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INFLUENCE OF INITIAL RAMP ON
CONVOLUTIONAL NONVISCOUS DAMPING

MATERIALS∗

Guozhong Xiu1, Bao Shi2,† and Liying Wang3

Abstract In this paper, taking the stress relaxation test of viscoelastic mate-
rial as an example, the viscoelastic materials used in the test are characterized
by the convolutional nonviscous damping model. When the kernel function of
the convolutional nonviscous damping model is taken as the power exponen-
tial function and the exponential function respectively, the influence of the
initial ramp on the stress change is proved theoretically and numerically. This
will affect the accuracy of parameter determination of fitting the convolutional
nonviscous damping model.
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1. Introduction
In recent years, more and more scholars describe that new materials, biomimetic
materials, polymer materials, and polymer viscoelastic materials adopt integral con-
stitutive model, that is, convolutional nonviscous damping model (cf. T. Abbasi,
F. Faraz and S. Abbas [1], M. Lázaro and L. García-Raffi [11] and R. Shen, X. Qian
and J. Zhou [18]). The convolutional nonviscous damping model is represented by
the following Volterra type integro-differential equation

σ(t) =

∫ t

−∞
G(t− τ)dϵ(τ) = G(t)⊗ dϵ(τ),
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G(t) =

n∑
k=1

Ckgk(t),

where σ(t) and ϵ(τ) represent the stress and strain of the convolutional nonviscous
damping model respectively, ⊗ is called the Stieltjes convolution, G(t) is the kernel
function, Ck is a damping coefficient matrix, gk(t) is the damping function, and n
is the number of relaxation parameters describing different damping mechanisms.

When the kernel function G(t) = Cδ(t), that is, when G(t) takes the Dirac
delta function, the damping model is the traditional viscous damping model Cẋ(t).
Therefore, it can be said that the convolutional nonviscous damping model is the
general form of viscous damping model.

When the damping function takes the exponential function, that is g(t) = µe−µt,
where µ is the relaxation factor of the convolutional nonviscous damping model.
This model is called exponential damping model.

When the kernel function G(t) takes the form of Abel kernel function of the
decay power function, the convolutional nonviscous damping model is the fractional
derivative model.

This model has many advantages: (1) It can fit the experimental data in a wide
frequency range with fewer parameters (usually 3-5) to describe the mechanical
properties of the material more accurately; (2) It not only conforms to the princi-
ples of thermodynamics and molecular theory, but also can describe the memory
decay effect of materials and record the load time history acting on materials; (3)
From the mathematical point of view, the form of the differential equation of the
damped vibration system formed by this model is concise, which is more conducive
to theoretical analysis.

In recent years, with the wide application of modern industrial materials, more
and more new materials, biomaterials and biomimetic materials appear in large
quantities. The traditional viscous damping model can not reflect the actual struc-
tural characteristics and complex damping energy dissipation characteristics of ma-
terials. Convolutional nonviscous damping model is a new damping model devel-
oped in the past 30 years. More and more researchers at home and abroad use
the convolutional nonviscous damping model to model the constitutive relationship
of viscoelastic materials. Therefore, the model has been developed rapidly and
gradually become a powerful modeling tool to describe the mechanical properties
of viscoelastic materials. S. Adhikari team has been doing more in-depth research
and discussion on the model in the past two decades (cf. S. Adhikari [3, 4] and S.
Adhikari, D. Karličič and X. Liu [5]), including the dynamic analysis, modal iden-
tification and other aspects of the model. Mario Lázaro, a famous scholar at the
Universitàt Politecnica de València in Spain, has studied the model for nearly two
decades and published a large number of academic monographs and high-quality
papers (cf. M. Lázaro [11] and M. Lázaro and L. García-Raffi [12, 13]). There are
also many scholars, such as Li Li’s team from Huazhong University of Science and
Technology and Ding Zhe’s team from Chinese University of Hong Kong, who have
conducted extensive research on the model, and have achieved rich research results
(cf. Z. Ding, L. Zhang and Q. Gao [7], X. Du, W. Guo and H. Xia [10], L. Li and
Y. Hu [14], L. Li, R. Lin and T. Y. Ng [15] and G. Xiu, B. Shi and F. Qian [22]).

The mechanical properties of convolutional nonviscous damping materials are
obtained by stress relaxation test or creep test. In the stress relaxation test, it
is usually assumed that the strain reaches the set value through the step function
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at the initial time under the ideal state. However, in the actual test, it takes a
time process to reach the set strain value. As for the length of time, it is closely
related to the tester, equipment and other factors. we call this process from the
initial moment to the fixed strain the initial ramp. Because of the existence of this
time process, there must be an initial ramp. We assume that the initial ramp is
linear. Since the convolutional nonviscous damping material has a long historical
memory performance, applying prestress to the sample will affect the fitting of the
data in the test, thus affecting the accuracy of the parameters of the convolutional
nonviscous damping model.

In this paper, the kernel function of the convolutional nonviscous damping model
is divided into two forms for research and discussion. One is the form of power ex-
ponential function, and the other is the form of exponential function. Taking the
stress relaxation test as an example, it can be proved theoretically and experimen-
tally that the initial ramp has an impact on the stress change, thus affecting the
accuracy of the parameter determination of the convolutional nonviscous damping
model.

2. Influence of initial ramp when the kernel function
is a power exponential function

For the full mechanical properties of convolutional nonviscous damping materials, it
has to be taken into account the time evolution of stress and strain history, that is,
the stress history σ(t) and strain history ϵ(t). For this reason, the classical tensile
test is not able to describe the time-dependent stress-strain relation and we need
another type of experimental test. Exist two fundamental tests to characterize the
viscoelastic material, such tests are known as creep and relaxation test. The creep
test aims to evaluate the time evolution of the strain response due to an imposed
stress history which follows a unit-step function. Conversely in the relaxation test
is carried out the measurement of the response in terms of stress history duo to an
imposed strain history which follows a unit-step function. Both the aforementioned
tests are idealizations. For this reason, the real creep and relaxation tests are
different respect to the theoretical mentioned description because the test machines
using for these tests are not able to reproduce a unit step function both in imposed
stress and or strain history, as shown in Fig. 1.

On the other hand the reference standard (ASTM E328-02 Standard, 2002),
for stress relaxation tests for materials and structures give not specific indication
regarding to the initial ramp for the initial stress (cf. W. Shen, C. Zhang and L.
Zhang [19] and M. Taneco-Hernández, V. Morales-Delgado and J. Gómez-Aguilar
[20]). The stress application rate in either case should be reasonably rapid, without
impact or vibration, so that any relaxation during the stress application period will
be small. Then the rate of the initial ramp is selected on the basis of the material
hand as well as the total strain selected for the relaxation test. The time t0 at which
the deformation takes the constant value ϵ0 is strictly related the test machine as
well as from the people making the test. Usually the rate of deformation is very high
and consequently t0 is very small. It follows that usually this influence is neglected
and it is assumed that t0 = 0 so the unit step deformation history is present.
However, for the case that the kernel function is a power law, infinite values have
been generated in the corresponding stress history, which causes significant errors
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Figure 1. Real deformation history during the relaxation test.

in parameter evaluation.
In the stress relaxation test without considering the influence of initial ramp,

the strain is to reach the specified strain value ϵ(t) = ϵ0U(t) under the action of
unit step function, where U(t) is the unit step function.

The convolutional stress-strain relationship is obtained by Boltzmann superpo-
sition principle

σ(t) =

∫ t

0

G(t− τ)dϵ(τ) =

∫ t

0

G(t− τ)ϵ̇(τ)dτ.

The condition that the equation holds is ϵ(0) = 0. That is, without considering
the influence of initial ramp, we can get

ϵ(t) =

{
0, t ⩽ 0,

ϵ0, t > 0.
(2.1)

Considering the influence of initial ramp, the strain history of the convolutional
nonviscous damping model is

ϵ(t) =


0, t < 0,

ϵ0t

t0
, 0 ⩽ t < t0,

ϵ0, t ⩾ t0.

(2.2)

According to Blotzman superposition principle, when ϵ(0) = 0, we can get

σ(t) =

∫ t

0

G(t− τ)dϵ(τ) = G(t)ϵ (0+) +

∫ t

0

G(t− τ)ϵ̇(τ)dτ. (2.3)

Through the above calculation, the stress-strain relationship of the convolutional
nonviscous damping model is obtained, which is general. Because the material has
the property of decay heredity, G(t) is a continuous monotonic decreasing function.
When the kernel function G(t) takes the Abel kernel form of the decay power
function, the convolutional nonviscous damping model is the fractional derivative
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model. The simplest fractional Scott-Blair’s model discussed by Mario Di Paola, a
famous professor at the University of Italy degli Studi di Palermo, in M. Di Paola
[8] and by Professor Maolin Du of the National University of Defense Technology
in M. Du, Y. Wang and Z. Wang [9], is different in that Mario Di Paola uses
the Caputo fractional derivative, while Professor Maolin Du uses the Riemann-
Liouville’s derivative, and the stress-strain relationship obtained is the same. In
this section, taking as the form of power exponential function (cf. M. Abu-Shady,
M. K. A. Kaabar [2], W. Chen [6] and G. Teodoro and J. Machado [21]), we can
get more general results

G(t) =
a

tα
+ b

or
G(t) =

n∑
i=1

( ai
tαi

+ bi

)
, 0 < αi < 0.2.

In particular, when G(t) = a
tα + b, without considering the initial ramp, that is,

the strain is shown in Equation (2.1), then it can be obtained from Equation (2.3)

σ(t) =

{
0, t ⩽ 0,

G(t)ϵ0, t > 0,

that is

σ(t) =

0, t ⩽ 0,( a

tα
+ b

)
ϵ0, t > 0.

(2.4)

During the relaxation test, considering the initial ramp, that is, the strain history
is shown in Equation (2.2), then it can be obtained from Equation (2.3).

When 0 ⩽ t < t0,

σ(t) = G(t)ϵ (0+) +

∫ t

0

G(t− τ)ϵ̇(τ)dτ =
ϵ0
t0

∫ t

0

[
a

(t− τ)α
+ b

]
dτ

=
aϵ0

t0(1− α)
t1−α +

ϵ0tb

t0
;

when t > t0,

σ(t) =

∫ t

0

G(t− τ)dϵ(τ) =

∫ t0

0

G(t− τ)dϵ(τ) +

∫ t

t0

G(t− τ)dϵ(τ)

=
ϵ0
t0

∫ t0

0

G(t− τ)dϵ(τ) =
ϵ0
t0

∫ t0

0

[
a

(t− τ)α
+ b

]
dτ

=
ϵ0
t0

−a

1− α

[
(t− t0)

1−α − t1−α
]
+ bϵ0

=
aϵ0

t0(1− α)

[
t1−α − (t− t0)

1−α
]
+ bϵ0.

Therefore

σ(t) =


0, t ⩽ 0,

aϵ0
t0(1− α)

t1−α +
ϵ0tb

t0
, 0 < t ⩽ t0,

aϵ0
t0(1− α)

[
t1−α − (t− t0)

1−α
]
+ bϵ0, t > t0.

(2.5)



2348 G. Xiu, B. Shi & L. Wang

Especially when b = 0, a = 1
µΓ(1−α) , this conclusion is consistent with the result

that only Scott-Blair model is considered in literature (cf. M. Di Paola [8] and
M. Du, Y. Wang and Z. Wang [9]). Therefore, the conclusions obtained are more
general, covering and extending the conclusions of literature (cf. M. Di Paola [8]
and M. Du, Y. Wang and Z. Wang [9]).

It can be seen from the comparison between formula (2.4) and formula (2.5)
that the stress change formula of the model is different with and without the initial
ramp, which shows that the existence of the initial ramp has an impact on the stress
change of the model.

3. Influence of initial ramp when kernel function is
exponential function

If the kernel function G(t) takes the form of exponential function, that is, the
convolutional nonviscous damping model is an exponential damping model, the
research of exponential damping model has also made a lot of achievements (cf. J.
Richter, F. Jin and L. Knipschild [16], R. Shen, X. Qian and J. Zhou [17] and G.
Xiu, J. Yuan and B. Shi [23]), but no relevant literature has been found on the
influence of initial ramp on the exponential damping model

G(t) = c0δ(t) +

n∑
k=1

ake
−bktck.

Without considering the initial ramp, that is, the strain is shown in Equation
(2.1), then it can be obtained from Equation (2.3)

ϵ(t) =

{
0, t ⩽ 0,

G(t)ϵ0, t > 0,

that is

ϵ(t) =


0, t ⩽ 0,[
c0δ(t) +

n∑
k=1

ake
−bktck

]
ϵ0, t > 0.

(3.1)

During the relaxation test, considering the initial ramp, that is, the strain history
is shown in Equation (2.2), then it can be obtained from Equation (2.3).

When 0 < t ⩽ t0

σ(t) = G(t)ϵ (0+) +

∫ t

0

G(t− τ)ϵ̇(τ)dτ

= 0 +
ϵ0
t0

∫ t

0

[
c0δ(t− τ) +

n∑
k=1

ake
−bk(t−τ)ck

]
dτ

=
ϵ0
t0

∫ t

0

c0δ(t− τ)dτ +
ϵ0
t0

∫ t

0

n∑
k=1

ake
−bk(t−τ)ckdτ

=
ϵ0c0
t0

∫ t

0

δ(t− τ)dτ +
ϵ0
t0

n∑
k=1

ak

∫ t

0

e−bk(t−τ)ckdτ
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=
ϵ0c0
t0

+
ϵ0
bk

n∑
k=1

akck
t0

(
1− e−bkt

)
;

when t > t0,

σ(t) =

∫ t

0

G(t− τ)dϵ(τ)

=

∫ t0

0

G(t− τ)dϵ(τ) +

∫ t

t0

G(t− τ)dϵ(τ)

=
ϵ0
t0

∫ t0

0

G(t− τ)dτ

=
ϵ0
t0

∫ t0

0

[
c0δ(t− τ) +

n∑
k=1

ake
−bk(t−τ)ck

]
dτ

=
ϵ0
t0

∫ t0

0

c0δ(t− τ)dτ +
ϵ0
t0

∫ t0

0

n∑
k=1

ake
−bk(t−τ)ckdτ

=
ϵ0c0
t0

+
ϵ0
bk

n∑
k=1

akck
t0

[
e−bk(t−t0) − e−bkt

]
.

So we can get

σ(t) =



0, t ⩽ 0,

ϵ0c0
t0

+
ϵ0
bk

n∑
k=1

akck
t0

(
1− e−bkt

)
, 0 < t ⩽ t0,

ϵ0c0
t0

+
ϵ0
bk

n∑
k=1

akck
t0

[
e−bk(t−t0) − e−bkt

]
, t > t0.

(3.2)

It can be seen from the comparison between formula (3.1) and formula (3.2)
that the stress change formula of exponential damping model is different when the
initial ramp is considered and not considered, which indicates that the existence of
initial ramp has an influence on the stress change of exponential damping model.

4. Numerical simulation
When the kernel function G(t) takes the form of a power exponential function, the
numerical simulation of stress relaxation test has been done for the Scott Blair’s
model with the simplest fractional order in the literature (cf. M. Di Paola [8] and
M. Du, Y. Wang and Z. Wang [9]), and we will not repeat the discussion here. Now
this paper only considers that the kernel function is an exponential function, which
is not involved in the relevant literature. When c0 = 0, a1 = c1 = 1, n = 1, take
different values of b1 and t0, and considering the influence of initial ramp, that is,
the change of strain is shown in Fig. 1, and the change of relative stress is shown
in Fig. 2, Fig. 3 and Fig. 4. When t = t0, the stress reaches the maximum value

y =
σ(t)

ϵ0
=

1

b1t0

(
1− e−b1t0

)
.
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When bi = 0.5, 1, 2 and t0 = 0.5, 1, 2 are taken respectively, the stress changes
are shown in Fig. 2, Fig. 3 and Fig. 4. From the numerical simulation image, it can
be seen that for a given ϵ0, when b1 < 0.5 and t0 < 0.5, the stress is close to linear,
and the convolutional nonviscous damping material shows elastic properties; When
b1 ⩾ 1, t > t0, the convolutional nonviscous damping material obviously shows
viscous property, and the curve presents exponential function attenuation. It can
also be seen from the simulation image that with the gradual increase of the total
observation time t∗, the influence of the initial ramp will gradually weaken and the
stress curve will tend to coincide, gradually in a robust stable state. Moreover, the
maximum stress σ(t) = ϵ0

b1t0

(
1− e−b1t0

)
depends on the value of t0 and b1. When

the value of t0 and b1 is larger, the maximum value of stress is smaller. According
to the numerical simulation results, we can easily draw the following conclusions:

1. The existence of the initial ramp has a great influence on the determination
of the parameter bk of the convolutional nonviscous damping material;

2. t0 must be measured in the actual test and cannot be ignored;

3. The longer the total observation time t∗, the smaller the influence of the
initial ramp, and the better the robust stability.

The above is the influence of the selection of t0 and the total observation time
t∗ on the stress change when we consider the initial ramp.

Now let’s compare the stress changes in the relaxation test by numerical simu-
lation under the two conditions of considering and not considering the initial ramp.
In the stress relaxation test, without considering the initial ramp, the stress change
is shown in the dotted line in Fig. 5. In the case of considering the initial ramp,
the change of stress affected by the initial ramp is shown in the solid line in Fig. 5.
Obviously, the influence of initial ramp is not considered, and the stress shows ex-
ponential attenuation. However, under the influence of the initial ramp, the stress
changes relatively slowly, and there is still a large change between the two. There-
fore, the initial ramp can not be ignored in the actual test. If it is ignored, it will
have a great influence on the determination of parameters.

Figure 2. Change of stress for different value
of b1 = 0.5 and t0 = 0.5, 1, 2.

Figure 3. Change of stress for different value
of b1 = 1 and t0 = 0.5, 1, 2.
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Figure 4. Change of stress for different value
of b1 = 2 and t0 = 0.5, 1, 2.

Figure 5. Influences of initial ramps on relax-
ation experimental test.

5. Conclusion
In this paper, taking the stress relaxation test of viscoelastic material as an example,
the viscoelastic materials used in the test are characterized by the convolutional non-
viscous damping model. When the kernel function in the convolutional nonviscous
damping model takes the form of power exponential function, without considering
the influence of initial ramp, the stress change formula is obtained as follows:

σ(t) =

0, t ⩽ 0,( a

tα
+ b

)
ϵ0, t > 0.

Considering the influence of initial ramp, the stress change formula is obtained
as follows:

σ(t) =


0, t ⩽ 0,

aϵ0
t0(1− α)

t1−α +
ϵ0tb

t0
, 0 < t ⩽ t0,

aϵ0
t0(1− α)

[
t1−α − (t− t0)

1−α
]
+ bϵ0, t > t0.

Through comparison and numerical calculation, it is easy to conclude that the
stress change formula is different in the two cases of considering and not considering
the influence of the initial ramp, which shows that the existence of the initial ramp
has an influence on the stress change of the model. This conclusion covers and
extends the results of Scott-Blair model, which is the simplest model of fractional
order discussed in references (cf. M. Di Paola [8] and M. Du, Y. Wang and Z.
Wang [9]), and is more general.

When the kernel function in the convolutional nonviscous damping model takes
the form of exponential function, that is, the convolutional nonviscous damping
model is exponential damping model. Without considering the initial ramp, the
stress change formula is obtained as follows:

ϵ(t) =


0, t ⩽ 0,[
c0δ(t) +

n∑
k=1

ake
−bktck

]
ϵ0, t > 0.
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Considering the influence of initial ramp, the stress change formula is obtained
as follows:

σ(t) =



0, t ⩽ 0,

ϵ0c0
t0

+
ϵ0
bk

n∑
k=1

akck
t0

(
1− e−bkt

)
, 0 < t ⩽ t0,

ϵ0c0
t0

+
ϵ0
bk

n∑
k=1

akck
t0

[
e−bk(t−t0) − e−bkt

]
, t > t0.

Similarly, through comparison and numerical calculation, it is easy to conclude
that the stress change formula is different in the two cases of considering and not
considering the influence of the initial ramp, which shows that the existence of the
initial ramp has an influence on the stress change of the exponential damping model.
The following conclusions can also be obtained through numerical simulation: under
the condition of considering and not considering the initial ramp, it has a significant
influence on the determination of the parameter bk of the convolutional nonviscous
damping material; In the test, t0 must be determined and cannot be ignored; The
longer the total observation time t∗, the smaller the influence of the initial ramp,
and the better the robust stability.

The influence of initial ramp will also occur in creep test, and we will study and
discuss it in future work.
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