such that α(r) ≤ u(r) ≤ β(r)

for all r ∈ [0, 1];
(ii) there exists a constant δ(µ) > 0, such that for h < δ(µ), problem (1.3)-

(1.4) has at least one solution −→u = (u0, · · · , un) satisfying α(tk) ≤ uk ≤ β(tk) for
k = 0, · · · , n;

(iii) the solutions −→u = (u0, · · · , un) of (1.3)-(1.4) with α(tk) ≤ uk ≤ β(tk) for
k = 0, · · · , n, converge to the solutions of (1.1)-(1.2) in the following sense:

Let u be a solution of (1.1)-(1.2). For any ε > 0, there exists a h(ε) > 0, such
that if h ≤ h(ε), then there is a solution −→u = (u0, · · · , un) of (1.3)-(1.4) such that

max
r∈[0,1]

|u(r,−→u )− u(r)| ≤ ε,

max
r∈[0,1]

|y(r,−→u )− u′(r)| ≤ ε,

where

u(r,−→u ) := uk +
uk+1 − uk

h
(r − tk), tk ≤ r ≤ tk+1,

y(r,−→u ) :=


uk − uk−1

h
+

uk+1 − 2uk + uk−1

h2
(r − tk), tk ≤ r ≤ tk+1,

u1 − u0

h
, 0 ≤ r ≤ t1.

Proof. (i) Clearly, α can be a lower solution and β can be an upper solution of
(1.1)-(1.2). Therefore, from (4.6) and Theorem 2.1, we have the conclusion (i).

(ii) From Lemma 4.1, we have that there exists a δ(µ) > 0 such that
−→α = (α0, · · · , αn) := (α(t0), · · · , α(tn))

and −→
β = (β0, · · · , βn) := (β(t0), · · · , β(tn))

being, respectively, a lower and an upper solution of (1.3)-(1.4) for each h < δ(µ),
and αk ≤ βk for k = 0, · · · , n− 1. This together with (4.7), all of the assumptions
of Theorem 3.2 are satisfied, and the conclusion (ii) follows from there.

(iii) Assume the conclusion is false, then there exist a ε > 0 and a sequence
{hm} such that hm → 0, and for h = hm = 1

nm
, the problem (1.3)-(1.4) has a

solution −→u m = (um
0 , · · · , um

n ) such that for every solution u(r) of (1.1)-(1.2) one of
the inequalities

max
r∈[0,1]

|u(r,−→u )− u(r)| > ε, (4.8)

max
r∈[0,1]

|y(r,−→u )− u′(r)| > ε (4.9)

holds.
By hypothesis, for sufficiently large m, there exist constant R1 ≥ 0 and R2 ≥ 0

such that

|−→u m|∞ ≤ R1 and |−→y m|∞ ≤ R2.
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Therefore, from Lemma 4.2, we have that there exist a subsequence {uk(m)(r)} and
a solution u(r) of (1.1)-(1.2) such that

max
r∈[0,1]

∣∣uk(m)(r)− u(r)
∣∣ → 0 and max

r∈[0,1]

∣∣yk(m)(r)− u′(r)
∣∣ → 0

as m → +∞. However, this contract with (4.8) and (4.9).
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