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TIME-DEPENDENT ASYMPTOTIC
BEHAVIOR OF THE WAVE EQUATION WITH

STRONG DAMPING ON RN∗

Xudong Luo1 and Qiaozhen Ma1,†

Abstract We study the longtime dynamics of non-autonomous wave equa-
tions with strong damping in the case of critical nonlinearity. First of all,
when 1 ≤ p ≤ p∗ = N+2

(N−2)+
, we get the well-posedness of strong damped equa-

tion with dime-dependent decay coefficient in Ht = H1(RN ) × L2(RN ), and
prove the quasi-stability of weak solution in Ht,−1 = H1(RN )×H−1(RN ). Then
the time-dependent attractor is proved in Ht. Finally, by using the quasi-
stability of weak solution, we establish the existence the pullback exponential
attractor for non-autonomous dynamical system (U(t, τ),Ht,Ht,−1).

Keywords Wave equation, critical exponent, well-posedness, time-dependent
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1. Introduction
We consider the time-dependent attractor of the wave equation with strong damping
on RN , that is, ε(t)utt −4u−4ut + λu+ f(u) = g(x), x ∈ RN , t > τ, τ ∈ R,

u(x, τ) = u0(x), ut(x, τ) = u1(x), x ∈ RN ,
(1.1)

where the unknown variable u = u(x, t) : RN × [τ,∞) → R, λ > 0. We assume
that ε(·) ∈ C2(R), and

lim
t→+∞

ε(t) → 0, sup
t∈R

[|ε(t)|+ |ε′(t)|+ |ε′′(t)|] ≤ L, (1.2)

here L is a proper constant.
The nonlinear term f ∈ C2(R), f(0) = 0, and

lim inf
|s|→∞

f(s)

s
> −λ1, (1.3)
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where λ1 > 0 is the first eigenvalue of the operator −4, and the following conditions
hold:

(H1) if N = 1, then the growth of f is arbitrary;
(H2) if N = 2, then

|f ′(u) ≤ C(1 + |u|p−1) for some p ≥ 1; (1.4)

(H3) if N ≥ 3, then

|f ′(u)| ≤ C(1 + |u|p−1) with some 1 ≤ p ≤ p∗ =
N + 2

(N − 2)+
, (1.5)

where C is a positive constant and s+ = (s+ |s|)/2.
(1.1) is found a possible application within the theory of type III proposed by

Green and Naghdi in the last two decades [13–15, 17, 24]. For more details about
the derivation of the physical model we refer the reader to [10].

When ε(t) is a positive constant independent of time t, the system is a classical
autonomous strongly damped wave equation. In particular, for the IBVP of the
type of equation (1.1) on a bounded domain Ω ⊂ RN , there have been a lot of well-
posedness results in the literatures (see for instance[5, 6, 9, 22]). The existence
of regular global attractor for the nonlinear strongly damped wave equation (1.1)
within the critical growth condition (1.5) on f(u) was well known in the literatures
such as [3, 7, 16]. In [25] the authors investigated non-autonomous Kirchhoff wave
model with strong damping in a bounded domain Ω in RN (N ≥ 3), in which they
showed that when the growth exponent p of the nonlinearity f(u) is up to the
critical range: 1 ≤ p ≤ p∗ ≡ N+2

N−2 (N ≥ 3), the related non-autonomous dynamical
system possessed a pullback attractor Aϵ = {Aϵ(t)}t∈R for each ε ≥ 0, and then
they proved the upper-semicontinuity of pullback attractor. But under the same
growth of nonlinearity f(u) as [25] and coefficients is dependent on time, there are
no any results of asymptotic behavior for the wave equation with strong damping
on RN .

When ε(t) is a positive decreasing function and vanishes at positive infinity,
the problem (1.1) becomes more complex and interesting. One of the reason is
that the dynamical system associated with (1.1) is still understood under the non-
autonomous framework even through the forcing term is not dependent on time t. In
order to deal with these problems, in [8], Conti, Pata and Temam presented a notion
of time-dependent global attractor exploiting the minimality with respect to the
pullback attraction property, and gave a sufficient condition proving the existence
of time-dependent attractor based on the theory established by Plinio, Duane and
Temam ([11]); besides, they applied the abstract results into the following weak
damped wave equations with time-dependent speed of propagation

ε(t)utt + αut −∆u+ f(u) = g(x).

After that, this method was applied to the damped wave equation with linear mem-
ory(see for instance[20]). But, when the domains are unbounded, such attractors
are not yet well understood. The reason is that when Ω is unbounded, the compact-
ness of the Sobolev embedding which is indispensable for constructing the global
attractor is lost. In order to move this obstacle, several remedies for the evolution
equation on an unbounded domain have been found. Babin and Vishik in [1] first
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showed the existence of attractors to the equations of parabolic type in weighted
Sobolev spaces. In 1999, Wang introduced the method of ¡°tail estimate¡± to scruti-
nize the existence of global attractor for reaction-diffusion equations on unbounded
domains([26]). It is worthy mentioned that the tail estimate method has been ex-
tensively used in dealing with case of unbounded domains. For example, Yang and
Ding [28] studied the longtime dynamics of Kirchhoff equation with strong damping
and critical nonlinearity. Liu and Ma [18] achieved the existence of time-dependent
attractor for the plate equation on H2(RN ) × L2(RN ) by using the tail estimate
along with the asymptotic contractive process on the time-dependent entire space.
Inspired by the idea of [18, 19, 28], we are interested in existence of time-dependent
global attractor and pullback exponential attractor for equation (1.1) in RN .

The main purpose of this paper is to solve the following questions. Firstly,
we will show that problem (1.1) has a unique weak solution in natural energy
space Ht when the growth exponent p of the nonlinearity f(u) is up to the critical
range: 1 ≤ p ≤ p∗. Secondly, we need to overcome some difficulties caused by
time dependent coefficient in the calculus process to obtain the quasi-stability in
weaker space Ht,−1 as well as the regularity of ut. Thirdly, we will prove that the
process U(t, τ) is pullback asymptotically compact in Ht. Therefore, we can show
that it has a time-dependent attractor A = {A(t)}t∈R. Finally, based on the criterion
of pullback exponential attractor developed in [27], and by using the quasi-stability
of weak solution, we investigate the existence of pullback exponential attractor M =
{M(t)}t∈R about the non-autonomous dynamical system (U(t, τ),Ht,Ht,−1).

The paper is organized as follows. In Section 2, we make some preparations
for our consideration. In Section 3, when 1 ≤ p ≤ p∗, we give some results on
the well-posedness of problem (1.1). In Section 4, we obtain the existence of time-
dependent attractor in phase space Ht. Finally, we establish the existence of pull-
back exponential attractor M = {M(t)}t∈R about the non-autonomous dynamical
system (U(t, τ),Ht,Ht,−1) in Section 5.

2. Preliminaries
In this section, we iterate some notations and abstract results.

Without loss of generality, set H = L2(RN ), equipped with the inner prod-
uct 〈·, ·〉 and norm ‖ · ‖. Lp = Lp(RN ), W s,p = W s,p(RN ),

∫
=

∫
RN , ‖ · ‖p =

‖ · ‖Lp , ‖ · ‖ = ‖ · ‖L2 . We define the time-dependent space

Ht = H1 × L2, Ht,−1 = H1 ×H−1, Ht,1 = H1 ×H1

endowed with norm

‖{a, b}‖2Ht
= ‖a‖2H1 + ε(t)‖b‖2, ‖a‖2H1 = ‖∇a‖2 + ‖a‖2.

For every t ∈ R, we introduce the R-ball of Banach space Xt

Bt(R) = {z ∈ Xt : ‖z‖Xt ≤ R}.

For any given δ > 0, the δ − neighborhood of a set B ⊂ Xt is defined as

Oδ
t (B) =

∪
x∈B

{y ∈ Xt : ‖x− y‖Xt
≤ δ} =

∪
x∈B

{x+ Bt(δ)}.
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We denote the Hausdorff semidistance of two (nonempty) sets B,C ⊂ Xt by

distXt(B,C) = sup
x∈B

distXt(x,C) = sup
x∈B

inf
y∈C

‖x− y‖Xt .

Finally, given any set B ⊂ Xt, the symbol B̄ stands for the closure of B in Xt.
In this paper any positive constant denoted by C (or c )which may be different

from line to line and even in the same line and Q is a generic positive increasing
function.

Definition 2.1 ([4]). A function u(t) is said to be a weak solution to (1.1) on an
interval [0, T ] if

u ∈ L∞(0, T ;H1(RN )), ut ∈ L∞(0, T ;L2(RN )) ∩ L2(0, T ;H1(RN )) (2.1)

and (1.1) is satisfied in the sense of distributions.

Definition 2.2 ([8]). Let {Xt}t∈R be a family of normed spaces. A process is a two
parameter family of mappings U(t, τ) : Xτ → Xt, t ≥ τ, t, τ ∈ R with properties

(i) U(τ, τ) = Id is the identity operator on Xτ , τ ∈ R,
(ii) U(t, s)U(s, τ) = U(t, τ), ∀t ≥ s ≥ τ, τ ∈ R.

Definition 2.3 ([8]). A family C = {Ct}t∈R of bounded sets Ct ⊂ Ht is called
uniformly bounded if there exists R > 0 such that

Ct ⊂ {ζ ∈ Ht : ‖ζ‖Ht
≤ R}, ∀t ∈ R.

Definition 2.4 ([8]). A family B = {Bt}t∈R is called pullback absorbing if it is
uniformly bounded and, for every R > 0 ,there exists t0 = t0(t, R) ≤ t such that

τ ≤ t0 ⇒ U(t, τ)Bτ (R) ⊂ Bt, (2.2)

the process U(t, τ) is called dissipative whenever it admits a pullback absorbing
family.

Definition 2.5 ([8]). A(uniformly bounded)family K = {kt}t∈R is called pullback
attracting if for all ε > 0 the family {Oε

t (Kt)}t∈R is pullback absorbing.

Corollary 2.1. The attracting property can be equivalently stated in terms of the
Hausdorff semidistance: K = {Kt}t∈R is pullback attracting if and only if it is
uniformly bounded and the limit

lim
τ→−∞

distHt(U(t, τ)Cτ ,Kt) = 0,

holds for every uniformly bounded family C = {Ct}t∈R and every fixed t ∈ R.

Definition 2.6 ([8]). A time-dependent absorbing set for the process U(t, τ) is a
uniformly bounded family B = {Bt}t∈B with the following property: for every R ≥
0 there exists θe = θe(R) ≥ 0 such that

τ ≤ t− θe ⇒ U(t, τ)Bτ (R) ⊂ Bt.

Definition 2.7. ([8]) The time-dependent global attractor for U(t, τ) is the smallest
family U = {At}t∈R such that
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(i) each At is compact in Ht;

(ii) At is pullback attracting. i.e.,it is uniformly bounded and the limit

lim
τ→−∞

distHt
(U(t, τ)Cτ , At) = 0

holds for every uniformly bounded family C = {Ct}t∈R and every fixed t ∈ R.

Definition 2.8 ([8]). A family of uniformly bounded sets C = {Ct}t∈R is called
invariant if

U(t, τ)Cτ = Ct, ∀t ≥ τ, τ ∈ R.

Definition 2.9. ([22]) A function z : t 7→ u(t) ∈ Ht is a complete bounded trajec-
tory(CBT)of U(t, τ) if and only if

sup
t∈R

‖u(t)‖Ht
<∞

and
u(t) = U(t, τ)u(τ), ∀t ≥ τ, τ ∈ R.

Lemma 2.1 ([22]). Let Φ be an absolutely continuous positive function on R+, which
satisfies for some ε > 0 the differential inequality:

d

dt
Φ(t) + 2εΦ(t) ≤ g(t)Φ(t) + h(t), t ∈ R+,

where h ∈ L1
loc(R+),

∫ t

τ
g(s)ds ≤ ε(t− τ) +m for t > τ and some m > 0. Then

Φ(t) ≤ em(Φ(0)e−εt +

∫ t

τ

|h(s)|e−ε(t−τ)ds), t > 0.

Lemma 2.2 ([22]). Let X be a Banach space, and let Z ⊂ C(R+, X), Let Φ : X →
R be a function such that

sup
t∈R+

Φ(z(t)) ≥ −η, Φ(z(0)) ≤ K,

for some η,K > 0 and every z ∈ Z. In addition, assume that for every z ∈ Z the
function t 7→ Φ(z(t)) is continuously differentiable, and satisfies the differential
inequality

d

dt
Φ(z(t)) + δ‖z(t)‖2X ≤ k

for some δ > 0, and k ≥ 0 independent of z ∈ Z. Then, for every γ > 0 there
exists t0 = η+K

γ > 0 such that

Φ(z(t)) ≤ sup
ζ∈X

{Φ(ζ) : δ‖ζ‖2X ≤ k + γ}, t ≥ t0.

Lemma 2.3 ([23]). Let X, B and Y be Banach spaces, X ↪→↪→ B ↪→ Y,

W = {u ∈ Lp(0, T ;X) | ut ∈ L1(0, T ;Y )}, 1 ≤ p <∞,

W1 = {u ∈ L∞(0, T ;X) | ut ∈ Lr(0, T ;Y )}, r > 1.

Then
W ↪→↪→ Lp(0, T ;B),W1 ↪→↪→ C([0, T ];B).
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Lemma 2.4 ([24]). Let X, Y be two Banach spaces such that X ↪→ Y . If φ ∈
L∞(0, T ;X) ∩ Cw([0, T ];Y ), then φ ∈ Cw([0, T ];X).

Lemma 2.5 ([25]). Let the family D = {D(t)}t∈R be a pullback D-absorbing family
of the process U(t, τ). And assume that for any δ > 0 and t ∈ R, there exist a τ =
τ(t, δ,D) > 0 and a contractive functional Ψt,τ (·, ·) defined on D(t−τ)×D(t−τ) such
that

‖U(t, t− τ)x− U(t, t− τ)y‖X ≤ δΨt,τ (x, y),∀x, y ∈ D(t− τ).

Then the process U(t, τ) is pullback D-asymptotically compact in X.

3. Well-posedness
Theorem 3.1. Let assumptions (1.2)-(1.5) be in force and (u0, u1) ∈ Hτ . Then for
every τ ∈ R, and τ < t, problem (1.1) has a unique weak solution u(t). This solution
possesses the following propertries:
(i) The function t 7→ (u(t);ut(t)) is continuous in Ht and

utt ∈ L2(τ, t;H−1) + L∞(τ, t;L1+ 1
p ). (3.1)

Moreover, there exists a constant C(ρ) > 0 such that

ε(t)‖ut‖2 + ‖u(t)‖2H1 +

∫ t

τ

‖ut(r)‖2H1dr ≤ C(ρ), (3.2)

for initial data ‖(u0, u1)‖Hτ ≤ ρ. We also have the following additional regularity:

ut ∈ L∞(τ, t;H1), utt ∈ L∞(τ, t;H−1) ∩ L2(τ, t;L2),

for every τ < t, we have

ε(t)‖utt‖2 + ‖ut‖2H1 ≤ C(ρ, T )

(t− τ)2
, (3.3)

where as above ‖(u0, u1)‖Hτ ≤ ρ.
(ii) The following energy identity

E(ξu(t)) +

∫ t

s

(‖∇ut(r)‖2 −
ε′(r)

2
‖ut(r)‖2)dr = E(ξu(s)), (3.4)

holds for every t > s ≥ τ , where ξu(t) = (u, ut) and

E(ξu(t)) = ε(t)‖ut‖2 + ‖∇u‖2 + λ‖u‖2 + 2〈F (u), 1〉 − 2〈g(x), u〉. (3.5)

(iii) If u1(t) and u2(t) are two weak solutions such that ‖(ui(τ), uit(τ))‖Hτ ≤ R, i =
1, 2, then there exists b(ρ) > 0 such that the difference z(t) = u1(t)− u2(t) satisfies
the relation

‖(z(t), zt(t))‖2Ht,−1
+

∫ t

τ

‖zt(r)‖2dr ≤ b(ρ)(‖(z(τ), zt(τ))‖2Hτ,−1
), (3.6)

for all τ < t, and quasi-stability

‖(z(t), zt(t))‖2Ht,−1
≤e−k(t−τ)‖(z(τ), zt(τ))‖2Hτ,−1

+ b(ρ)

∫ t

τ

(‖z(s)‖2 + ε(t)‖zt(s)‖2H−2)ds,
(3.7)

where k > 0 is a small constant.
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Proof. Let Ω = ΩR be a ball in RN with radius R. We first consider problem (1.1)
on Ω:

ε(t)utt −4u−4ut + λu+ f(u) = g(x), x ∈ Ω, t > τ, τ ∈ R,

u |∂Ω= 0, t > τ,

u(x, τ) = ūR0 (x), ut(x, τ) = ūR1 (x), x ∈ Ω,

(3.8)

where functions ūRi (i = 0, 1) are the forms: ūRi (x) = θ(|x|)ui(x), and θ(x) is a
smooth function:

θ(x) =

1, |x| ≤ R− 1, x ∈ RN ,

0, |x| ≥ R, x ∈ RN ,

and
0 ≤ θ(x) ≤ 1, |∇θ(x)| ≤ C, x ∈ RN .

Now, we formally give some a priori estimates to the solutions of problem (3.8).
Multiplying (3.8) by ut + δu, we obtain

d

dt
Λ1(ξu(t)) +K(ξu(t)) = 0, (3.9)

where

Λ1(ξu(t)) =
1

2
ε(t)‖ut‖2L2(Ω) + (

1

2
+ δ)‖u‖2H1

0 (Ω) +
1

2
λ‖u‖2L2(Ω) + ε(t)δ〈u, ut〉

− 2〈g(x), u〉+ 2〈F (u), 1〉,

K(ξu(t)) = −((
1

2
− δ)ε′(t) + δε(t))‖ut‖2L2(Ω) + ‖ut‖2H1

0 (Ω) − δε′(t)〈u, ut〉

+ δ‖u‖2H1
0 (Ω) + δλ‖u‖2L2(Ω) + 〈f(u), δu〉 − 〈g(x), δu〉,

and ξu(t) = (u, ut), F (u) =
∫ u

0
f(r)dr. Obviously, Λ1 : Ht(Ω) 7→ R is a continous

function. Making use of (1.2)-(1.5) we can infer that

Λ1(ξu(t)) ≥ k(ε(t)‖ut‖2L2(Ω) + ‖u‖2H1
0 (Ω))− C(‖g‖L2(Ω), L), (3.10)

K(ξu(t)) ≥ ‖ut‖2H1
0 (Ω) + k(ε(t)‖ut‖2L2(Ω) + ‖u‖2H1

0 (Ω))− C(‖g‖L2(Ω), L), (3.11)

for δ > 0 suitably small, where and in the fllowing k stands for a small positive
constant. Obviously,

Λ1(ξu(0)) ≤ C(‖ūR1 ‖2L2(Ω) + ‖ūR0 ‖2H1
0 (Ω)) ≤ C(ρ, ‖g‖L2(Ω), L). (3.12)

Inserting (3.11) into (3.9) we have

d

dt
Λ1(ξu(t)) + k‖ξu(t)‖2Ht(Ω) ≤ C(‖g‖L2(Ω), L). (3.13)

Applying Lemma 2.2 to (3.13) we have

Λ1(ξu(t)) ≤ sup
ζ∈Ht(Ω)

{Φ(ζ) | ‖ζ‖2Ht(Ω) ≤
C(‖g‖L2(Ω), L) + 1

k
},
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t ≥ t0 = C(‖g‖L2(Ω), L, ρ),

the above estimate is established with η = C(‖g‖L2(Ω), L), k = C(‖g‖L2(Ω), L), K =
C(‖g‖L2(Ω), L, ρ), δ = k, γ = 1. Therefore,

ε(t)‖ut‖2L2(Ω) + ‖u‖2H1
0 (Ω) ≤ C(‖g‖L2(Ω), L, ρ), t ≥ t0 = C(‖g‖L2(Ω), L, ρ). (3.14)

Integrating (3.13) on (τ, t) with t ≤ t0, we get

ε(t)‖ut‖2L2(Ω) + ‖u‖2H1
0 (Ω) ≤ C(‖g‖L2(Ω), L, ρ). (3.15)

Letting δ = 0 in (3.9) then integrating it over (τ, t), together with (3.14)-(3.15) we
have ∫ t

τ

‖ut(r)‖2H1
0 (Ω)dr ≤ C(‖g‖L2(Ω), L, ρ). (3.16)

We infer from (1.1) and (3.14)-(3.16) that∫ t

τ

ε(t)‖utt(t)‖2H−1(Ω)dt ≤ C(‖g‖L2(Ω), L, ρ). (3.17)

Formal differentiation gives that v(t) = ut(t) solves the equation

ε(t)vtt + ε′(t)vt(t)−4v −4vt + λv + f ′(u)v = 0. (3.18)

Multiplying (3.18) by vt + δv, we arrive that

d

dt
[ε(t)‖vt‖2L2(Ω) + 2δε(t)〈v, vt〉+ (λ+ δε′(t))‖v‖2L2(Ω) + (1 + δ)‖∇v‖2L2(Ω)]

+ [ε′(t)− 2δε(t)]‖vt‖2L2(Ω) − 2δε′(t)〈v, vt〉+ (−δε′′(t) + 2δλ)‖v‖2L2(Ω)

+ 2δ‖∇v‖2L2(Ω) + 2‖∇vt‖2L2(Ω) + 2〈f ′(u)v, vt + δv〉 = 0.

We introduce now the functional

Λ2(t) = ε(t)‖vt‖2L2(Ω) + 2δε(t)〈v, vt〉+ (λ+ δε′(t))‖v‖2L2(Ω) + (1 + δ)‖∇v‖2L2(Ω),

if δ is small enough we have

2δε(t)〈v, vt〉 ≤ 2δε(t)‖v‖2L2(Ω) +
δε(t)

2
‖vt‖2L2(Ω), (3.19)

hence, we can choose proper constants aρ, bρ such that

aρδ[ε(t)‖vt‖2L2(Ω) + ‖v‖2H1
0 (Ω)] ≤ Λ2(t) ≤ bρ[ε(t)‖vt‖2L2(Ω) + ‖v‖2H1

0 (Ω)].

By (1.5), we have

|〈f ′(u)v, vt + δv〉|
≤C(‖v‖L2(Ω)‖vt‖L2(Ω) + δ‖v‖2L2(Ω)

+ ‖u‖p−1
Lp+1(Ω)(δ‖v‖

2
Lp+1(Ω) + ‖v‖Lp+1(Ω)‖vt‖Lp+1(Ω)))

≤δ‖vt‖2L2(Ω) + C‖v‖2L2(Ω) + C‖u‖p−1
H1

0 (Ω)
(δ‖v‖2H1

0 (Ω) + ‖v‖H1
0 (Ω)‖vt‖H1

0 (Ω))
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≤2δ‖vt‖2H1
0 (Ω) + C‖v‖2H1

0 (Ω),

in the above formula, we have used the embedding ‖u‖Lp+1(Ω) ≤ C‖u‖H1
0 (Ω) and C is

a positive constant. Similar to the estimate of (3.19), we have

−2δε′(t)〈v, vt〉 ≥ −2L‖v‖2L2(Ω) −
δ2

2
‖vt‖2L2(Ω),

from the above estimates, we obtain

d

dt
Λ1(t) + kΛ1(t) + 2‖∇vt‖2L2(Ω)

≤[−ε′(t) + 2δε′(t) + ε(t)]‖vt‖2L2(Ω) + [4L2 − δε′′(t)

+ (2δ + 1)λ+ δε′(t)]‖v‖2L2(Ω) + (2 + δ)‖∇v‖2L2(Ω).

By (1.2) and δ > 0 suitably small, we can easily get −ε′(t) + 1
2δε

′(t) + ε(t) >
0, 4L2 − δε′′(t) + (2δ + 1)λ+ δε′(t) > 0. So,

d

dt
Λ1(t) + kΛ1(t) +

1

2
‖∇vt‖2L2(Ω) ≤ CΛ1(t) + C‖∇v‖2L2(Ω). (3.20)

When τ < t ≤ 1, multiplying (3.20) by (t− τ)2, we get

d

dt
[(t− τ)2Λ1(t)] + (t− τ)2kΛ1(t) +

1

2
(t− τ)‖vt‖2H1

0 (Ω)

≤ C(t− τ)2Λ1(t) + C(t− τ)‖v‖2H1
0 (Ω) + C(t− τ)(‖vt‖2L2(Ω) + ‖v‖2H1

0 (Ω))

≤ C(t− τ)2Λ1(t) +
1

2
(t− τ)2‖vt‖2H1

0 (Ω) + C(‖vt‖2H−1(Ω) + ‖v‖2H1
0 (Ω)),

(3.21)

here, we use the interpolation inequality

C(t− τ)‖vt‖2L2(Ω) ≤ C(t− τ)‖vt‖2H1
0 (Ω)‖vt‖

2
H−1(Ω)

≤ 1

2
(t− τ)2‖vt‖2H1

0 (Ω) + C‖vt‖2H−1(Ω).

Because of

C

∫ t

τ

‖∇ut(s)‖2L2(Ω)ds ≤ C(

∫ t

τ

‖∇ut(s)‖2L2(Ω)ds)
1
2 + (t− τ)

1
2 ≤ k

2
(t− τ) +m

for t > τ and some m > 0, using Lemma 2.1 to (3.21), we obtain

(t− τ)2Λ1(t) ≤ C(ρ, L), ‖ut(t)‖2H1
0 (Ω) + ε(t)‖utt(t)‖2L2(Ω) ≤

C(L, ρ)

(t− τ)2
, τ < t ≤ 1.

(3.22)
When t ≥ 1, applying Lemma 2.1 to (3.20) on (1, t), we have

‖ut(t)‖2H1
0 (Ω) + ε(t)‖utt(t)‖2L2(Ω) ≤ C(ρ, L)e−kt ≤ C(ρ, L, t). (3.23)

Therefore, together with (3.22) and (3.23), we get

‖ut(t)‖2H1
0 (Ω) + ε(t)‖utt(t)‖2L2(Ω) ≤

C(ρ, L)(1 + (t− τ)2)

2(t− τ)2
, t > τ. (3.24)
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Now, we look for the approximate solutions of (3.8) with the form

un(t) =

n∑
k=1

gk(t)ek, n = 1, 2, . . . ,

where −4ek = λkek, k = 1, 2, ..., ek |∂Ω= 0, satisfying

〈ε(t)untt, ek〉+〈−4un, ek〉+〈−4unt , ek〉+〈λun, ek〉+〈f(un), ek〉=〈g(x), ek〉, t>τ,
un(0) = ū0n, unt (0) = ū1n,

where (ū0n, ū1n) → (ūR0 , ū
R
1 ) in Ht(Ω). Obviously, the estimates (3.3), (3.15) and

(3.17) hold for un. So we can extract a subsequence, still denoted by {un}, such
that

un → u weakly∗ in L∞(τ, t;H1
0 (Ω)); (3.25)

unt → ut weakly∗ in L∞(τ, t;L2(Ω)) ∩ L2(τ, t;H1
0 (Ω)); (3.26)

untt → utt weakly in L2(τ, t;H−1(Ω)). (3.27)

Due to Lemma 2.3 it,s easy to know that (un, unt ) is compact in

C(τ, t;H1−δ(Ω))× [C(τ, t;H−δ(Ω)) ∩ L2(τ, t;H1−δ(Ω))],

for every 0 < δ < 1. Moreover, we also have

f(un) → f(u) weakly in L∞(τ, t;L1+ 1
p (Ω)). (3.28)

Letting n→ ∞ we get that the limiting function u ∈ L∞(τ, t;H1
0 (Ω)) solves (3.8).

Now, we show the existence of solutions for the cauchy problem (1.1). For
brevity, in the following, we use the abbreviations as is shown in the beginning
of this section.

Let uR ∈ L∞(τ, t;H1
0 (Ω)) be the solution of (3.8). Define the natural extension

of uR on RN

ūR =

uR, |x| ≤ R,

0, |x| > R,
gR =

 g, |x| ≤ R,

0, |x| > R,
∇ūR =

∇uR, |x| ≤ R,

0, |x| > R,

and for any φ ∈ C∞
0 (RN ), noticing that uR |∂Ω= 0, we have∫

ūR∇φdx =

∫
Ω

uR∇φdx = −
∫
Ω

∇uRφdx = −
∫

∇ūRφdx.

Hence, ūR ∈ L∞(τ, t;H1) solves the following problem ε(t)ūRtt −4ūR −4ūRt + λūR + f(ūR) = gR(x), x ∈ RN , t > τ, τ ∈ R,

ūR(τ) = ūR0 , ū
R
t (τ) = ūR1 ,

(3.29)

and the estimates (3.2)-(3.3) and (3.17) hold for ūR. Since

f(ūR) = (f ′(kūR)− f ′(0))ūR + f ′(0)ūR = f ′′(kδūR)k|ūR|2 + f ′(0)ūR, (3.30)
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where 0 < k, δ < 1, from assumption (H3) and Sobolev embedding: L1+ 1
p ↪→

H−1, H2 ↪→ H−1, we have

|f(ūR)− f ′(0)ūR| = |f ′′(kδūR)k|ūR|2| ≤ C(1 + |ūR|p−2)|ūR|2,
‖f(ūR)− f ′(0)ūR‖H−1 ≤C‖f ′′(kδūR)k|ūR|2‖1+ 1

p
≤C(‖ūR‖22(p+1)

p

+‖ūR‖pp+1)≤C,

‖f(ūR)‖H−1 ≤ ‖f ′(0)ūR‖H−1 + C ≤ C(‖ū‖+ 1) ≤ C, t ≥ τ.

Hence, there exists a limiting function defined on RN , still denoted by u, such that

ūR → u weakly∗ in L∞(τ, t;H1);

ūRt → ut weakly∗ in L∞(τ, t;L2) ∩ L2(τ, t;H1);

ūRtt → utt weakly in L2(τ, t;H−1);

f(ūR) → ζ weakly in L∞(τ, t;H−1).

So, we can easily get that

‖ūR0 − u0‖2H1 + ‖ε(t)ūR1 − ε(t)u1‖2 + ‖gR − g‖2 → 0 as R→ ∞. (3.31)

Let ūRi be weak solutions to (3.29) with different initial data (ūRi
0 , ūRi

1 ) ∈ Ht such
that ‖ūRi

t ‖2+‖∇uRi(t)‖ ≤ R2 for all t ≥ τ, and z(t) = ūR1−ūR2 solves the equation

ε(t)ztt −4z −4zt + λz + f(ūR1)− f(ūR2) = 0. (3.32)

Since f(ūRi) ∈ L2(τ, t;H−1) + L∞(τ, t;L1+ 1
p ) and z ∈ L∞(τ, t;H1) for any cou-

ple ūR1 and ūR2 . Hence, multiplying (3.32) by A−1zt + δz, we get

d

dt
[ε(t)‖zt‖H−1+‖z‖2+λ‖z‖H−1+δ(2ε(t)〈z, zt〉+‖∇z‖2)]−ε′(t)‖zt‖2H−1

− 2δε(t)‖zt‖2 − 2δε′(t)〈z, zt〉+ 2δ‖∇z‖2 + 2‖zt‖2 + 2λδ‖z‖2

+ 〈f(ūR1 − f(ūR2), A−1zt + δz〉 = 0.

(3.33)

We set

Λ3(t) = ε(t)‖zt‖H−1 + ‖z‖2 + λ‖z‖H−1 + δ(2ε(t)〈z, zt〉+ ‖∇z‖2),

for δ > 0 small enough, we get

aρδ[ε(t)‖A− 1
2 zt‖2 + ‖z‖2H1 ] ≤ Λ3(t) ≤ bρ[ε(t)‖A− 1

2 zt‖2 + ‖z‖2H1 ], (3.34)

by (1.2), we have

−2δε′(t)〈z, zt〉 ≥ −2L2‖z‖2 − δ2

2
‖zt‖2,

we note that in the non-supercritical case by the embedding H1 ↪→ Lr for r = ∞ in
the case N = 1, for arbitrary 1 ≤ r ≤ ∞ when N = 2 and for r = 2N

N−2 in the
case N ≥ 3 we have that

‖f(ūR1)− f(ūR2)‖H−1 ≤ C(ρ)‖∇(ūR1 − ūR2)‖, ūR1 , ūR2 ∈ H1, ‖∇ūRi‖ ≤ R,
(3.35)
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which implies that |〈(f(ūR1)−f(ūR2)), z〉| ≤ C(ρ)‖∇z‖2, by (1.5) and interpolation
formula,∫

|f(ūR1)− f(ūR2)||A−1zt|dx

≤k
∫
(1+|ūR1 |p−1+|ūR2 |p−1)|z|2dx+C(k)

∫
(1+|ūR1 |p−1+|ūR2 |p−1)|A−1zt|2dx

≤k
∫
(1 + |ūR1 |p−1 + |ūR2 |p−1)|z|2dx

+ C(k)[

∫
(1 + |ūR1 |p+1 + |ūR2 |p+1)dx)]

p−1
p+1 ‖A−1zt‖2Lp+1

≤k‖zt‖2 + C(k)‖zt‖2H−2 .
(3.36)

Combining with (3.33)-(3.36), we get

d

dt
Λ2(t) + kΛ2(t) ≤ C(‖z‖2 + ‖zt‖2H−2), (3.37)

‖(z(t), zt(t))‖2Ht,−1
≤ e−k(t−τ)‖(z(τ), zt(τ))‖2Ht,−1

+ b(ρ)

∫ t

τ

(‖z(s)‖2 + ε(t)‖zt(s)‖2H−2)ds, (3.38)

next, multiplying (3.32) by zt + δz we get

d

dt
[ε(t)‖zt‖2 + 2δε(t)〈z, zt〉+ (1 + δ)‖∇z‖2 + λ‖z‖2]− [ε′(t) + 2δε(t)]‖zt‖2

− 2δε′(t)〈z, zt〉+2‖∇zt‖2+2δ‖∇z‖2+2δλ‖z‖2+2〈f(ūR1)−f(ūR1), zt+δz〉=0,
(3.39)

and set

H1(t) = ε(t)‖zt‖+ 2δε(t)〈z, zt〉+ (1 + δ)‖∇z‖2 + λ‖z‖2 ∼ ‖z‖2H1 + ε(t)‖zt‖2,

obviously,

− 2δε′(t)〈z, zt〉 ≥ −2L2‖z‖2 − δ2

2
‖zt‖2,

|〈f(ūR1)− f(ūR2), zt + δz〉|

≤C
∫
(1 + |f(ūR1)|p−1 − |f(ūR2)|p−1)|z|(|zt|+ δ|z|)dx

≤C‖z‖(‖zt‖+ δ‖z‖) + C(‖ūR1‖p−1
p+1 + ‖ūR2‖p−1

p+1)‖z‖p+1(‖zt‖p+1 + δ‖z‖p+1)

≤1

8
‖zt‖2 + c‖∇z‖2.

Hence, we have

d

dt
H1(t) + [−ε′(t)− 2δε(t)− δ2

2
]‖zt‖2 + 2‖∇zt‖2

≤(2L2 − 2δλ)‖z‖2 − 2δ‖∇z‖2 + 1

8
‖zt‖2 + c‖∇z‖2,
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from (1.2), we can see the following estimate

min{2, δ
2

2
}‖zt‖2H1 ≤ 2‖∇zt‖2 + [−ε′(t)− 2δε(t)− δ2

2
]‖zt‖2

≤ max{2, (1 + δ)L+
δ2

2
}‖zt‖2H1 .

Then, we choose a proper constant L such that −ε′(t)−2δε(t)− δ2

2 > 0, 2L2−2δλ >
0 and use the equivalent norm theorem

‖z(t)‖2H1 + ε(t)‖zt(t)‖2 +
∫ t

τ

‖zt(s)‖2H1ds ≤ Cekt(‖z0‖2H1 + ‖z1‖2). (3.40)

Like in [28], we also have f(ūR) = ζ, therefore, together with (3.31) we ob-
tain u ∈ L∞(τ, t;H1), with ut ∈ L∞(τ, t;L2)∩L2(τ, t;H1) is the solution of Cauchy
problem (1.1). By the lower semi-continuity of the norm of the weak∗ limit, the es-
timates (3.2)-(3.3) hold for u. An argument similar to the one used in [4](Appendix
A) show that the function t 7→ (u(t);ut(t)) is (strong) continuous in Ht.

Finally, we establish estimate (3.4). In space [H−1 + L1+ 1
p ], one can see that

estimate (3.3) is satisfied on any interval [a, b], τ < a < b ≤ t, furthermore we note
that f(u)ut ∈ L1([a, b] × RN ), which implies that we can multiply (1.1) by ut and
prove (3.4) for t ≥ s > τ. Next, we prove energy equation (3.4) holds for s = τ , the
limit E(ξu(s)) as s→ τ exists and

E∗ ≡ lim
s→τ

E(ξu(s)) = E(ξu(t)) +

∫ t

τ

‖ut(r)‖2H1 −
ε′(t)

2
‖ut(r)‖2dr.

Because u(t) is continuous in H1 on [τ, t], we can find a sequence {sn}, sn → 0, such
that u(x, sn) → uτ (x) almost surely. Due to F (u) ≥ −C, by Fatou,s lemma we
obtain ∫

F (uτ (x))dx ≤ lim inf
s→τ

∫
(F (x, s))dx.

The weak continuity of ut(t) at time τ means that

‖u1‖2 ≤ lim inf
s→τ

‖ut(s)‖2.

Hence, we have the relation E(ξu(τ)) ≤ E∗. Therefore from the energy inequality
for weak solutions we have (3.4) for all t ≥ s ≥ τ .

The proof Theorem 3.1 is complete.

4. Existnece of time-dependent attractor
By Theorem 3.1 the problem (1.1) generates a process U(t, τ) in the space Ht :

U(t, τ)z(τ) = {u(t), ut(t)},

where z(τ) = {u0, u1} ∈ Hτ . Moreover, we can easily get the following result.

Theorem 4.1. Under the assumptions (1.2)-(1.5), the process U(t, τ) is continuous
in phase space Ht.



2400 X. Luo & Q. Ma

Proposition 4.1. Let assumptions (1.2)-(1.5) be valid, then there exists ρ0 > 0 such
that

‖U(t, τ)z(τ)‖2Ht
≤ ρ0, ∀t > τ.

Proof. Estimate (3.2) shows that the dynamical system (U(t, τ),Ht) is dissipa-
tive. Hence, we can get the time-dependent absorbing set

Bt =
∪
t≥τ

U(t, τ)B0,

where, B0 = {(u0, u1) ∈ Hτ : ‖u0‖2H1 + ε(τ)‖u1‖2 ≤ ρ0}.
Next, we prove asymptotic compactness of the process U(t, τ) using method

introduced in [19]. It is worth noting that the space discussed in this paper is not
only dependent on time but also unbounded. To this end, we need to use the tail
estimate method in order to obtain the corresponding results. One of main results
is as follows.

Theorem 4.2. In addition to assumption (1.2)-(1.5), if also f ′(u) > −l for some
constant l > 0. Then the dynamical system (U(t, τ),Ht) possesses time-dependent
attractors, moreover, for each τ < t, A(t) is bounded in Ht,1.

In order to prove this theorem, we need the following preparations.
Define the functions

M0(s) =


0, 0 ≤ s ≤ 1,

s− 1, 1 < s ≤ 2,

1, s > 2,

Mδ(s) = (χδ ∗M0)(s) =

∫
R
χδ(s− y)M0(y)dy,

where χδ(s) is the standard mollifier on R with suppχδ ⊂ [−δ, δ]. Obviously,

Mδ ∈ C∞(R), 0 ≤Mδ(s) ≤ 1,

Mδ(s) = 0 as 0 ≤ s < 1; Mδ(s) = 1 as s > 2,

with 0 < δ � 1. Let ϕ(x) =Mδ(
|x|
R ), with R > r0. We have the following results

ϕ(x) = 0 as |x| < R, 0 ≤ ϕ(x) ≤ 1 and |∇ϕ(x)| ≤ 1 and |∇ϕ(x)|2 ≤ C

R2
, x ∈ RN .

(4.1)

Lemma 4.1 ([28]). Let assumption (1.2)-(1.5) be in force and f ′(u) > −l. Then∫
ϕ2F (u)dx ≥ C

2
‖ϕu‖2,∫

ϕ2(f(u)u− kF (u))dx ≥ k‖ϕu‖2,

for k : 0 < k ≤ 2C
2C+l+2 (< 1).
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Lemma 4.2. Under the assumptions (1.2)-(1.5), let U(t, τ)(u0, u1) = (u(t), ut(t))
holds true, with (u0, u1) ∈ Bt. Then for any δ > 0, there exist positive con-
stants R1 = R1(ρ0) > τ and T0 = T0(ρ0) such that∫

ΩC
R

|u|2 + |∇u|2 + ε(t)|ut|2dx < δ as R > R1, τ < T0 < t,

where and the following ΩR is a ball in RN with radius R, ΩC
R = {x ∈ RN : |x| ≥ R}.

Proof. Multiplying (1.1) by ϕ2(ut + δu), together with (3.15) and (4.1), we have

d

dt
[
1

2
ε(t)‖ϕut‖2 + 〈ε(t)ut, ϕ2δu〉+ 1 + δ

2
‖ϕ∇u‖2 + λ

2
‖ϕu‖2 +

∫
ϕ2F (u)dx

− 〈g(x), ϕ2u〉]− 1

2
ε′(t)‖ϕut‖2 − 〈ε′(t)ut, ϕ2δu〉 − ε(t)δ‖ϕut‖2

+ ‖ϕ∇ut‖2 + δ‖ϕ∇u‖2 + λδ‖ϕu‖2 + δ〈f(u), ϕ2u〉 − δ〈g(x), ϕ2u〉

=− 2

∫
ϕ∇ϕ(ut + δu)∇utdx− 2

∫
ϕ∇ϕ(ut + δu)∇udx

≤1

2
(‖ϕut‖2 + ‖ϕ∇ut‖2) + δ2‖ϕ∇u‖2 + C

R2
.

(4.2)
Set

Λ5(t) =
1

2
ε(t)‖ϕut‖2 + 〈ε(t), ut, ϕ2δu〉+ 1 + δ

2
‖ϕ∇u‖2 + λ

2
‖ϕu‖2

+

∫
ϕ2F (u)dx− 〈g(x), ϕ2u〉,

so
d

dt
Λ5(t) + δΛ5(t) +N(t) ≤ C(‖ϕut‖2Λ5(t) +

C

R2
, (4.3)

where

N(t) =[−1

2
ε′(t)− 1

2
]‖ϕut‖2 − δε′(t)〈ut, ϕ2u〉 − ε(t)δ‖ϕut‖2 + ‖ϕ∇ut‖2

+ [λ− δ2]‖ϕ∇u‖2 + λδ‖ϕu‖2 + δ〈f(u), ϕ2u〉 − δε(t)

2
‖ϕut‖2

− δ2ε(t)〈ut, ϕ2u〉 − δ(1 + δ)

2
‖ϕ∇u‖2 − λδ

2
‖ϕu‖2 − δ

∫
ϕ2F (u)dx.

(4.4)

By (1.2), (4.1) Young and Hölder inequality, we have

−δε′(t)〈ut, ϕ2u〉 ≥ −δL
2
‖ϕut‖2 −

δL

2
‖ϕu‖2,

hence, combining with the above estimate and Lemma 4.1, we choose the proper
positive constants λ,L(L > 1) and δ(δ � 1) small enough such that

N(t) =(−1

2
ε′(t)− 1

2
− δL

2
− δ2L

2
− ε(t)δ)‖ϕut‖2 + ‖ϕ∇ut‖2

+
δ

2
(λ− δL− δ2L)‖ϕu‖2 + (λ− δ2)‖ϕ∇u‖2 ≥ 0,

(4.5)
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after, inserting (4.5) to (4.3), we obtain

d

dt
Λ5(t) + δΛ5(t) ≤ C‖ϕut‖2Λ5(t) +

C

R2
. (4.6)

Since 0 < ϕ(x) < 1 and

|〈ε(t)ut, ϕ2δu〉| ≤ 1

2
ε(t)‖ut‖2 + 2Lδ2‖u‖2,

combining with (1.2)-(1.5) we can easily get that

Λ5(t) ≥ δ(‖ϕut‖2 + ‖ϕu‖2 + ‖ϕ∇u‖2)− C(‖ϕg‖2).

Applying Lemma 2.1 to (4.6), we conclude

Λ5(t) ≤ CΛ5(τ)e
−δ(t−τ) + C(

1

R2
+ ‖ϕg‖2),

‖(u(t), ut(t))‖Ht(ΩC
R) ≤ Ce−δ(t−τ) + C(

1

R2
+ ‖ϕg‖2L2(ΩC

R)). (4.7)

Lemma 4.1 is proved.

Proof of Theorem 4.2. For any fixed t1 ∈ R, let sequences τm → ∞ as m →
∞, and ξm ∈ B(t1 − τm), we set

ξmu (t) = (um(t), umt (t)) = U(t, t1 − τm)ξm, t ≥ t1 − τm, m ≥ 1. (4.8)

One can see that for any T ∈ N, it satisfies (3.2) and (3.3), when m > N , there
exists a constant N > 0 such that

ξmu (t) = U(t, t1 − T − 1)U(t1 − T − 1, t1 − τm)ξm

∈ U(t, t1 − T − 1)B(t1 − T − 1), t ∈ [t1 − T, t1],

{(um, umt )}m≥N is bounded in L∞(t1 − T, t1;H
1 ×H1),

{umtt }m≥N is bounded in L∞(t1 − T, t1;H
−2).

By Lemma 2.3, one can see that ξu = (u, ut) ∈ L∞(t1 − T, t1;Ht,1) such that

ξmu → ξu weakly∗ in L∞(t1 − T, t1;Ht,1), (4.9)
ξmu → ξu in C(t1 − T, t1;H

1−δ ×H1−δ), δ ∈ (0, 1), (4.10)
ξmu → ξu weakly in Ht,1, t ∈ [t1 − T, t1]. (4.11)

It follows from (3.7) that, for every τ ≥ 0 and x, y ∈ B(t− τ),

‖U(t, t− τ)x− U(t, t− τ)y‖2Ht,−1

≤e−kτ‖x− y‖2Ht,−1
+ C

∫ t

t−τ

‖U(s, t− τ)x− U(s, t− τ)y‖2L2×H−2ds.
(4.12)

According to (3.2) and Lemma 2.3 we have

U(·, t− τ)B(t− τ) is precompact in L2(t− τ, t;L2 ×H−2).
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Hence, we can define a contractive functional

ψt,τ (x, y) = [C

∫ t

t−τ

‖U(s, t− τ)x− U(s, t− τ)y‖2L2×H−2ds]
1
2

on B(t− τ)×B(t− τ) such that

‖U(t, t− τ)x− U(t, t− τ)y‖Ht,−1
≤ δ + ψt,τ (x, y), ∀x, y ∈ B(t− τ),

where δ > 0, τ > 0. From Lemma 2.5, one can see that the process U(t, τ) is
pullback D-asymptotically compact in the topology of Ht,−1. So

ξmu (t)(t1 − T ) = U(t1 − T, t1 − τn)ξ
m → ξu(t1 − T ) in Ht,−1. (4.13)

Next, by Lemma 4.1 and the interpolation between H−1 and H1 we obtain that
U(t, τ) is pullback D-asymptotically compact in Ht.

Combining with (4.9)-(4.11) and (4.13) we get

ξmu (t1 − T ) → ξu(t1 − T ) in Ht.

From the continuity of the operator U(t, τ) in Ht and the uniqueness of limit,

ξmu (t) = U(t, t1 − T )ξmu (t1 − T ) → U(t, t1 − T )ξu(t1 − T )

= ξu(t) in Ht

(4.14)

for every t ∈ [t1 − T, t1]. Hence,

ξmu (t1) = U(t1, t1 − τn)ξu → ξu(t1) in H1 × L2. (4.15)

That is to say that U(t, τ) is pullback D-asymptotically compact in Ht. We now
see the process U(t, τ) has a time-dependent attractor A = {A(t)}t∈R, and by the
boundedness of Bt in Ht,1, A(t) ⊂ Ht,1 is bounded.

5. Existnece of pullback exponential attractors
In this section, we show the existence of pullback exponential attractor under the
non-autonomous case, contrary to the general non-autonomous situation, our ex-
ternal force term is independent of time but the coefficient ε(t) depends on time.
Hence, we obtain the existence of pullback exponential attractor without additional
boundedness assumptions for the external force term in time-dependent space.

Definition 5.1 ([19]). Let E be a Banach space, M be a subset of E, which is a
metric space equipped with the distance d(x, y) = ‖x− y‖E , and {U(t, τ)}t≥τ be a
process acting on M . Then the triple (U(t, τ),M,E) is said to be a non-autonomous
dynamical system, M and E are said to be the phase space and the universal space,
respectively.

Definition 5.2 ([19]). A family of subsets {M(t)}t∈R of M is said to be a pullback
exponential attractor of the non-autonomous dynamical system (U(t, τ),M,E), if
(i) it is semi-invariant, i.e., U(t, τ)M(τ) ⊂ M(t) for all t ≥ τ, τ ∈ R;
(ii) each section M(t) is a compact subset of E and its fractal dimension in E is
uniformly bounded, i.e.,

sup
t∈R

dimf (M(t), E) < +∞;
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(iii) it pullback attracts every bounded subset B of M at an exponential rate, i.e.,

sup
t∈R

distE{U(t, t− s)B,M(t)} ≤ C(B)e−βs, s ≥ T (B),

for some β > 0.

Remark 5.1. In particular, when M = E, Definition 5.2 coincides with the stan-
dard definition of pullback exponential attractor.

Lemma 5.1 ([27]). Let (U(t, τ),M,E) be a non-autonomous dynamical system.
Assume that
(i) there exist positive constants T and LT such for any τ ∈ R and x1, x2 ∈M ,

U(t+ τ, τ)M ⊂M, t ≥ T,

sup
t∈[0,T ]

‖U(t+ τ, τ)x1 − U(t+ τ, τ)x2‖E ≤ LT ‖x1 − x2‖E ;

(ii) there exist a Banach space Z and a compact seminorm nZ(·) on Z, and there
exists a mapping Kn :M → Z and n ∈ Z such that for any x1, x2 ∈M,

sup
n∈Z

‖Knx1 −Knx2‖Z ≤ L‖x1 − x2‖E ,

‖U((n+ 1)T, nT )x1 − U((n+ 1)T, nT )x2‖E ≤ η‖x1 − x2‖E + nZ(Knx1 −Knx2),

where η∈ [0, 1], L>0 are constants independent of n. Then the non-autonomous dy-
namical system (U(t, τ),M,E) has a pullback exponential attractor M={M(t)}t∈R.

Theorem 5.1. Let assumption (1.2)-(1.5) be valid, then the non-autonomous dy-
namical system (U(t, τ),Ht,Ht,−1) related to problem (1.1) has a pullback exponen-
tial attractor M = {M(t)}t∈R.

Proof. We set B0 as follows

B0 = {ξ ∈ Ht | ‖ξ‖2Ht
≤ R0} with R0 = C(‖g‖2), (5.1)

by Theorem 3.1, it is easy to see that B0 is a uniform pullback absorbing set
of U(t, τ) and there exists a T0 > 1 such that∪

τ∈R

U(t+ τ, τ)B0 ⊂ B0, for t ≥ T0 − 1. (5.2)

Then, we construct

Bt = [
∪
τ∈R

∪
t≥T0

U(t+ τ, τ)B0]Ht
⊂ B0. (5.3)

So, Bt is also a uniform pullback absorbing set and∪
τ∈R

U(t+ τ, τ)Bt ⊂
∪
τ∈R

U(t+ τ, τ)B0 ⊂ Bt, ∀t ≥ T0. (5.4)

By Theorem 4.2, we know that Bt is bounded in Ht,1. Taking account of (3.7), we
have

sup
t∈[0,T ]

‖U(t+ τ, τ)ξ1 − U(t+ τ, τ)ξ2‖Ht,−1
≤ LT ‖ξ1 − ξ2‖Ht,−1

, ∀τ ∈ R, (5.5)
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where LT = C(t,Bt). We construct the following space

Σ = {(u, ut) ∈ L2(0, T ;Ht,−1) | utt ∈ L2(0, T ;H−r)}, with r > max{N
2
, 3}, (5.6)

equipped with the norm

‖(u, ut)‖Σ = [

∫ T

0

(‖u(t)‖2H1 + ‖ut(t)‖H−1 + ε(t)‖utt(t)‖2H−r )dt]
1
2 .

Clearly, Σ is a Banach space, and

nΣ(u, ut) = ‖(u, ut)‖L2(0,T ;L2×H−2) is a compact seminorm on Σ.

After, we define the mapping

Kn : Bt → Σ, Knξ = (u(·+ nT ), ut(·+ nT )), ξ ∈ Bt, n ∈ N+, (5.7)

where (u(·+nT ), ut(·+nT )) = U(·+nT, nT )ξ, and u(·+nT ) means u(s+nT ), s ∈
[0, T ]. For every n ∈ N+, ξ1, ξ2,∈ Bt, let

(z(t+ nT ), zt(t+ nT ))

=U(t+ nT, nT )ξ1 − U(t+ nT, nT )ξ2

=(u1(t+ nT ), u1t (t+ nT ))− (u2(t+ nT ), u2t (t+ nT )), ∀t ∈ [0, T ].

Then z solves the following equation

ε(t)ztt −4z −4zt + λz + f(u1)− f(u2) = g(x), (5.8)
(z(nT ), zt(nT )) = ξ1 − ξ2.

By estimate (3.7), (5.5), (5.8) and the fact: r >max{N
2 , 3}, which implies H−1 ↪→

H2−r and L1 ↪→ H−r, we obtain∫ (n+1)T

nT

ε(t)‖ztt‖H−rds

≤C(L)
∫ (n+1)T

nT

(‖z(s)‖2H2−r + ‖z(s)‖2H1 + ‖zt(s)‖2H2−r + ‖f(u1)− f(u2)‖2H−r )ds

≤C(L)
∫ (n+1)T

nT

(‖z(s)‖2H1 + ‖zt(s)‖2H−1 + b0

∫
(|u1|p−1 + |u2|p−1)|z|2dx)dx

≤C(L)‖ξ1 − ξ2‖2Ht,−1
.

(5.9)
In bine with (5.5) and (5.9), we have

‖Knξ1 −Knξ2‖2Σ =

∫ T

0

(‖z(t+ nT )‖2H1 + ‖zt(t+ nT )‖2H−1 + ‖ztt(t+ nT )‖2H−r )dt

≤ L2
1‖ξ1 − ξ2‖2Ht,−1

, (5.10)

where L1 = C(Bt, L) is a constant. Choosing T > T0 such that η2 = e−kT < 1 and
combining with (3.7) and (5.7), it follows that

‖U((n+ 1)T, nT )ξ1 − U((n+ 1)T, nT )ξ2‖Ht,−1

≤η‖ξ1 − ξ2‖Ht,−1
+ nΣ(Knξ1 −Knξ2), ξ1, ξ2 ∈ Bt, n ∈ N+.

(5.11)

Theretore, the non-autonomous dynamical system (U(t, τ),Ht,Ht,−1)) has a pull-
back exponential attractor M = {M(t)}t∈R.
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