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Abstract In this paper, the nonlinear dispersive equation is investigated by
Lie symmetry analysis theory and bifurcation theory. The infinitesimal gener-
ators of the equation are obtained by Lie symmetry analysis. Periodic peakon
solutions, single period solutions and power series solutions of the equation are
acquired. And the conservation laws are obtained by the Ibragimov’s method.
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1. Introduction
In 1993, Rosenau and Hyman [22] investigated the effect of nonlinear dispersion on
patterns formation in liquid drops by introducing the following nonlinear dispersion
K(m,n) equation

ψt + (ψm)x + (ψn)xxx = 0. (1.1)
Thereafter, many scholars studied the exact solution of Eq. (1.1). In addition
to studying Eq. (1.1) and its generalized equations [4, 6, 23], the solution of the
following K(2, 2) equation

ψt + (ψ2)x + (ψ2)xxx = 0 (1.2)

as the classical solution for the K(m,n) equation also deserves to be studied. In
1998, Ismail and Taha [10] obtained the numerical solution of Eq. (1.2) by the
finite element and the finite difference method. Subsequently, in 2002, Wazwaz [24]
acquired new soliton solutions of Eq.(1.2) by means of the Adomian decomposi-
tion method. In 2007, the Adomian method was optimized in [5, 9]. In [9], by the
variational iteration method, the approximate numerical solutions of the K(2, 2)
equation and the compacton solutions with initial conditions were obtained. Do-
mairry [5] investigated the exact numerical solutions of the K(2, 2) equation by
means of the homogeneous perturbation method. The above two methods can get
the solutions of Eq. (1.2) without calculating the Adomian polynomial. Zhang and
Li [28] gave the implicit loop soliton and periodic solutions of Eq. (1.2) by applying
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dynamical system theory and studied the asymptotic properties of the solutions. Li
and Tang [11] used the same method to obtain the implicit analytical and loop solu-
tions of Eq. (1.2) and discussed the convergence of the solutions. Yin and Tian [27]
investigated more traveling wave solutions of the following K(2, 2) equation

ψt + α(ψ2)x + (ψ2)xxx = 0 (1.3)

by the qualitative analysis of Lenells, giving for the first time periodic compact
solutions of Eq. (1.3). And they pointed out that the parameter α has an important
influence on the solutions of Eq. (1.3).

Many methods are used to study exact solutions of nonlinear dispersion equation,
such as Riemann-Hilbert method [13, 16, 26], bifurcation method [14, 25], Jacobi
elliptic function method [21], extend tanh method [2], Lie symmetry method [1,3,12]
and so on [7,17–20]. In this paper, explicit periodic peakon solutions, single period
solutions and power series solutions of Eq. (1.3) are studied by the Lie symmetry
analysis method and the bifurcation method.

This article is structured as follows. Section 2, the generators are obtained by
Lie symmetric analysis method. Section 3, we obtained the phase portraits and the
explicit traveling wave solutions by using the dynamical system method. Section
4, the power series solutions are constructed and the convergence of the solution
is proved. Section 5, it is proven that Eq. (1.3) is nonlinearly self-adjoint and
conservation laws [8, 15] are constructed.

2. Lie symmetrical analysis
In this section, Lie symmetry analysis is performed to obtain the generators. Eq.
(1.3) also be written in the following form

ψt + βψψx + 6ψxψxx + 2ψψxxx = 0. (2.1)

Consider the Lie group transformation of Eq. (2.1)

x̃ = x+ ϵζx(x, t, ψ) +O(ϵ2),

t̃ = t+ ϵζt(x, t, ψ) +O(ϵ2),

ψ̃ = ψ + ς(x, t, ψ) +O(ϵ2),

(2.2)

in which ζx, ζt, ς are infinitesimal generators, ϵ is one-parameter. The corresponding
vector field is

X = ζx∂x + ζt∂t + ς∂ψ. (2.3)

The third-order prolongation of X is

pr(3)X = ζx
∂

∂x
+ ζt

∂

∂t
+ ς

∂

∂ψ
+ ςxx

∂

∂ψxx
+ ςxxx

∂

∂ψxxx
. (2.4)

The infinitesimal generators of (2.4) are represented as

ςxx = Dxx(ς − ζxψx − ζtψt) + ζxψxxx + ζtψxxt,

ςxxx = Dxxx(ς − ζxψx − ζtψt) + ζxψxxxx + ζtψxxxt.
(2.5)
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In addition, ζx, ζt, ς satisfy the invariance condition

pr(3)(4)|△=0 = 0, (2.6)

where 4 = ψt + βψψx + 6ψxψxx + 2ψψxxx.
Substituting (2.5) into (2.6) yields infinitesimal generators as following form

ζx = c3, ζt = c1t+ c2, ς = −c1ψ, (2.7)

in which ci(i=1, 2, 3) are arbitrary constants. Then vector field of Eq. (2.1) is
obtained

X1 = t
∂

∂t
− ψ

∂

∂ψ
, X2 =

∂

∂t
, X3 =

∂

∂x
. (2.8)

Solving the system of equation for an initial value problem with the following
form 

d

dε
(x∗, t∗, ψ∗) = w(x∗, t∗, ψ∗),

(x∗, t∗, ψ∗) |ε=0 = (x, t, ψ).
(2.9)

Then we acquire the corresponding invariant groups G[i] (i = 1, 2, 3).
G[1] : (x, t, ψ) 7→ (x, teε,−ψeε),

G[2] : (x, t, ψ) 7→ (x, t+ ε, ψ),

G[3] : (x, t, ψ) 7→ (x+ ε, t, ψ).

If ψ = g(x, t) is a solution of Eq. (2.1), then the following functions are also the
group-invariant solutions 

ψ(1) = eεg(x, teε),

ψ(2) = g(x, t− ε),

ψ(3) = g(x− ε, t).

3. Traveling wave solutions of Eq. (2.1)
To study the traveling wave solution of the equation, consider the linear combination
X2 + cX3. For this linear combination, we give the traveling wave transform

ξ = x− ct, (3.1)

in which c is the traveling wave speed. Substituting (3.1) into Eq. (2.1), we have

− cψ′ + βψψ′ + 6ψ′ψ′′ + 2ψψ′′′ = 0, (3.2)

where β 6= 0, c 6= 0, ψ′ =
dψ

dξ
. Integrating Eq. (3.2) we get

1

2
βψ2 − cψ + 2(ψ′)2 + 2ψψ′′ = k, (3.3)
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in which k is a integral constant. Then, letting y = ψ′, Eq. (3.3) can be written as
a singular system of the following form

dψ

dξ
= y,

dy

dξ
=
k − 1

2
βψ2 + cψ − 2y2

2ψ
.

(3.4)

It is obvious that there is a singular line ψ = 0, so perform the transformation
dξ = 2ψdρ. Eq. (3.4) can be rewritten as

dψ

dρ
= 2ψy,

dy

dρ
= k − 1

2
βψ2 + cψ − 2y2,

(3.5)

with the first integral

H(ψ, y) = ψ2(2y2 +
1

4
βψ2 − 2

3
cψ − k) = m, (3.6)

in which m is a Hamiltonian constant.
In order to study the distribution of the equilibrium points of the system (3.5),

let
f(ψ) = cψ − 1

2
βψ2 + k. (3.7)

Thus we can derive
(i) When k = 0, f(ψ) = 0 has two zero points ψ̄1 = 0, ψ̄2 = c

β ;
(ii) When k = − c2

2β , f(ψ) = 0 has two zero points ψ̄3 = ψ̄4 = c
β ;

(iii) When β>0, k>− c2

2β (β < 0, k < − c2

2β ), f(ψ) = 0 has two zero points

ψ̄5 =
c+

√
c2 + 2βk

β
, ψ̄6 =

c−
√
c2 + 2βk

β
.

Let M(ψ̄e, ye) be the coefficient matrix of the system (3.5) at the equilibrium
point (ψ̄e, ye),

M(ψ̄e, ye) =

 2ye 2ψ̄e

−βψ̄e + c −4ye

 . (3.8)

This results in the determinant of the coefficient at the point (ψ̄e, 0) as

J (ψ̄e, 0) =

∣∣∣∣∣∣ 0 2ψ̄e

−βψ̄e + c 0

∣∣∣∣∣∣ = 2βψ̄2
e − 2cψ̄e. (3.9)

From the dynamical system theory, when J > 0, (ψ̄e, ye) is a central point; when
the Poincaré index is 0 and J = 0 , (ψ̄e, ye) is a cusp; when J < 0, (ψ̄e, ye) is a
saddle point.

In the following, part of phase portraits of the system (3.5) are given.
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(a) (b)

(c) (d)

Figure 1. phase portraits of (3.5) for k = 0. (a) c > 0, β > 0; (b) c < 0, β > 0; (c) c > 0, β < 0; (d)
c < 0, β < 0.

(a) (b) (c)

Figure 2. phase portraits of (3.5) for k ̸= 0. (a) c > 0, β > 0, −
4c2

9β
< k < 0; (b) β < 0, c > 0,

k = −
4c2

9β
; (c) β > 0, c > 0, k > −

4c2

9β
.

In the following, we study the traveling wave solution corresponding to the habit
of the H(ψ, y)=0. From(3.6), we get

y2 = −1

8
βψ2 +

1

3
cψ +

k

2
. (3.10)
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Thus, according to (3.4) and (3.10), we have

√
β

8
ξ =

∫ ψ

ψ0

√√√√√−ψ4 +
8c

3β
ψ3 +

4k

β
ψ2

ψ2
dψ

=

∫ ψ

ψ0

√
K (ψ)

ψ2
dψ. (3.11)

Case 1 k = 0.
(i) When β > 0, c > 0 or β > 0, c < 0 (Fig.1(a)–(b)), considering the

H(ψ, y) = 0 orbit, it follows that

y2 = −1

8
βψ2 +

1

3
cψ

=
1

8
βψ(ψ1 − ψ).

(3.12)

From y = dψ
dξ , the periodic peakon solution of Eq. (2.1) is obtained

ψ(x, t) = ±1

2
tan

(√
2β

4
(x− ct)

)√√√√√ ψ1
2

tan2
(√

2β

4
(x− ct)

)
+ 1

+
1

2
ψ1, (3.13)

where ψ1 = 8c
3β .

(a) (b) (c)

Figure 3. (a) The 3D plot of ψ via (3.13) for β > 0, c > 0; (b) Wave propagation along the x-axis; (c)
Wave propagation along the t-axis.

(ii) When β < 0, c > 0 or β < 0, c < 0 (Fig.1(c)–(d)), the orbit determined
by H(ψ, y) = 0 yields K(ψ) = ψ3(ψ − ψ1), ψ1 = 8c

3β . Therefore, we get from (3.11)
that √

β

8
ξ =

∫ √
K(ψ)

ψ2
dψ. (3.14)

Thus, we get the solution of Eq. (2.1)

ψ(x, t) =
4eδ

2

+ 4eδψ1 + (ψ1)
2

8eδ
, (3.15)
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in which δ =

√
2β(x−t)

4 .
Case 2 k 6= 0

(i) When c > 0, β > 0, − 4c2

9β < k < 0 (Fig.2(a)), from the orbit defined by
H(ψ, y) = 0, we obtain

ψdψ√
ψ2 (ψ − ψ1) (ψ2 − ψ)

=

√
β

8
dξ. (3.16)

Integrating the above equation, we have single period wave solution

ψ(x, t) =
1

2
δ

√
(ψ1 − ψ2)

2

δ2 + 1
+

1

2
(ψ1 + ψ2) , 0 < ψ1 < ψ < ψ2, (3.17)

where δ = tan(
√
2a
4 (x− ct)), ψ1 =

−2
(
−2c+

√
9βk+4c2

)
3β , ψ2 =

2
(
2c+

√
9βk+4c2

)
3β .

(a) (b)

(c) (d)

Figure 4. (a) The 3D plot of ψ via (3.17) for β > 0, c > 0; (b)Wave propagation along the x-axis; (c)
Wave propagation along the t-axis; (d) Density plot.

(ii) When c > 0, β < 0, k = − 4c2

9β (Fig.2(b)), considering the H(ψ, y) = 0 orbit,
it follows that √

β

8
ξ =

∫ +∞

ψ

√
ψ2(ψ − ψ1)

2

ψ2
dψ, ψ1 < 0 < ψ. (3.18)

Solving Eq. (3.18), we acquire the solution of Eq.(2.1):

ψ(x, t) = eδ + ψ1, (3.19)
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where δ =
√
−2β(x−ct)

4 , ψ1 = 4c
3β .

(iii) When c > 0, β > 0, k > − 4c2

9β (Fig.2(c)), from the orbit defined by
H(ψ, y) = 0, we get√

β

8
dξ =

ψdψ√
ψ2 (ψ − ψ2) (ψ1 − ψ)

, ψ2 < ψ < 0 < ψ1. (3.20)

Integrating Eq. (3.20), we obtain the periodic solution of Eq. (2.1)

ψ(x, t) = −1

2
tan

δ1 + arctan (δ2)

√
(ψ1 − ψ2)

2

tan2 (δ1 + arctan (δ2)) + 1


+
1

2
(ψ1 + ψ2) ,

(3.21)

where δ1 =
√
2β(x−ct)

4 , δ2 = ψ1+ψ2

2
√
−ψ1ψ2

.

4. Power series solutions
In this section, we consider linear combinations of generators and reduce Eq. (2.1) to
ordinary differential equations by symmetric reduction, thereby constructing power
series solutions of Eq. (2.1).

4.1. Symmetric reductions
4.1.1 Considering the linear combination X1 + X2 = (1 + t) ∂∂t − ψ ∂

∂ψ , the corre-
sponding characteristic equation is

dx

0
=

dt

1 + t
=

dψ

−ψ
. (4.1)

Solving Eq. (4.1), we get

ψ(x, t) =
ϕ(υ)

t+ 1
, (4.2)

where υ = x. Substituting (4.2) into Eq. (2.1), we obtain

βϕϕ′ + 2ϕϕ′′′ + 6ϕ′ϕ′′ − ϕ = 0. (4.3)

4.1.2 For the linear combination X1 + X3 = ∂
∂x + t ∂∂t − ψ ∂

∂ψ , the corresponding
characteristic equation is

dx

1
=
dt

t
=

dψ

−ψ
. (4.4)

Then we get

ψ(x, t) =
ϕ(υ)

t
, (4.5)

in which υ = t
ex . Substituting (4.5) into Eq. (2.1), we have

6ϕ′ϕ′′ + 2ϕϕ′′′ + 6(ϕ′)2 + 6ϕϕ′′ + (2 + β)ϕϕ′ − ϕ′ + ϕ = 0. (4.6)
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4.2. Power series solutions
In the following we first consider Eq. (4.3). Suppose that the power series solution
of Eq. (4.3) takes the form

ϕ(υ) =

∞∑
n=0

qnυ
n, (4.7)

in which qn are the coefficients to be determined. Substituting (4.7) into Eq. (4.3),
we get

β
∞∑
n=0

n∑
k=0

(n+ 1− k) qkqn+1−kυ
n + 6

∞∑
n=0

n∑
k=0

(k + 1) (n− k + 1)

× (n− k + 2) υnqk+1qn−k+2 + 2
∞∑
n=0

n∑
k=0

(n+ 1− k) (n+ 2− k)

× (n+ 3− k) qkqn+3−kυ
n −

∞∑
n=0

qnυ
n = 0.

(4.8)

Comparing coefficients for Eq. (4.8), qn+3 (n ≥ 0) is obtained as follows:

qn+3 =
−1

2 (n+ 1) (n+ 2) (n+ 3) q0

{
β (n+ 1) q0qn+1 + 6 (n+ 1)

× (n+ 2) q1qn+2 − qn +
n∑
k=1

[β (n+ 1− k) qkqn+1−k

+6 (k + 1) (n+ 1− k) (n+ 2− k) qkqn+2−k

+ 2
∞∑
k=0

(n+ 1− k) (n+ 2− k) (n+ 3− k) qkqn+3−k

]}
.

(4.9)

According to (4.8), we get
q3 =

q0 − βq0q1
12q0

. (4.10)

If q0 6= 0 and q1, q2 are arbitrary constants, qn+3 are determined by (4.9). In this
way, we obtain all the coefficients of (4.7). Next, the convergence of the power
series solution (4.7) is proved for Eq. (4.3). According to (4.9), we have following
inequality

|qn+3| ≤M

{
n∑
k=1

[
|qk| |qn+1−k|+ (k + 1) |qk+1| |qn+2−k|+ |qk| |qn+3−k|

]
+|qn|+ |qn+1|+ |qn+2|

}
,

(4.11)

where M = max

{∣∣∣∣β2
∣∣∣∣ , ∣∣∣∣3q1q0

∣∣∣∣ , ∣∣∣∣ 1

2q0

∣∣∣∣}.
Defining a power series

R = R(υ) =

∞∑
n=0

rnυ
n, ri = |qi| , i = 0, 1, 2, · · · , (4.12)

and

rn+3 =M

{
n∑
k=1

[
(k + 1) rk+1rn+2−k + rkrn+1−k + rkrn+3−k

]
rn + rn+1 + rn+2

}
,

(4.13)
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in which n = 0, 1, 2, · · · , |qn| ≤ rn. Therefore, R = R(υ) =
∞∑
n=0

rnυ
n is a majorant

series of (4.7). Then, we prove R = R(υ) has a positive radius of convergence.

R(υ) = r0 + r1υ + r2υ
2 +

∞∑
n=0

rn+3υ
n+3

= r0 + r1υ + r2υ
2

+M

{ ∞∑
n=0

rnυ
n+3 +

∞∑
n=0

rn+1υ
n+3 +

∞∑
n=0

rn+2υ
n+3

+

∞∑
n=0

n∑
k=1

[
(k + 1) rk+1rn+2−k + rkrn+1−k + rkrn+2−k

]
υn+3

}
= r0 + r1υ + r2υ

2 +M
{
υ3R+ (R− r) υ2 + (R− r0 − r1υ) υ

+ (R− r0 − r1υ)
′
(R− r0 − r1υ) υ + υ(R− r0)

2

+(R− r0)
(
R− r0 − r1υ − r2υ

2
)}
.

(4.14)

Considering the implicit functional equation about υ,

F (υ,R) =R− r0 − r1υ − r2υ
2 −M

[
υ3R+ (R− r0) υ

2

+ (R− r0 − r1υ) υ + (R− r0 − r1υ)
′
(R− r0 − r1υ) υ

+υ(R− r0)
2
+ (R− r0)

(
R− r0 − r1υ − r2υ

2
)]
.

(4.15)

Since F (0, r0) = 0, F ′

R(0, r0) = 1 6= 0, by the implicit function theorem, the series
(4.7) is convergent.

Hence, the explicit power series solution of Eq. (2.1) is

ψ(x, t) =
1

t+ 1

{
q0 + q1x+ q2x

2 +
∞∑
n=0

−(x)
n+3

2(n+ 1)(n+ 2)(n+ 3)q0{
β(n+ 1)q0qn+1 − qn + 6(n+ 1)(n+ 2)q1qn+2

+
n∑
k=1

[
6 (k + 1) (n− 1 + k) (n+ 2− k) qkqn+2−k

+β (n+ 1− k) qkqn+1−k + 2
∞∑
k=0

(n+ 1− k)

(n+ 2− k) (n+ 3− k) qkqn+3−k

]}}
.

(4.16)

Using the same method we acquire the power series solution of Eq. (4.6) as
follows

ϕ(υ) =q0 + q1υ + q2υ
2 +

∞∑
n=0

υn+3

2(n+ 1)(n+ 2)(n+ 3)q0

{
(n+ 1) qn+1

− 6 (n+ 1) (n+ 2) q1qn+2 − 6 (n+ 1) q1qn+1 − qn − 6 (n+ 1) (n+ 2)

× q0qn+2 − 2 (2 + β) (n+ 1) q0qn+1 −
n∑
k=1

[
6 (k + 1) (n− k + 1)
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(a) (b) (c)

Figure 5. (a) The 3D plot of ψ via (4.16); (b)The plot of ψ via (4.16) for t = 1, t = 5, t = 10; (c) The
plot of ψ via (4.16) for x = 1, x = 5, x = 10;.

× (n− k + 2) qk+1qn−k+2 + 2 (n− k + 1) (n− k + 2) (n− k + 3)

× qkqn+3−k + 6 (k + 1) (n− k + 1) qk+1qn−k+1 + 6 (n− k + 1)

× (n− k + 2)×qkqn−k+2 + (2 + β) (n+ 1− k) qkqn+1−k

]}
. (4.17)

Substituting (4.17) into (4.5), we have

ψ(x, t) =
ϕ(υ)

t
, (4.18)

in which υ = t
ex .

(a) (b) (c)

Figure 6. (a) The 3D plot of ψ via (4.18); (b)Contour plot ; (c) Density plot.

5. Conservation laws
In this section, we give the conservation laws of the K(2, 2) equation by Ibragimov’s
method.

Firstly, considering the K(2, 2) equation

F = ψt + βψψx + 4ψxψxx + (2ψψxx)x = 0. (5.1)
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Defining the Lagrangian function of Eq. (5.1)

L = θF = θ[ψt + βψψx + 4ψxψxx + (2ψψxx)x], (5.2)

where θ(x, t, ψ) is dependent variable.
The adjoint equation of Eq. (5.1) has the following form

F∗ =
δL
δψ

= 0, (5.3)

in which δ
δψ = ∂

∂ψ −Dt

(
∂
∂ψt

)
−Dx

(
∂
∂ψx

)
+Dx

2
(

∂
∂ψxx

)
−Dx

3
(

∂
∂ψxxx

)
.

Because θ(2ψψxx)x = (2θψψxx)x − θx (2ψψxx), Eq. (5.2) is equivalent to the
second-order form

L = θψt + θβψψx + 4θψxψxx − θx (2ψψxx) . (5.4)

Therefore, the adjoint equation to Eq. (2.1) is

F∗ = −θt − βψθx − 2ψθxxx. (5.5)

If the adjoint equation satisfies

F∗ = λF , (5.6)

in which λ is an undetermined coefficient, solving Eq. (5.6) yields

θ(x, t, ψ) = c1 + c2sin(

√
2β

2
x) + c3cos(

√
2β

2
x), (5.7)

where c1, c2, c3 are arbitrary constants. Therefore, according to [8], Eq. (2.1) is
nonlinearly self-adjoint.

Next, we give the definition and theorem related to the conservation laws.

Definition 5.1. A vector filed C(x, t, ψ, ψx, ψt, · · · ) has two components,

C = C(C1, C2). (5.8)

If each solution ψ = ψ(x, t) of Eq. (2.1) satisfies

Di(Ci) = DtCt +DxCx = 0, (5.9)

then the vector field C(x, t, ψ, ψx, ψt, · · · ) is a conserved vector. Eq. (5.9) is said to
be a conservation law of Eq. (2.1).

Theorem 5.1. For the generator

X = ζx
∂

∂x
+ ζt

∂

∂t
+ ς

∂

∂ψ
, (5.10)

the conservation law of Eq. (2.1) is expressed as

DxCx +DtCt = 0, (5.11)
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the conserved vector C = C(Cx, Cx) is given by

Cx = ζxL+W
(
∂L
∂ψx

−Dx
∂L
∂ψxx

+Dxx
∂L

∂ψxxx

)
+ (DxW)

[
∂L
∂ψxx

−Dx

(
∂L

∂ψxxx

)]
+ (DxxW)

(
∂L

∂ψxxx

)
,

Ct = ζtL+W
(
∂L
∂ψt

−Dt
∂L
∂ψtt

)
+ (DtW)

∂L
∂ψtt

,

(5.12)

in which

W = ς − ζxψx − ζtψt,

L =

[
c1 + c2 sin

(√
2β

2
x

)
+ c3 cos

(√
2β

2
x

)]
(ψt + βψψx + 6ψxψxx + 2ψψxxx) .

Then, by applying Theorem 5.1 to the conserved vector C = C(Cx, Ct), the
conservation laws are obtained.

(I) For the generator χ = t ∂∂t − ψ ∂
∂ψ , we have W = −ψ − tψt. According to

(5.11), we obtain

Cx =
√
2β (tψxψt + ψψxt + 2ψψx)

[
c2 cos

(√
2β

2
x

)
− c3 sin

(√
2β

2
x

)]
− 2t (ψtψxx + 2ψxψxt + ψψxxt)

[
c2 sin

(√
2β

2
x

)
+ c3 cos

(√
2β

2
x

)]
− 4

(
ψx

2 + ψψxx
) [
c1 + c2 sin

(√
2β

2
x

)
+ c3 cos

(√
2β

2
x

)]
− c1t (βψψt + 2ψtψxx + 4ψxψxt + 2ψψxxt)− c1βψ

2,

Ct =(2tψψxxx + 6tψxψxx + βtψψx − ψ)

[
c1 + c2 sin

(√
2β

2
x

)
+c3 cos

(√
2β

2
x

)]
.

(5.13)

(II) For the generator χ =
∂

∂t
. From (5.11) we get

Cx = −2 (ψtψxx + 2ψxψxt + ψψxxt)

[
c1 + c2 sin

(√
2β

2
x

)
+c3 cos

(√
2β

2
x

)]
+
√
2β (ψxψt + ψψxt)

[
c2 cos

(√
2β

2
x

)
−c3 sin

(√
2β

2
x

)]
− c1βψψt,

Ct = (6tψxψxx + 2tψψxxx + βtψψx + tψt − ψt)

[
c1 + c2 sin

(√
2β

2
x

)
+c3 cos

(√
2β

2
x

)]
.

(5.14)
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(III) For the generator χ =
∂

∂x
. In the same way as above, we obtain

Cx = −2 (3ψxψxx + ψψxxx)

[
c1 + c2 sin

(√
2β

2
x

)
+ c3 cos

(√
2β

2
x

)]
+
√
2β

(
ψx

2 + ψψxx
) [
c2 cos

(√
2β

2
x

)
−c3 sin

(√
2β

2
x

)]
− c1βψψx,

Ct = (tψt + βtψψx + 6tψxψxx + 2tψψxxx − ψx)

[
c1 + c2 sin

(√
2β

2
x

)
+c3 cos

(√
2β

2
x

)]
.

(5.15)

6. Conclusions
In this paper, the nonlinear dispersion equation is considered. We obtain the gener-
ators using the Lie symmetry analysis method. Then we give partial phase portraits
to obtain exact periodic peakon solutions, single period solutions and other forms
of traveling wave solutions. In addition, the analytic power series solutions of the
equation are given. Finally, we prove that the equation is nonlinearly self-adjoint
and construct the conservation laws.
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