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WELL-POSEDNESS OF WAVE EQUATION
WITH A VARIABLE COEFFICIENT BY

METHOD OF CHARACTERISTICS∗

Nao Nakagawa1 and Shintaro Yagi2,†

Abstract This study proves well-posedness of wave equation with a variable
coefficient in the Triebel-Lizorkin space F s

q,p using the method of characteris-
tics. Fourier series or transform cannot typically provide an explicit solution
formula for equations with variable coefficients. Moreover, the theory pre-
sented by [16] on well-posedness in the Lq space is not suitable for problems in
the F s

q,p space. In this study, without using any solution formula and complex
calculus, we describe the wave equation with variable coefficients as compris-
ing ordinary differential equations in view of the theory of function spaces and
method of characteristics.
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1. Introduction
In this study, we prove well-posedness of the following problem:

∂2
t u(x, t)− c(x)2∂2

xu(x, t) = 0 x ∈ R, t ∈ R
u(x, 0) = u1(x) x ∈ R, (1.1)
∂tu(x, 0) = u2(x) x ∈ R.

If c(x) is constant, (1.1) is well posed, i.e., (1.1) has a unique solution called
d’Alembert formula ( [2, 10]) for initial values u1 ∈ C2(R), u2 ∈ C1(R). The
solution can be written as

u(x, t) =
u1(x+ c0t) + u1(x− c0t)

2
+

1

2c0

∫ x+c0t

x−c0t

u2(ζ) dζ, (1.2)

and gain u ∈ C2(R2). However, if c(x) is not constant, we could not generally obtain
a explicit solution formula similar to (1.2). Therefore, we prove well-posedness in
the Triebel-Lizorkin space ( [5, 9, 18]) for (1.1) under certain conditions on c(x).
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Let φ be a C∞-function on Rn with

suppφ ⊂ {ξ ∈ Rn | |ξ| ≤ 2}, φ(ξ) = 1 if |ξ| ≤ 1. (1.3)

Let j ∈ N,
φj(ξ) = φ(2−jξ)− φ(2−j+1ξ), ξ ∈ Rn (1.4)

and φ0 = φ. Set
φk(D)f(x) = F−1[φkF [f ]](x), (1.5)

where F and F−1 denote Fourier transform and inverse Fourier transform, respec-
tively.

Definition 1.1. Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and s ∈ R. Then F s
q,p(Rn) is defined

as a whole set of slowly increasing distribution, f satisfying ||f ||F s
q,p

< ∞, where

||f ||F s
q,p(Rn)

:=


||φ0(D)f ||Lq(Rn) +

∣∣∣∣∣∣( ∞∑
k=1

2ksp|φk(D)f(·)|p
) 1

p
∣∣∣∣∣∣
Lq(Rn)

(1 ≤ p < ∞)

||φ0(D)f ||Lq(Rn) + sup
j∈N

2js
∣∣∣∣∣∣φk(D)f

∣∣∣∣∣∣
Lq(Rn)

(p = ∞),

and

||f ||Lq(Rn) :=


(∫

Rn

|g(x)|q dx
) 1

q

(q < ∞)

ess sup
x∈Rn

|g(x)| (q = ∞).

Even if we replace φ in defnition of the Triebel-Lizorkin space for φ̃ satisfying
(1.3) and (1.4), these spaces are homeomorphic in the sense of norm.

In case p = 2, s ≥ 0, it is well known that F s
q,2 is homeomorphic to the Bessel

pottential space Hs
q . In particular, for a non ngative integer s, F s

q,2 is homeomorphic
to the Sobolev space W s

q .
[15] used technique employed by Shibata and Shimizu ( [14]) on the basis of

operator valued Fourier multiplier theorem in [19] and proved maximal regularity
( [6]) in the Lq space for a linear Stokes Equation with a constant coefficient. If
we make use of the result for a constant coefficient, we can prove maximal regu-
larity in the Lq space for a problem with variable coefficient. In [16], we assume
bounded uniformly continuous for a variable coefficient and suppose that the vari-
able coefficient is a constant in the outside of a ball BR(0), where we define BR(0)
as

BR(0) = {x ∈ Rn | |x| ≤ R}.

BR(0) is a bounded closed set in Rn, so we use localizing method for the problem
in BR(0) and should analyze the problem with a constant coefficient in the outiside
of BR(0). Thus, we obtain a result for variable coefficients.

However, we could not utilize the theory of maximal regularity in the Lq theory
for the problem considered in this study, which made it difficult to prove the max-
imal regularity of (1.1). In fact, we don’t know a relatively simple condition like
method by Shibata and Shimizu ( [14]) for the Triebel-Lizorkin space, F s

q,p.
Also, we could not immediately see whether or not the derivative operator in

the left-hand side of (1.1) generates a semi-group ( [1, 17]).
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Moreover, if we do not utilize method by Shibata and Shimizu, we know a lot
of results for wave equation in the L2 space, beause energy method is available
( [8, 11–13]). However, it is difficult for us to analyze (1.1) except for L2-frame.

Thus, we used a simpler method to solve (1.1) with theory of function spaces
and function analysis. As a result, we need not make use of localizing method in
this paper.

Essentially, (1.1) can be considered a problem relative to ordinary equations by
method of characteristics and technical deformation,

∂2
t u(x, t)− c(x)2∂2

xu(x, t) = (∂t − c(x)∂x)(∂t + c(x)∂x)u(x, t) + c(x)c′(x)∂xu(x, t)
(1.6)

for the left-hand side of (1.1). In view of (1.6), the equation (1.1) can be divided
into the following equations:

(∂t − c(x)∂x)υ(x, t) = −c′(x)c(x)∂xu(x, t) x ∈ R, t ∈ R,
υ(x, 0) = u2(x) + c(x)u′

1(x) x ∈ R, (1.7)

and

(∂t + c(x)∂x)u(x, t) = υ(x, t) x ∈ R, t ∈ R,
u(x, 0) = u1(x) x ∈ R. (1.8)

Definition 1.2 ( [7]). For the surface S = {(x, t, z) ∈ R3 | z = u(x, t)}, we consider
first order linear equations:

a(x, t)∂xu+ b(x, t)∂tu = c(x, t). (1.9)

We call the curve t(x(s), t(s), z(s)) ∈ R3 parameterized by s “characteristic
curve” (1.9), which satisfies

x′(s) = a(x(s), t(s))

t′(s) = b(x(s), t(s)),

z′(s) = c(x(s), t(s)).

(1.10)

The equations in (1.10) are called the “characteristic equations” for (1.9). By
solving (1.10), we obtain a solution to (1.9).

We display a numerical example as a graph of the solution for the next problem:

∂tu(x, t) + ∂xu(x, t) = 0 x ∈ R, t > 0,

u(x, 0) = sinx x ∈ R. (1.11)

In view of the method of characteristics, (1.9), and (1.10), we solve the following:

t′(s) = 1, t(0) = 0,

x′(s) = 1, x(0) = x0,

z′(s) = 0, z(0) = sinx0.

Then, we have an explicit description of the solution to (1.11), u(x, t) = sin(x− t).
The graph of surface z = sin(x− t) is shown in Firgure 1.



Well-posedness by method of characteristics 2411

Figure 1. Solution Surface: z = u(x, t) = sin(x − t)

In this paper, first, solving (1.7) for υ, we substitue the solution of (1.7) in (1.8).
If c(x) is a constant, it hold that c′(x) = 0. Hence, we obtain (1.2) easily in the
same way as aregument for (1.11). c(x) is not a constant, therefore we need device.
We define the Hölder-Zygmund space as the following and describe a main tool for
proving well-posedness of (1.1) with a variable coefficient.

Definition 1.3 (Hölder-Zygmund Space). For s > 0, we denote a universal set of
f satisfying ||f ||Cs(R) < ∞ as Cs(R) , where

||f ||Cs(R) = ||f ||L∞(R) + sup
x,y∈R,y ̸=0

|f(x+ y)− 2f(x) + f(x− y)|
|y|s

.

Theorem 1.1. Suppose that 1 ≤ p, q ≤ ∞, u1 ∈ F 0
q,p(R), c, 1/c ∈ Cρ(R)satisfies

c(x) ̸= 0 and

|c(x1)− c(x2)| ≤ C|x1 − x2| for any x1, x2 ∈ R, (1.12)

where C is independent of x1, x2.
Then, there exists a unique solution, u ∈ C1(R;F 0

q,p(R)) ∩ C(R;F 1
q,p(R)), to

(∂t + c(x)∂x)u(x, t) = Lu(x, t) x ∈ R, t ∈ R

u(x, 0) = u1(x) x ∈ R,
(1.13)

where L : F 0
q,p(R) → F 0

q,p(R) is a continuous map satisfying

||Lu− Lυ||F 0
q.p(R) ≤ C||u− υ||F 0

q.p(R) for any u, υ ∈ F 0
q.p(R). (1.14)

If we gain a solution, υ to (1.7) for given u and describe υ = Fu with a continuous
map F satisfying (1.14), we can eliminate υ in(1.8). Namely, in case there exists
the continuous map F , we can deform (1.1) to a problem similar to (1.13). Thus,
Theorem 1.1 is available for analyzing (1.1).
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2. Main Result
Theorem 2.1. Suppose that 1 ≤ q, p ≤ ∞, u1 ∈ F 1

q,p(R), u2 ∈ F 0
q,p(R), and

c ∈ Cρ+1(R), 1/c ∈ Cρ(R) which satisfies c(x) ̸= 0, c′(x) ̸= 0, (1.12) and ρ > 0.
Additionally,

u2(x) + c(x)u′
1(x) = 0 x ∈ R.

Then, there exists a unique solution to (1.1),

u ∈ C2(R;F 0
q,p(R)) ∩ C1(R;F 1

q,p(R)) ∩ C(R;F 2
q,p(R)).

If we analyze (1.1) in Lq-frame, we may suppose c(x), c′(x) are bounded uni-
formly conitious instead of c ∈ Cρ+1(R). In view of Hölder inequlity for the Hölder-
Zygmund space, we should assume c ∈ Cρ+1(R) in order to obtain result in the
Triebel-Lizorkin space.

Theorem 2.1 makes no assertion about the behavior of a solution to (1.1). Analy-
sis the behavior of a solution considering the characteristic curve is a future research
direction.

3. Proof of Theorem 1.1
The next theorem gives proof of Theorem 1.1 and becomes essential part in tihs
paper.

Theorem 3.1 ( [3]). Let X be a Banach space, and a continuous map R : X → X
satisfies

||Ru−Rυ||X ≤ C||u− υ||X for any u, υ ∈ X, (3.1)

where C is independent of u, υ. Then, for any initial value u0 ∈ X, the next
equation:

u′(t) = Ru(t) t ∈ R

has a unique solution u ∈ C1(R;X).

Making use of Theorem 3.1 and the fact that c(x) satisfies (1.12) i.e. (3.1), we
have a unique solution x(t) to the following equation:

x′(t) = c(x(t)),

x(0) = x0

from Theorem 3.1.
In the same way, a continuous operator L satisfies (1.14) i.e. (3.1), hence, there

exists a unique solution z(t) to

dz

dt
= Lz(t),

z(0) = u1(x(0)),

where z(t) = u(x(t), t) and u1 ∈ F 0
q,p(R). So, we see that u ∈ C1(R;F 0

q,p(R)) and it
holds that u ∈ C(R;F 1

q,p(R)) from (1.13). Thus, Theorem 1.1 is proved in view of
Definition 1.2.
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4. Proof of Theorem 2.1
For the right hand side of (1.7), we use Hölder inequlity for the Hölder-Zygmund
space.

Definition 4.1. Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and s ∈ R then the Besov space,
Bs

q,p(Rn) is defined as a whole set of slowly increasing distribution, f satisfying
||f ||Bs

q,p
< ∞, where

||f ||Bs
q,p(Rn)

:=


||φ0(D)f ||Lq(Rn) +

( ∞∑
k=1

2ksp||φk(D)f(·)||pLq(Rn)

) 1
p

(1 ≤ p < ∞)

||φ0(D)f ||Lq(Rn) + sup
j∈N

2js
∣∣∣∣∣∣φk(D)f

∣∣∣∣∣∣
Lq(Rn)

(p = ∞),

with (1.3), (1.4) and (1.5).

Theorem 4.1 (Hölder inequlity for Hölder-Zygmund space, [18]). Let 1 ≤ p, q ≤
∞, s ∈ R, ρ > max(s, σq − s), then it holds that

||f · g||F s
q,p(Rn) ≤ C||f ||Bρ

∞,∞(Rn)||g||F s
q,p(Rn)

where σq = nmax
(1
q
− 1, 0

)
. Moreover, Besov space, Bρ

∞,∞ is homeomorphic to Cρ

in the sense of norm. Hence, it holds that

||f · g||F s
q,p(Rn) ≤ C||f ||Cρ(Rn)||g||F s

q,p(Rn).

Making use of Theorem 4.1 with n = 1, s = 0, we have

||c′(·)c(·)∂xu||F 0
q,p(R) ≤ C||∂xu||F 0

q,p(R).

Hence, we obtain a unique solution to (1.7), υ ∈ C1(R;F 0
q,p(R))∩C(R;F 1

q,p(R)) for
a given u ∈ F 1

q,p(R) from Theorem 3.1.
Owing to the uniqueness of the solution to (1.7) and u2(x)+c(x)u′

1(x) = 0, υ = 0
is in the solution class if u = 0. Hence, we can regard the map of the left-hand side
of (1.7) as a surjective map using the solvability of (1.7). Therefore, there exists
a bounded linear map, R : F 0

q,p(R) → F 1
q,p(R), that satisfies υ = R(∂xu) from the

open mapping theorem with

||R(∂xu1)−R(∂xu2)||F 1
q,p(R) ≤ C||∂xu1 − ∂xu2||F 0

q,p(R)

≤ C||u1 − u2||F 1
q,p(R). (4.1)

Here, we utlize the fact that a bounded linear map, T : X → Y satisfying

∥Tu∥Y ≤ C∥u∥X

is a Lipschitz continuus map on X.
Setting F = R∂x. we obtain the following problem by using (1.8):

(∂t + c(x)∂x)u(x, t) = Fu(x, t) x ∈ R, t > 0,
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u(x, 0) = u1(x) x ∈ R. (4.2)

From (4.1), the map F satisfies is Lipschitz continuous; that is, it holds that

||Fζ1 − Fζ2||F 1
q,p(R) ≤ C||ζ1 − ζ2||F 1

q,p(R) for any ζ1, ζ2 ∈ F 1
q,p(R).

Thus, we obtain a unique solution to (4.2), u ∈ C1(R;F 1
q,p(R)) with Theorem 1.1.

From (4.2), we derive

∂tu = −c(x)∂xu+ Fu ∈ C1(R;F 0
q,p(R)),

∂xu =
1

c(x)
(Fu− ∂tu) ∈ C(R;F 1

q,p(R)).

Hence, making use of Theorem 4.1, we obtain ∂2
t u ∈ C(R;F 0

q,p(R)) and u ∈
C(R;F 2

q,p(R)). Thus, Theorem 2.1 is proved with Theorem 1.1.
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