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A PRIORI ESTIMATES FOR THE
FIFTH-ORDER MODIFIED KDV EQUATIONS
IN BESOV SPACES WITH LOW
REGULARITY™

Mingjuan Chen' and Minjie Shan?f

Abstract We get a priori estimates for the fifth-order modified KdV equa-
tions in Besov spaces with low regularity which cover the full subcritical range.
These estimates are obtained from the power series expansion of the perturba-
tion determinant associated to the Lax pair. More precisely, we get the global
in time bounds of the B3 , norm of the solution for —1/2 <s < 1,1 <r < o0.
Then we can obtain the sharp global well-posedness in H® for s > 3/4, which
is the minimal regularity threshold for which the well-posedness problem can
be solved via the contraction principle.
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1. Introduction
We are interested in the fifth-order modified KdV equations (5th-mKdV)

Gt + Qezzar T 10q2q:mcac =+ 10(%)3 + 40942 e + 30(]4%5 =0, Q(Iv 0) = QO(-T) (1~1)

which are the second equations from the modified KdV hierarchy [5,11]. ¢ = ¢(z,t)
is a real-valued function, and the signs + and — in front of the third order derivative
nonlinearities represent the focusing and defocusing cases, respectively. Equations
(1.1) can be used to describe nonlinear wave propagation in physical systems with
polarity symmetry.

Like the KdV equation and the mKdV equation, the 5th-mKdV equations are
completely integrable in the sense that they admit Lax pair formulations [10, 13],
thus one can show that the solution exists globally in time for any Schwartz initial
data. For the low regularity initial data, one can apply the theory of dispersive PDEs
to get the local well-posedness [9] and use I-method introduced by Colliander-Keel-
Staffilani-Takaoka-Tao [3] to extend the local solution to a global one [10]. To be
specific, the best and sharp local well-posedness theory was obtained by Kwon [9]
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via Bourgain method, where he showed that Equations (1.1) are locally well-posed
in Sobolev space H*(R) for s > 3/4 , and are ill-posed when s < 3/4 in the sense
that the solution map fails to be uniformly continuous. Later the first author and
her co-authors [10] showed that Equations (1.1) are globally well-posed in H*(R)
for s > 19/22 by utilizing I-method. However, there is still a gap between 3/4 and
19/22; and the obstacle of getting global solutions in lower regularity spaces is the
lack of conservation laws. The main goal of this paper is to solve this problem, and
we even obtain that the Besov norm of the solution is essentially conserved in all
subcritical cases.

Theorem 1.1. Fiz —1 <s<1and1<r <oo. Let q(t) be a Schwartz solution to
5th-mKdV (1.1). Then there exists a nondecreasing function Cs : [0,00) — [0, 00)
such that

sup [lg(t)]l 5, S Cs(llqoll s, )- (1.2)
teR ’

Time translation symmetry yields that it also has a lower bound.

Remark 1.1. Equations (1.1) enjoy the scaling symmetry:
g qa(z,t) = Ag(Az, At).

This implies that [|gx(z,0)]| g-1/2 ~ ||go(x)|| g-1/2 is invariant, i.e. s = —1/2 is the
critical regularity index. So the result in Theorem 1.1 covers the full subcritical
range.

Therefore, the sharp local well-posedness in Sobolev space H*(R) for s > 3/4
yields the following global well-posedness result. Furthermore, the long-time asymp-
totic behavior of solutions to 5th-mKdV (1.1) in [10] can also be improved to hold
in lower regularity weighted spaces H3/%1.

Corollary 1.1 (Sharp global well-posedness). Let s > 3/4, the initial value prob-
lems of 5th-mKdV (1.1) are globally well-posed from initial data qo € H*(R).

Remark 1.2. For —1/2 < s < 3/4, the well-posedness theory can not be solved
via the contraction principle. One must loosen the continuous dependence of the
solution on initial data, and may get the non-analytical well-posedness theory. This
is an interesting problem just like the ones [2,4, 6].

The main idea is from Killip-Visan-Zhang [7] where they obtained the conser-
vation laws for KdV, NLS and mKdV equations. We know that Equations (1.1)
belong to the classical ZS-AKNS system [1,14] and admit Lax pairs of the following
form:

Z—L(t;n):[P(t;n),L(t;n)] with Litim) = | 0o @)
¢ Fqlxr) -0, — K

and some operator pencil P(t; k) which will play no role in this paper. We define
the perturbation determinant

oo

-1
atsia) =3 E el (-0 a0 a0 Y (1)

(=1
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which formally represents

—0p + k)1 0 —0y +
Flogdet ( *) w o ae) . (1.4)

0 (—0; — k)7t Fqlxr) =0y — K

We will show that a(k;q) is conserved under the 5th-mKdV flow in section 3. Then
the error terms can be controlled by the main term of «(k; ¢), which gives the result
(1.2) for —1/2 < s < 0. For 0 < s < 1/2, we consider a difference of «a(x) and
a(r/2) to extend the regularity range. Finally, by a more precise estimate (2.8) the
result for 1/2 < s < 1 can be obtained from the result s = 1/4.

2. Notations and Preliminaries

We denote .(R) the Schwartz space, and ¢ the Fourier transform of a distribution
¢. We write a < b to mean that a < Cb, and analogous for a = b. We use the
notation a ~ b if @ < b < a. Define the L2-based Besov spaces via the norms

LS rsi| £l 1/r
IfllBs, = (||fHL2(|€|§1) + > N Hf||L2(N<|§|§2N)> ; seER, 1<r<oo
Ne2v

where the sum in N is taken over dyadic number 2 := {1,2,4,8,...}, and with
the usual interpretation when r = oco.

We recall the ideas and notations which the researchers used in [7,12]. Let A
be an operator on L?(R) with continuous integral kernel K (z,y). The trace of A is
defined by

tr(A) = /K(m,x)dw.
If A is a Hilbert-schmidt operator with integral kernel K (x,y) € L?(R x R), then

o) = [[ KoK pa)dady,

and
JAJ2, = tr(AA") = / / IK (2, y) [2dady.
R2

Nevertheless, we find it is more convenient to consider our problem on the Fourier
transform form as the following lemma.

Lemma 2.1. Suppose that the operator A is given on the Fourier side by

Af(e) = / m(&,m)f (n)dn,

then the following results hold
T3 = [ w8 mn (21)
w) = [meds A3 =[] mEnPaan @)
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Moreover, if Ay, Ag, -+ A, are Hilbert-Schmidt operators with Fourier kernels
mi, Ma, - My, then

tr(A1As--- Ay) = my(&1,&2) - mn(&n, &1) d&y - - déy. (2.3)

Rn

Proof. By Plancherel and Fubini’s theorem, we know (2.1) follows from

At.g) = [ [ men i 5@ds = [ [ f - miEmo©dedn = (7, 27%).
By Fubini’s theorem, we have
j[v%g ) f(m)dn = jg37n<s,n>e“$€*y">dfdn f(y)dy,

so the trace of A is

/medx—/ m(&,n)e “”(5 Mdedn da

— [[ mie.mate - magan = [ mic,e)ae.

Therefore, combining this with (2.1), we immediately get

A3, = tr(a") = [[ i, agan
By the definition, we know

<g\(AlA? e Anf)(fl) = ml(gla 52) U mn(gna gn-&-l)f(gn—&-l) d§2 o dgndfn-ﬁ—l)

R

thus (2.3) follows from (2.2). O
In the following, we summarize some important lemmas.

Lemma 2.2 (Lemma 1.5, [7]). Let t — A(t) define a C* curve in Jo. Suppose

1
At < 3.

Then there is a closed neighborhood I of ty on which the series

Lemma 2.3. For any k > 0 and g € .7 (R), the following estimates are true:
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(i) (Lemma 4.1, [7]): The Hilbert-Schmidt norm of the generator in (1.3) is as
follows

(n—am)_l/gq(ﬁ—&—a )~ 1/2 =|(k+0,)" 1/2 a(k ax)—l/Q 2
H =

J2(R)

o 4 € 4O d€
/ng(4+H2) e (2.6)

(i) (Lemma 4.2, [7]): The leading term in the series (1.3) is given by

214 d€
~1
tr{(k — 8;) 'q(k +:) " 'q} = / PP (2.7
(iii) (Lemma 8.2, [8]): Let £ > 2 and s > 1/4, then the following trace estimates

hold

— — L —
[or{ (05— ) g+ 00) 1)} S 6 ). (29)
Lemma 2.4 (Lemma 3.2 and Lemma 3.5, [7]). For k > ko > 1, define
K2 K 3k2€2
1/r
and flzzg, = (X N w i mN) ) L =12 (9

Ne2N
Then for —1 <0 <0, -1<s<1andl<r <oo, we have

1fllBg, S Wfllzzr, S w07l fllBsg,; (2.10)
and || f| (2.11)

B§TN||f||H°+’fO||fHZ” Hf”zh " S Ko

3. Conservation of the perturbation determinant

Proposition 3.1 (Conservation of a(x;q(t))). Let q(t) be a Schwartz solution to
5th-mKdV (1.1). Then

d
“alma(t) =0

as soon as Kk 1s large enough such that

ey la(§)]* dg
/Rlog(4+ 57) Ner= <c (3.1)

holds for some absolute constant ¢ > 0.

Proof. Note that we can rewrite (1.1) as

Gt + Qeozaes T 5((]((]2)3:35)30 + 6((]5)35 = 0.

Since (2.6) and the condition (3.1) hold, by Lemma 2.2 the series of «a(x;q(t))
converges and can be differentiated term by term, that is
d (o]

(k1)) u(ﬂ)“tr{((n —0.) gl +0,) )"
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x |05 = )l + 02) Mg+ (5= 02) Mol + 02) ] }

Z (+1)4- 1tr{ (5 — 02) q(r+02)1g) "

% | (5 = 02) 7 (damswe & 50(0%)an)a + 6(a7)2) (5 4+ 0)

(5= 0:) 7 a0+ 02) 7 (Gamran £ 5(a(0P)a)e + 6(a%)2) | .

For convenience, denote A(q) := (k — 9,) " 1q(k + 0,) ~'q. It suffices to prove that

tr{Ae(Q) [(KJ — 02) M oawwa (K + 0) Mg+ (15— 0p) Ma(r + am)—lqmm} }

+5 tr{A‘*l(q) [(n — 02) M (@(¢Y)a)a (5 + 02) " 1q

(5= 0) alk + 02) M a0 e | } (3.2)
—_6 tr{AM(q) [(n —0,) " H¢®)u(k 4+ 0.) " Yg

(5= 0) Nl + 0,) e b Ve

6 { A@)[(k = 07 drnzan (4 0) 70+ (5 = ) "k + 0) o |
== 5 tr{ | (v = 0) 7 (a(eM)ae)s (5 4+ 0) g (33)
(5= 0) M alk + 02) a0 e |},

and

] [ (5 = 02) " e (0 02) 7+ (5 = ) (5 + 02) M amaan| } = 0. (3.4)
To prove (3.2), we recall the identity

Greaze = 00q — 582q0, 4+ 1002q0? — 1002982 + 50,q0* — 7.

In order to absorb (k — 9,)~! and (k+ 9,)~! from the left or right side, we rewrite

Grzzos =(00 + 5k0; + 106202 4+ 10502 + 510, — 15x°)q
— q(05 — 5K0; + 10K292 — 10502 + 5k 9, + 15K7)
+5(k = 0,) |02 — g2 — 20240 + 20,402
+ 3KQpe + 2k0,q0, + SR Qe + 6/<;3q} (k+ 0z);
Grzooe = — q(05 + 560, + 106792 + 10k°92 + 5k, — 15k°)
+ (02 — 5K0; 4+ 105°02 — 10502 + 5K%0, + 15k°)q
+5(k + 0y) [3§q — q02 — 202q0, + 20,q0?

— 3KQee — 260,90, + 5K2qr — 6K3q| (K — 0.
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The contribution of the first two terms from each identity cancel each other when
they were inserted into (3.2), then

tr{ A°() (5 = 02) a5+ 0) 'q+ (5 = 02) 0l + 02) e | |
= 5tr{Ae_1(q) {(K —0,) tq(k +0,) "' T (q)
+ (k= 0.) " Tolq)(x + ) g }. (3.5)
where

Ti(q) =q03q° — ¢*9q — 2q02q0,q + 2q0.q02q

+ 3k¢% Que + 2690,q02q + 5522 qp + 6K3¢5;
T»(q) =q03¢° — *92q — 2q02q0.q + 2q0.q02q

— 3kG% Qe — 26902q0:q + 5K2¢Pqr — 6K°¢°.

Note that
4026 — 2902q0.q = q0%(2qqx + ¢*0:) — 209%q(qx + q0,)
= - xqaxQQaw + qgcaxQZBav;
—q*03q + 2q0,90%q = —(9:¢° — 2942)92q + 2(02q — 42)q02q
= $q28xq$ + 3xq23xq5x,
then
q03q* — ¢*92q — 290290,q + 290,902q = 0:4%q20s + (¢*quz ) - (3.6)

To absorb (k—9,)~! and (k+0;)~! from the left or right side again, we can rewrite

aquqgcam = *(/‘5 + az)‘f‘]z(’i - a:c) + H(QQQz)z + ﬂzqz%c;
8wQQQI8x = _(K - 8ac)q2q$(/"6 + 690) - "{(Qqu)z + 52(]2(]30’ (37)

and

(qZsz)z = ("f + 3z)q2sz + q2QIz(/€ - ax) - 2’“]2sz§
(qzq:mc):c = _(/Q - 6ac)q2qgcac - qux:C(K + 83:) + 2”€q2qgcx~ (38)
Similarly, we can obtain

2kQ0;q0,q = —2k(K + 8z)q3(ﬁ —0y) + ﬁ(qzqm)m + kG2 Qas + 263¢% + 6K%¢° ¢,

—2kq0;q0,q = 2k(Kk — (’9_,,3)113(% +0:) — H(qux)x — kP Qus — 263¢% + 6K%¢% .
(3.9)

Therefore, from (3.6)-(3.9) we have

Ti(q) =(k + 02)(@° oo + 46°¢") + (¢*Gae + 467¢%) (15 — Oy)
- (“ + az)qzqr(” - ax) - 2”(” + 895)(]3(/& - C{h) + 2“(‘]2(]:6)% + 2’“12(19%;
Ta(q) = — (k — 02) (@ qua + 46°¢°) — (*qua + 46°¢°) (K + Oy)
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- (” - ax)qzqm(” + am) + 2’{(/{ - am)q?)(” + az) - 2”(‘]2(]1)1 - 2’“]2‘19%'

The contribution of the first two terms from each identity cancel each other again.
For the second term of (3.2), rewriting

(q(qQ)JJJJ)JJ = _(K‘ - 8I)q(q2)lw - Q(q2)wx(“<‘ + 81) + QKQ(QQ)QM';
(Q(QQ):M)JC =(k+ am)‘l(qz)m + CI(QQ)M(“ —0z) — 2"“](‘]2)00%

and bearing ¢(¢?)zz = (¢°¢z)z + ¢*¢ee in mind, then we can get from (3.5) that
LHS of (3.2) = — tr{A"2(q) (5 = 0,) 7 ((¢")a + 1050°) (5 + 01) g
+ (5= 0) Ml + 0,) "M ((6%)e — 1080°)] |- (3.10)

Note that

(@°)z = = (K = 02)q” = ¢° (5 + 0) + 26¢° = (K + 0a)q” + ¢° (K — Oa) — 26¢°,
we obtain from (3.10) that

LHS of (3.2) = — 6 tr{AH(q) [(/{ —0,) "M (260°) (5 + 02) g
+ (k= 0p) gk +0.) " (- 2nq5)} }
— RHS of (3.2).

For (3.3), its proof is similar and easier, we can get that
LHS of (3.3) = 5tr{ [—(K) — 8.) " MePqw + 26q") (5 — B2) — P + zmqﬂ }
5
= —Sur{(g')} =0,

where (¢*), is a complete derivative and ((m)(f) = [i(€— n)q* (€ —n)f(n)dn,
so its trace is zero (see (2.2)). For (3.4), we consider it on the Fourier transform
point and use (2.3), then

B (i(& — &)° +i(& — &)%) 46 — £)4(& — &)
s of (3.4 = [ (r—i€0) (5 + %)

The proof of Proposition 3.1 is completed. O

d§y1d&s = 0.

4. Proof of Theorem 1.1

(1) s € (—%,0). The proof of this case is due to the work in [7] considering the NLS
and mKdV equations. We still give the details for the sake of completeness. From
(2.6) and (2.10), we know that for k > ko, —% <s<0and1<r < oo,

H(H - 8«70)_1/2(1("€ + a:z:)_l/Q j

J2(R)
1/ 2 log(2+/@3N2/€_2)/ o
S - G(o)° de + G(o)|? de
k \f\Sﬁol @l Z k+ ko N noN§\§\§2ﬂoN| @l

Ne2N
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log(2 + k3 N?k~2) K3N? .
0> o [ P e
K+ koN 4k§N2 + €]
Ne2N
log(2 4+ kK2N2k—2 K2 N2 . 1/2\ 2
: ( 2 <n+2 N ) '(/41421\702+|§|2|q(5)|2d5)
Ne2n 0 0
o rlog(2 4+ KENZ2KT2)\ /2N 1/ 2
(T (e ) ) e,
Ne2n 0
s|— —2|s s|—
< K2 | lH‘l||QZ§;;1 < K251 ql %i’Z’ (4.1)

where we used I' < [? and Holder’s inequality in the fourth line and fifth line,
respectively. Besides, by breaking the sum into the cases N < k/kg and N > k/kg,
one readily sees that

( Z Nfsr/ (10g(2 + K%N2572))T//2) 1/T/ < /Q_IS‘,L{'Sl*%.
NeaN (k + Ko N) ~e

In order to ensure (3.1), we can choose
1
ko = C(1+ lg(0) 3 ) =57 (42)

with some large absolute constant C, such that the series of a(x;q(t)) converges
and Proposition 3.1 holds, then there is a closed interval I containing 0 on which
the following estimate holds

4
ERAN
Zon

a(k, q(t) — trf (s — 0y) ""q(k + 0) g} | < wg RI2 g (1))

Then by the conservation of a(k, q(t)), we have from (2.7) that

26| e o —4ls] _als|~2|| (5) 4
[ T te S atnat) +n a0

4
s,
an,l

= a(k, q(0)) + kg K112 g (1)

—

26lg(O)E) ;. —als] aje
< /ﬂwdf+no4' W2 (gl + la(O) 32 ).

Therefore,

—

rs( [ KEN?[q(0)(&)
P ([t e e
/2 1/r
%) )

2 _1
2z, ] + [ * lao)]

_1 _1
a0l 5

g N (g (0) [+ la0)

1 _1
kg a0z, + [0 la(®)]

2
Zi;f,l} :

For kg as in (4.2), we have from (2.10) that

—3+ls| -1
zr, Sk MNg0)lls;, S C12,

ko * [lg(0)]
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then by choosing C' large enough and a simple continuity argument, we can get

la@®llzzr, < lgO)lz;r, (4.3)
uniformly in time. Then from (2.10) and (4.2) we obtain
9 17‘72‘\34 1
la®lizs, S laOlzs, (1+1aOll;, )7 —5<s<0. (@4)

(2) s € [0,3). We will use the results of the first step to extend the range of s.
For —3 <o < O we obtain from the conservation of «, (2.7), (4.1) and (4.3) that

g(t), wa(=ide, 5)q(t)) — (q(0), wa(—id, k) <o>>\

<|{g(t), w1 (i, )q(1)) — (q(0), wy(~iDy, K)q(0))]

+1(g(t), wi(~ids, 5/2)q(t)) — (g(0), w <—zax,n/2> (0))]

(6= 027 2a(0) 50223y 1105 = 00) 7 2a(0) 54007 )
SEI g 1 g5 S A1 Ig(0)]1 g -

Therefore for any 0 < s < %, we may choose some o € (—%, 0) so that s < 20 + %,
from (2.11) and the result (4.4) in the first step we know that

1/r
rs r/2
||q<t>|B;,~|q<>|Ha+no(ZN (a(t), wa(=idy, moN)a(®)) )
Ne2N
+2‘| . 1/r
S la@)lme + wolla()ll 2z, + w5 (Z N“HU-») la(0) 1%,
Ne2N
lo]
—2]o] —s 3+2[0]
S gl (1+ 1)) ™ + w5 laO)lls, + x5 la(0) g,

2
< lla(0)ls, (1+ 19O)l3;)

1
where ko = C(1 + ||q(0)||220 )T72T as in the first step. Thus the desired result
(1.2) for 0 < s < 1 is obtained.

(3) s € [$,1). From (2.8), in order to ensure that £~3/4||q(t)|| 1/ < ¢ uniformly
in time, from the result in the second step we can choose

10/3
ko = C (14 [lg(O)I7/4)

Then for k > kg, we have

(a(t), wa(=i0s, K)q(1)) < (a(0), wa(=i0s, £)q(0)) + £~ (la(®)l|z71/4 + la(0)[I51/4)-

Soforany%§s<1,

la®)llz;,,

Slg@) /s + wollg(0)]

1/r
gt (X N0) T (a0 + 14O )

Ne2N
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2
a0 g+ (1+ 1a(0)[32) -+ 15~ lla(0)

Sllg(0)]

By, T (g NFss + 1gO)13/4)

5
B, (1 + HQ(O)||2B§7) .

Therefore we get the desired result (1.2) for 2 < s < 1.
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