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Abstract Recently, Huang and Su [A modified shift-splitting method for
nonsymmetric saddle, Journal of Computational and Applied Mathematics,
2017, 317, 535–546] introduced a modified shift-splitting (denoted by MSSP)
preconditioner. In this paper, based on modified shift-splitting (denoted by
MSSP) iteration technique, we establish a accelerated (named after AMSSP)
iterative method for nonsymmetric saddle point problems. Furthermore, we
theoretically verify the AMSSP iteration method unconditionally converges
to the unique solution of the saddle point problems, compute the spectral
radius of the AMSSP iteration matrix. Finally, numerical examples show the
spectrum of the new preconditioned matrix for the different parameters.
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1. Introduction
For solving the large sparse augmented systems of linear equations

Au =

 B E

−ET 0

x

y

 =

f

g

 ≡ b, (1.1)

where B ∈ Rn×n is a symmetric and positive definite matrix and E ∈ Rn×m is a
matrix of full column rank and n ≥ m,x, f ∈ Rn, y, g ∈ Rm. It appears in many
different applications of scientific computing, such as constrained optimization [37],
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the finite element method for solving the Navier-Stokes equation [26–28], and con-
strained least squares problems and generalized least squares problems [1,34,40,41].
There have been several recent papers [2–31, 33, 37–40] for solving the augmented
system (1). Santos et al. [34] studied preconditioned iterative methods for solving
the singular augmented system with A = I. Yuan et al. [40, 41] proposed several
variants of SOR method and preconditioned conjugate gradient methods for solv-
ing general augmented system (1) arising from generalized least squares problems
where A can be symmetric and positive semidefinite and B can be rank deficient.
The SOR-like method requires less arithmetic work per iteration step than other
methods but it requires choosing an optimal iteration parameter in order to achieve
a comparable rate of convergence. Golub et al. [32] presented SOR-like algorithms
for solving system (1). Darvishi et al. [25] studied SSOR method for solving the
augmented systems. Bai et al. [3, 4, 24] presented GSOR method, parameterized
Uzawa (PU) and the inexact parameterized Uzawa (PIU) methods for solving sys-
tems (1). Zhang and Lu [42] showed the generalized symmetric SOR method for
augmented systems. Peng and Li [33] studied unsymmetric block overrelaxation-
type methods for saddle point. Bai and Golub [5–9,36] presented splitting iteration
methods such as Hermitian and skew-Hermitian splitting (HSS) iteration scheme
and its preconditioned variants, Krylov subspace methods such as preconditioned
conjugate gradient (PCG), preconditioned MINRES (PMINRES) and restrictively
preconditioned conjugate gradient (RPCG) iteration schemes, and preconditioning
techniques related to Krylov subspace methods such as HSS, block-diagonal, block-
triangular and constraint preconditioners and so on. Bai and Wang’s 2009 LAA
paper [36] and Chen and Jiang’s 2008 AMC paper [24] studied some general ap-
proaches about the relaxed splitting iteration methods. Wu, Huang and Zhao [38]
presented modified SSOR (MSSOR) method for augmented systems. Cao, Du and
Niu [18] introduced a shift-splitting preconditioner and a local shift-splitting pre-
conditioner for saddle point problems (1). Recently, Huang and Su [29] studied
a modified shift-splitting (denoted by MSSP) preconditioner to address a class of
large scale sparse saddle point problems. Moreover, the authors analyze the spec-
tral radius of the MSSP iteration matrix and estimate the sharp bounds of the
eigenvalues of the corresponding iteration matrix.

For large, sparse or structure matrices, iterative methods are an attractive op-
tion. In particular, Krylov subspace methods apply techniques that involve orthog-
onal projections onto subspaces of the form

K(A, b) ≡ span
{
b,Ab,A2b, ...,An−1b, ...}.

The conjugate gradient method (CG), minimum residual method (MINRES)
and generalized minimal residual method (GMRES) are common Krylov subspace
methods. The CG method is used for symmetric, positive definite matrices, MIN-
RES for symmetric and possibly indefinite matrices and GMRES for unsymmetric
matrices [35].

In this paper, based on modified shift-splitting (denoted by MSSP) iteration
technique, we establish a accelerated (named after AMSSP) iterative method for
nonsymmetric saddle point problems. Furthermore, we theoretically verify the
AMSSP iteration method unconditionally converges to the unique solution of the
saddle point problems, compute the spectral radius of the AMSSP iteration ma-
trix. Finally, numerical examples show the spectrum of the new preconditioned
matrix for the different parameters. However, the relaxed parameters of the modi-
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fied shift-splitting methods are not optimal and only lie in the convergence region
of the method.

2. The AMSSP iteration method
Recently, Bai and yin [16] proposed a shift splitting precondition for solving non-
Hermitian positive definite saddle point systems, where the shift splitting precon-
dition is defined as

M =
1

2
(αIn+m +A), (2.1)

and the shift splitting of matrix A consists of the following forms

A =
1

2
(αIn+m +A)− 1

2
(αIn+m −A), (2.2)

with a positive constant α and the n+m identity matrix In+m.
Cao et al. [21] proposed the shift-splitting (denoted by SSP) preconditioner as

follows

M(α) =
1

2

αIn +B E

−ET αIm

 , (2.3)

and the shift-splitting of the matrix A is established by the following form

M(α) =

 B E

−ET 0

 =
1

2

αIn +B E

−ET αIm

− 1

2

αIn −B −E

ET αIm

 . (2.4)

When the 2 by 2 block parameter α = β, Cao et al. [21] and Chen et al. [23]
proposed a class of generalized shift-splitting (denoted by GSSP) preconditioner of
form

M(α, β) =
1

2

αIn +B E

−ET βIm

 , (2.5)

and the shift-splitting of the matrix A is established by the following form

M(α, β) =

 B E

−ET 0

 =
1

2

αIn +B E

−ET βIm

− 1

2

αIn −B −E

ET βIm

 . (2.6)

Recently, based on the SSP preconditioner (4), Huang et al. [29] proposed a type
of MSSP preconditioner as follows

P(α) =

αIn + 2B 2E

−2ET αIm

 . (2.7)

Then the corresponding shift-splitting of the saddle point matrix A is established
by

A = P(α)−N (α) =

αIn + 2B 2E

−2ET αIm

−

αIn +B E

−ET αIm

 . (2.8)
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In this paper, based on the MSSP preconditioner (8), we establish a accelerated
(named after AMSSP) iterative method for nonsymmetric saddle point problems,
which is as follows

P(α, β) =

αIn + βB βE

−βET αIm

 . (2.9)

Then the corresponding shift-splitting of the saddle point matrix A is established
by

A = P(α, β)−N (α, β) =

αIn + βB βE

−βET αIm

−

αIn + (β − 1)B (β − 1)E

−(β − 1)ET αIm

 .

(2.10)
Without loss of generality, we define the AMSSP iteration matrix by

T (α, β) =

αIn + βB βE

−βET αIm

−1 αIn + (β − 1)B (β − 1)E

−(β − 1)ET αIm

 , (2.11)

and denote the spectral radius and any eigenvalue of the iteration matrix T (α, β)
by ρ(T (α, β)) and λ, respectively. Then we can know that the AMSSP iteration
method is convergent if and only if ρ(T (α, β)) < 1.

3. Convergence of the AMSSP iteration method
To verify the convergence properties of the accelerated iterative method, we firstly
need to consider the spectral properties of the AMSSP iteration method by the
following form.αIn + (β − 1)B (β − 1)E

−(β − 1)ET αIm

u

v

 = λ

αIn + βB βE

−βET αIm

u

v

 . (3.1)

Then the generalized eigenvalue problem [P(α, β)−A]z = λP(α, β)z is written
as the following block form

(αIn +B)u+ (β − 1)Ev = λ(αIn + βB)u+ λβEv (3.2)

and
− (β − 1)ETu+ αv = −βλETu+ αλv. (3.3)

In order to study the convergence of AMSSP iterative method, we will give two
lemmas of the following forms.
Lemma 3.1.( [18]) Let B be a symmetric positive definite matrix, E be a matrix
with full column rank and T (α, β) be defined as in (12). Assume λ is an eigenvalue
of the AMSSP iteration matrix T (α, β), and suppose (uT , vT )T is an eigenvector
corresponding to λ. Then the eigenvalue λ of T (α, β) satisfies
(1) λ ̸= ±1.
(2) u ̸= 0.
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(3) If v = 0, then ρ(T (α, β)) < 1.

Lemma 3.2.( [39]) Both roots of the real quadratic equation x2 + bx + c = 0
are less than one in modulus if and only if |c| < 1 and |b| < 1 + c.

Theorem 3.3. Let B be a symmetric positive definite matrix, E be a matrix with
full column rank and T (α, β) be defined as in (12). Then for any positive iteration
paramet er α, β, the spectral radius of the AMSSP iteration matrix T (α, β) satisfies

ρ(T (α, β)) < 1, (3.4)

i.e., the AMSSP iteration method unconditionally converges to the unique solution
of the saddle point problem (1).

Proof. From Lemma 3.1, we can find λ ̸= 1. Then (15) yields the following result

v =
βλ− β + 1

α(λ− 1)
ETu. (3.5)

This means by replacing the above relationship with (14)

α2(λ− 1)2u+ α(βλ− β + 1)(λ− 1)Bu+ (βλ− β + 1)2EETu = 0. (3.6)

Based on Lemma 3.1, we may get x ̸= 0. Divided the sides of the equation (18) by
uT

uTu
, it holds

α2(λ− 1)2 + α(βλ− β + 1)(λ− 1)
uTBu

uTu
+ (βλ− β + 1)2

uTEETu

uTu
= 0. (3.7)

For the convenience of discussing convergence, we assume that

σ =
uTBu

uTu
> 0 and θ̃ =

uTEETu

uTu
≥ 0, (3.8)

if θ̃ > 0, we use θ to denote θ̃, then it holds that σ ∈ [σmin, σmax] and θ ∈ [θmin, θmax]
with θmin > 0. After a simple calculation, we have

λ =
α+ (β − 1)σ

α+ βσ
, with θ̃ = 0, (3.9)

or for θ̃ = θ, it holds that

(α2 + βσα+ 4θ)λ2 − (2α2 + 2βσα− σα+ 4θ)λ+ (α2 + βσα− σα+ θ) = 0. (3.10)

Using lemmas 3.2 and equations. (22) , we know that the eigenvalue |λ| < 1 if and
only if

α2 + βσα− σα+ θ

α2 + βσα+ 4θ
< 1 (3.11)

and
2α2 + 2βσα− σα+ 4θ

α2 + βσα+ 4θ
< 1 +

α2 + βσα− σα+ θ

α2 + βσα+ 4θ
. (3.12)

Thus, the proof of theorem 3.3 is completed.
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4. Numerical examples
To further assess the effectiveness of the block preconditioned matrix P−1

MSSPA
combined with Krylov subspace methods, we present a sample of numerical ex-
amples which are based on two-dimensional time-harmonic Maxwell equations in
mixed form in a square domain (−1 ≤ x ≤ 1,−1 ≤ y ≤ 1) (k = 0) with constant
coefficients: find the vector field u and the multiplier p such that vector field u and
the multiplier p such that

∇×∇× u+∇p = f in Ω,

∇ · u = 0 in Ω,

u× n = 0 on ∂Ω,

p = 0 on ∂Ω.

(4.1)

Here, Ω ∈ R3 is simply a connected polyhedron domain with a connected boundary
∂Ω and n denotes the outward unit normal on ∂Ω. The datum f is a given generic
source.

In all our runs we use a zero initial guess and stop the iteration when the relative
residual had been reduced by at least six orders of magnitude (i.e, when ∥b−Axk∥2 ≤
10−6∥b∥2). For the simplicity, we take the generic source: f = 1, P = In, Q = Im
and a finite element subdivision such as Figure 1 based on uniform grids of triangle
elements. Three mesh sizes are considered: h =

√
2
8 ,

√
2

12 ,
√
2

18 . The solutions of the
preconditioned systems in each iteration are computed exactly. Information on the
sparsity of the relevant matrices on the different meshes is given in Table 1, where
nz(A) denotes the number of nonzero elements of the matrix A.

Figure 1. A uniform mesh with h =
√

2
4

Since the new preconditions have two parameters, we will test different values
in numerical experiments. Numerical experiments show the spectrum of MSSP pre-
conditioned matrix P−1

α A and AMSSP preconditioned matrix P−1
α,βA when choosing

different parameters, which coincides with theoretical analysis.
In Figures 2, 4 and 6 we display the eigenvalues of the preconditioned ma-

trix P−1
α A in the case of h =

√
2
8 , h =

√
2

12 and h =
√
2

18 for different param-
eters. In Figures 3, 5 and 7 we display the eigenvalues of the preconditioned
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Table 1. datasheet for different grids

Grid m n nz(B) nz(E) order of A
8× 8 176 49 820 462 225
16× 16 736 225 3556 2190 961
32× 32 3008 961 14788 9486 3969
64× 64 12160 3969 60292 39438 16129
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Figure 2. The eigenvalue distribution for the block preconditioned matrix P−1
α A when

α = 0.1(the first), α = 0.3(the second),α = 0.5(the third) and α = 0.6(the fourth),
respectively. Here, h =

√
2
8
.

Table 2. Iteration counts and time for preconditioned matrices P−1
α A and P−1

α,βA when choosing
different parameters. Here, h =

√
2

8 denotes the size of the corresponding grid.

α ItBICGSTAB(P−1
α A) ResBICGSTAB(P−1

α A) α β ItBICGSTAB(P−1
α,βA) ResBICGSTAB(P−1

α,βA)

0.1 4.5 2.2539× 10−7 0.1 5 3 6.4137× 10−7

0.3 9 9.8896× 10−7 0.3 6 4.5 2.2539× 10−7

0.5 17.5 2.1209× 10−7 0.5 3 11 8.9695× 10−7

0.6 19.5 7.6311× 10−7 0.6 5 7.5 5.7425× 10−7

α ItGMRES(P−1
α A) ResGMRES(P−1

α A) α β ItGMRES(P−1
α,βA) ResGMRES(P−1

α,βA)

0.1 9(1) 7.7749× 10−7 0.1 5 7(1) 5.4037× 10−7

0.3 18(1) 7.6945× 10−7 0.3 6 9(1) 7.7749× 10−7

0.5 26(1) 5.5802× 10−7 0.5 3 19(1) 9.5444× 10−7

0.6 29(1) 9.2663× 10−7 0.6 5 15(1) 8.5127× 10−7

matrix P−1
α,βA in the case of h =

√
2
8 , h =

√
2

12 and h =
√
2

18 for different param-
eters. Figures 2–7 show that the distribution of eigenvalues of the preconditioned
matrix confirms our above theoretical analysis. In Tables 2–4 we show iteration
counts for the preconditioned matrices P−1

α A and P−1
α,βA, when choosing different

parameters and applying to BICGSTAB and GMRES Krylov subspace iterative
methods on three meshes, where ItBICGSTAB(P−1

α A) and ResBICGSTAB(P−1
α A) are
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Figure 3. The eigenvalue distribution for the block preconditioned matrix P−1
α,βA when

α = 0.1, β = 5(the first), α = 0.3, β = 6(the second),α = 0.5, β = 3(the third) and
α = 0.6, β = 5(the fourth), respectively. Here, h =

√
2

8
.
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Figure 4. The eigenvalue distribution for the block preconditioned matrix P−1
α A when

α = 0.1(the first), α = 0.3(the second),α = 0.5(the third) and α = 0.6(the fourth),
respectively. Here, h =

√
2

12
.

the iteration numbers and relative residual of the preconditioned matrices P−1
α,βA

when applying to BICGSTAB Krylov subspace iterative methods, respectively.
ItGMRES(P−1

α A) and ResGMRES(P−1
α,βA) are the iteration numbers and relative resid-

ual of the preconditioned matrices P−1
α A when applying to GMRES Krylov sub-

space iterative methods, respectively. ItBICGSTAB(P−1
α,βA), ResBICGSTAB(P−1

α,βA),
ItGMRES(P−1

α,βA), ResGMRES(P−1
α,βA) have similar definitions.
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Figure 5. The eigenvalue distribution for the block preconditioned matrix P−1
α,βA when

α = 0.1, β = 5(the first), α = 0.3, β = 6(the second),α = 0.5, β = 3(the third) and
α = 0.6, β = 5(the fourth), respectively. Here, h =

√
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12
.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Real

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Im
a

g
in

a
ry

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Real

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Im
a

g
in

a
ry

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Real

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Im
a

g
in

a
ry

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Real

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Im
a

g
in

a
ry

Figure 6. The eigenvalue distribution for the block preconditioned matrix P−1
α A when

α = 0.1(the first), α = 0.3(the second),α = 0.5(the third) and α = 0.6(the fourth),
respectively. Here, h =

√
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.

Remark 4.1. From the above figures and tables, we know that the modified block
preconditioner P−1

α,β has the same spectral clustering as the preconditioner P−1
α A

when choosing the optimal parameters.
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Figure 7. The eigenvalue distribution for the block preconditioned matrix P−1
α,βA when

α = 0.1, β = 5(the first), α = 0.3, β = 6(the second),α = 0.5, β = 3(the third) and
α = 0.6, β = 5(the fourth), respectively. Here, h =

√
2

18
.

Table 3. Iteration counts and time for preconditioned matrices P−1
α A and P−1

α,βA when choosing
different parameters. Here, h =

√
2

12 denotes the size of the corresponding grid.

α ItBICGSTAB(P−1
α A) ResBICGSTAB(P−1

α A) α β ItBICGSTAB(P−1
α,βA) ResBICGSTAB(P−1

α,βA)

0.1 6.5 5.9457× 10−7 0.1 5 4 5.2489× 10−7

0.3 22 9.6384× 10−7 0.3 6 6.5 5.9457× 10−7

0.5 45.5 3.7234× 10−7 0.5 3 27.5 5.8299× 10−7

0.6 55.5 8.7840× 10−7 0.6 5 17 9.5169× 10−7

α ItGMRES(P−1
α A) ResGMRES(P−1

α A) α β ItGMRES(P−1
α,βA) ResGMRES(P−1

α,βA)

0.1 15(1) 4.9104× 10−7 0.1 5 9(1) 3.2480× 10−7

0.3 33(1) 5.5752× 10−7 0.3 6 15(1) 4.9104× 10−7

0.5 50(1) 7.9397× 10−7 0.5 3 36(1) 5.5689× 10−7

0.6 58(1) 7.9814× 10−7 0.6 5 28(1) 4.0712× 10−7

Table 4. Iteration counts and time for preconditioned matrices P−1
α A and P−1

α,βA when choosing
different parameters. Here, h =

√
2

18 denotes the size of the corresponding grid.

α ItBICGSTAB(P−1
α A) ResBICGSTAB(P−1

α A) α β ItBICGSTAB(P−1
α,βA) ResBICGSTAB(P−1

α,βA)

0.1 13 9.2683× 10−7 0.1 5 6.5 1.4240× 10−7

0.3 66.5 2.6147× 10−7 0.3 6 13 9.2682× 10−7

0.5 111.5 9.6254× 10−7 0.5 3 72.5 5.5149× 10−7

0.6 141.5 5.7863× 10−7 0.6 5 49.5 1.7692× 10−7

α ItGMRES(P−1
α A) ResGMRES(P−1

α A) α β ItGMRES(P−1
α,βA) ResGMRES(P−1

α,βA)

0.1 27(1) 3.9182× 10−7 0.1 5 14(1) 4.7574× 10−7

0.3 66(1) 9.2262× 10−7 0.3 6 27(1) 3.9182× 10−7

0.5 102(1) 8.7194× 10−7 0.5 3 73(1) 7.5543× 10−7

0.6 118(1) 8.6680× 10−7 0.6 5 55(1) 6.4807× 10−7
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5. Conclusions
In this paper, based on modified shift-splitting (denoted by MSSP) iteration tech-
nique by Huang and Su [30], we establish a accelerated (named after AMSSP) itera-
tive method for nonsymmetric saddle point problems. Furthermore, we theoretically
verify the AMSSP iteration method unconditionally converges to the unique solution
of the saddle point problems, compute the spectral radius of the AMSSP iteration
matrix. Finally, numerical examples show the spectrum of the new preconditioned
matrix for the different parameters.
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